S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J Mol Biol, vol.215, pp.403-410, 1990.

P. Arensburger, R. H. Hice, J. A. Wright, N. L. Craig, and P. W. Atkinson, The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs, BMC Genomics, vol.12, p.606, 2011.

C. R. Beck, J. L. Garcia-perez, R. M. Badge, and J. V. Moran, LINE-1 elements in structural variation and disease, Annu Rev Genomics Hum Genet, vol.12, pp.187-215, 2011.

R. Bellini, Dispersal and survival of Aedes albopictus (Diptera: Culicidae) males in Italian urban areas and significance for sterile insect technique application, J Med Entomol, vol.47, pp.1082-1091, 2010.

J. Biedler and Z. Tu, Non-LTR retrotransposons in the African malaria mosquito, Anopheles gambiae: unprecedented diversity and evidence of recent activity, Mol Biol Evol, vol.20, pp.1811-1825, 2003.

C. Bié-mont and C. Vieira, , 2004.

, J Soc Biol, vol.198, pp.413-417

W. C. Black, J. A. Ferrari, and D. Sprengert, Breeding structure of a colonising species: Aedes albopictus (Skuse) in the United States, Heredity (Edinb), pp.173-181, 1988.

W. C. Black and K. S. Rai, Genome evolution in mosquitoes: intraspecific and interspecific variation in repetitive DNA amounts and organization, Genet Res, vol.51, pp.185-196, 1988.

M. Bonizzoni, G. Gasperi, X. Chen, and A. A. James, The invasive mosquito species Aedes albopictus: current knowledge and future perspectives, Trends Parasitol, vol.29, pp.460-468, 2013.

M. Boulesteix and C. Bié, Transposable elements in mosquitoes, Cytogenet Genome Res, vol.110, pp.500-509, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02372563

J. E. Brown, Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito, Evolution, vol.68, pp.514-525, 2014.

E. Casacuberta and J. Gonzá, The impact of transposable elements in environmental adaptation, Mol Ecol, vol.22, pp.1503-1517, 2013.

B. Ché-nais, A. Caruso, S. Hiard, and N. Casse, The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments, Gene, vol.509, pp.7-15, 2012.

P. J. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice, The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants, Nucleic Acids Res, vol.38, pp.1767-1771, 2010.

J. L. Goodier and H. H. Kazazian, Retrotransposons revisited: the restraint and rehabilitation of parasites, Cell, vol.135, pp.23-35, 2008.

M. G. Grabherr, Full-length transcriptome assembly from RNA-Seq data without a reference genome, Nat. Biotechnol, vol.29, pp.644-652, 2011.

W. A. Hawley, The biology of Aedes albopictus, J Am Mosq Control Assoc Suppl, vol.1, pp.1-39, 1988.

R. A. Holt, The genome sequence of the malaria mosquito Anopheles gambiae, Science, vol.298, pp.129-149, 2002.

X. Huang, CAP3: a DNA sequence assembly program, Genome Res, vol.9, pp.868-877, 1999.

J. Jurka, W. Bao, and K. K. Kojima, Families of transposable elements, population structure and the origin of species, Biol Direct, vol.6, p.44, 2011.

J. Jurka, Repbase Update, a database of eukaryotic repetitive elements, Cytogenet Genome Res, vol.110, pp.462-467, 2005.

V. V. Kapitonov and J. Jurka, Molecular paleontology of transposable elements in the Drosophila melanogaster genome, Proc Natl Acad Sci U S A, vol.100, pp.6569-6574, 2003.

P. Koch, M. Platzer, and B. R. Downie, RepARK-de novo creation of repeat libraries from whole-genome NGS reads, Nucleic Acids Res, vol.42, p.80, 2014.

A. Kumar and K. S. Rai, Intraspecific variation in nuclear DNA content among world populations of a mosquito, Aedes albopictus, 1990.

, Theor Appl Genet, vol.79, pp.748-752

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat Methods, vol.9, pp.357-359, 2012.

E. Lerat, N. Burlet, C. Bié-mont, and C. Vieira, Comparative analysis of transposable elements in the melanogaster subgroup sequenced genomes, Gene, vol.473, pp.100-109, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00850380

W. Li and A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics, vol.22, pp.1658-1659, 2006.

S. Linquist, Distinguishing ecological from evolutionary approaches to transposable elements, Biol Rev Camb Philos Soc, vol.88, pp.573-584, 2013.

O. Marinotti, The genome of Anopheles darlingi, the main neotropical malaria vector, Nucleic Acids Res, vol.41, pp.7387-7400, 2013.

D. K. Mclain, K. S. Rai, and M. J. Fraser, Intraspecific and interspecific variation in the sequence and abundance of highly repeated DNA among mosquitoes of the Aedes albopictus subgroup, Heredity (Edinb), vol.58, pp.373-381, 1987.

K. A. Medley, D. G. Jenkins, and E. A. Hoffman, Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito, Mol Ecol, vol.24, pp.284-295, 2015.

L. Modolo and E. Lerat, Identification and analysis of transposable elements in genomic sequences, pp.165-181, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02099541

L. Mousson, Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations, Genet Res, vol.86, pp.1-11, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-01698720

V. Nene, Genome sequence of Aedes aegypti, a major arbovirus vector, Science, vol.316, pp.1718-1723, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00156214

P. Nová-k, P. Neumann, and J. Macas, Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data, BMC Bioinformatics, vol.11, p.378, 2010.

D. P. Pashley and K. S. Rai, Comparison of allozyme and morphological relationships in some Aedes (Stegomyia) mosquitoes (Diptera: Culicidae), Ann Entomol Soc Am, vol.76, pp.388-394, 1983.

P. N. Rao and K. S. Rai, Inter and intraspecific variation in nuclear DNA content in Aedes mosquitoes, Heredity (Edinb), vol.59, pp.253-258, 1987.

R. Rebollo, B. Horard, B. Hubert, and C. Vieira, Jumping genes and epigenetics: towards new species, Gene, vol.454, pp.1-7, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00850384

P. Reiter, Oviposition and dispersion of Aedes aegypti in an urban environment, 1996.

, Bull Soc Pathol Exot, vol.89, pp.120-122

S. E. Staton, The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements, Plant J, vol.72, pp.142-153, 2012.

O. Tange, GNU parallel: the command-line power tool. ;login USENIX Mag, vol.3, pp.42-47, 2011.

Z. Tu, J. Isoe, and J. A. Guzova, Structural, genomic, and phylogenetic analysis of Lian, a novel family of non-LTR retrotransposons in the yellow fever mosquito, Aedes aegypti, Mol Biol Evol, vol.15, pp.837-853, 1998.

D. Vela, A. Fontdevila, C. Vieira, G. Guerreiro, and M. P. , A genome-wide survey of genetic instability by transposition in Drosophila hybrids, PLoS One, vol.9, p.88992, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01526703

S. Venner, C. Feschotte, and C. Bié, Dynamics of transposable elements: towards a community ecology of the genome, Trends Genet, vol.25, pp.317-323, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00428403

T. Wicker, A unified classification system for eukaryotic transposable elements, Nat Rev Genet, vol.8, pp.973-982, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169819

D. R. Zerbino and E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs, Genome Res, vol.18, pp.821-829, 2008.

D. Zhou, Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites, BMC Genomics, vol.15, p.42, 2014.

M. Zytnicki, E. Akhunov, and H. Quesneville, Tedna: a transposable element de novo assembler, Bioinformatics, vol.30, pp.2656-2658, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02630617