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Abstract
While cropmodels arewidely used to assess the change in crop productivity with climate change, their
skill in assessing irrigationwater demand or the risk of crop failure in large area impact assessments is
relatively unknown. The objective of this study is to investigate which aspects ofmodeling cropwater
use (reference crop evapotranspiration (ET0), soil water extraction, soil evaporation, soil water balance
and root growth) contributesmost to the variability in estimates ofmaize cropwater use and the risk
of crop failure, and demonstrate the resulting uncertainty in a climate change impact study for Europe.
The SIMPLACE cropmodeling frameworkwas used to couple the LINTUL5 cropmodel in factorial
combinations of 2–3 different approaches for simulating the 5 aspects of cropwater use, resulting in
51modeling approaches. Using experiments in France andNewZeland, analysis of total sensitivity
revealed that ET0 explained themost variability in both irrigatedmaizewater use and rainfed grain
yield levels, with soil evaporation also imporatant in the French experiment. In the European impact
study, net irrigation requirement differed by 36%between the Penman andHargreaves ET0methods
in the baseline period. Average EU grain yields were similar betweenmodels, but differences
approached 1–2 tonnes in parts of France and Southern Europe. EUwide esimates of crop failure in
the historical period ranged between 5.4 years for Priestley–Taylor to every 7.9 years for the Penman
ET0methods.While the uncertainty in absolute values betweenmodels was significant, estimates of
relative changes were similar betweenmodels, confirming the utility of cropmodels in assessing
climate change impacts. If ET0 estimates in cropmodels can be improved, through the use of
appropriatemethods, uncertainty in irrigationwater demand aswell as in yield estimates under
drought can be reduced.

Introduction

Large investments in irrigation project development
or appropriate income support such as insurance
mechanisms require sound estimates of crop water
demand and the risk of crop failure due to drought,
respectively. A high level of uncertainty exists in these
estimates due to climate models and scenarios used,
future land use changes and the choice of crop model

[1, 2], among others. This uncertainty can serve as a
barrier to making timely investments as the likelihood
and cost of maladaptation are high [3]. While crop
models are widely used to assess the change in average
productivity levels with future climate change, their
skill in assessing water use, whether it be to determine
drought risk in rainfed systems or irrigation water
demand in large area impact assessments [4] is
relatively unknown.
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Recent studies have demonstrated the uncertainty
in future irrigation water demand. Elliott et al [5]
found that the relative change in global potential irri-
gation demand to 2050 differed frommedian values of
+15% increase to−5% decrease for global hydrology
and gridded crop models, though these models
employ many different approaches for various aspects
of crop water use. The diversity of ways to model crop
water usemay be argued as an approach to capture sci-
entific uncertainty in crop water use across environ-
ments, as little data is available for testing at a global
scale. However, taking reference crop evapotranspira-
tion (ET0) as an example, there appears to be greater
variety in modeling approaches used in crop models
(see SI appendix, table S1) than is justified from the
current level of scientific understanding. Comprehen-
sive studies confirm that there is wide variation
between methods to estimate ET0 [6–10]. While some
perform well in specific environments, it is recom-
mended to use either the ASCE or FAO- Penman–
Monteith methods when applied across environments
[8, 11]. The Penman–Monteith combination
equations were found to give the best agreement with
measured crop water use in a series of lysimeter
experiments across environments [8].

In most crop modeling impact assessments,
including those considering water limiting conditions,
crop models are typically calibrated only on yield and
growth variables [12], as data on crop water use or soil
water data is usually not available. Cropmodeling stu-
dies have investigated how the approach to simulate
soil water balance affects estimates of simulated soil
water or crop evapotranspiration [13–16]. However,
there are few examples of systematic studies that look
at how the soil water related models (e.g. ET0, ET par-
titioning and soil water balance) affect simulated crop
grain yields under water limiting conditions (see
exceptions by [14–17]), though many only investigate
one aspect of water use or present unsystematic com-
parisons in whichmany aspects differ betweenmodels
[18]. In some comparisons using the same cropmodel,
different simulated biomass values were reported for
non-water limiting conditions, making interpretation
of the study results difficult [18]. The ability of crop
models to capture the yield response to different levels
of soil water deficit may be a result of calibration of
water stress related parameters and not necessarily by
capturing the correct process response [19] to limited
soil water availability. This is here hypothesized to
limit their utility in climate change impact assessments
across environments where the factors driving ET0 dif-
fer between regions and possibly under future climate
conditions [20].

In this context, this study had two objectives. The
first was to systematically assess using sensitivity indi-
ces which aspects of modeling crop water use (refer-
ence crop evapotranspiration (ET0), soil water
extraction, soil evaporation, soil water balance and
root growth) contribute the greatest level of

uncertainty to (i) crop water demand under irrigation
and (ii) yield levels under water limited conditions
when coupled to the LINTUL5 crop growthmodel. As
the choice of ET0 method emerged from the study of
the first objective as the aspect contributing the most
uncertainty to estimates of irrigation water demand
and rainfed crop yields, the second objective was to
demonstrate the resulting uncertainty in estimates of
European [1] irrigation water demand and [2] rainfed
yield levels that arises from using different ET0 meth-
ods coupledwith the LINTUL5 crop growthmodel.

Materials andmethods

Uncertainty analysis
For the first objective, maize development, growth,
and water use were simulated with the SIMPLACE
modeling framework [4, 21] using the LINTUL5 crop
growth model [22] together in 51 models combina-
tions, eachwith different cropwater relatedmodels. In
LINTUL5, growth and development are simulated on
a daily basis in response to daily weather inputs. Plant
biomass growth is determined as a function of the
photosynthetically active radiation intercepted and
the radiation use efficiency, which varies with develop-
ment stage and average temperature; biomass is
partitioned to roots, stems, leaves and grain based on
the crop development stage. For temperate maize,
crop development depends on the daily average
temperature sums to reach flowering and maturity
and is assumed independent of photoperiod effects.
Nitrogen was considered non-limiting in the current
study. Water limitation, quantified as the ratio of
actual transpiration to potential transpiration, reduces
leaf area and biomass growth, while increasing parti-
tioning of biomass to roots. Aspects related to water
use are discussed in the following section.

To assess which aspect of modeling crop water use
causes themost variability in water use and grain yield,
a sensitivity analysis (SA) was conducted. Rather than
vary parameters as typically done in SA, we varied a
particular method used to estimate one aspect of crop
water use. To do so, water use was first conceptually
divided into 5 components (ET0, soil water extraction,
soil water evaporation, soil water balance and root
growth) that are typically considered by crop models,
see tables 1 and 2. Next, 2 to 3 methods (see SI
appendix), implemented as individual submodules, of
differing levels of model complexity were selected for
each component (table 1, SA 1). As it is not possible to
combine a very simple water balance model, typical of
regional applications [4, 21], with models of soil water
extraction, soil water evaporation, and root growth
models, a second SAwas conducted considering only 2
components (ET0 and soil water balance) (table 2, SA
2). The third step was to construct factorial combina-
tion of the various submodules and link, within the
SIMPLACE framework, the resulting water related
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submodules together with the LINTUL5 above
ground cropmodel.

The 51 models were calibrated (SI appendix and
figure S1), and evaluated using two experimental
maize data sets. Irrigated maize was considered in
Lusignan, France and in Lincoln, New Zealand data
with a rainout shelter and full irrigationwere available.
After calibration, 5 sets of simulations for each site
were conducted for each of the 51 models (full irriga-
tion, no irrigation, and with 25%, 50% and 75% of
irrigation water volumes). To determine the contrib-
ution of various model components to the total varia-
bility in crop water use and final grain yield estimates,
total sensitivity indices (TS) were calculated for each
simulation according toMonod et al [27] as:

= - -( [ ∣ ])
( )

( )E Y X

Y
TS 1

var

var
. 1i

i

European impact assessment
Based on the results of the SA, LINTUL5was usedwith
one of four ET0 models (or ETc in the case of the
Penman method): Priestley–Taylor (1972), Penman
(1948), Hargreaves and Samini (1985) and the FAO-56
Penman–Monteith (1998). Priestley–Taylor was not
considered in the SA, as three submodules covering a
range complexity were selected. After ET0 emerged as
a critical modeled component, Priestley–Taylor was
additionally considered because it is used inmany crop
models (see table S2). In the resulting four model

combinations, the respective ET0 model was com-
bined with the LINTUL5 above ground crop model
and SLIM1 (multilayer layer—aggregate soil horizon)
together with the SLIMRoots, FAO-56 [11] based soil
water extraction method and the FAO-56 [11] soil
water evaporation method. Differences in water use
under full irrigation, as well as grain yields and crop
failure under rainfed conditions, were evaluated in
both a historical period as well as in two scenario
periods with climate change. The LINTUL crop
models have been previously applied in climate change
studies (e.g. [28, 29]) and with the SIMPLACE frame-
work at local [30], national [31] and continental scales
[4, 21, 31]. Simulations were conducted with climate
and soil input data at 25 km resolution.

Historical, 25 km resolution, gridded climate data
from the JRC were used for a baseline period from
1984 to 2013. This data was used to define the simula-
tion unit of the models, with all other available
data either aggregated or disaggregated to match the
spatial resolution and extent of the historical climate
data. The delta method was used to estimate two
climate scenarios for a future period of 2036–2065
(nominally referred to as 2050) with two representa-
tive concentration pathways (RCP): RCP4.5 and
RCP8.5, by adding deltas to the historical climate data
(see SI appendix). Soils coinciding with agricultural
land on the Corine Land Cover 2006 raster data v17
were selected from the gridded derived soil layers at a
1 km spatial resolution from the European soil data-
base [32, 33] (see SI appendix). The spatial distribution
of the ratio of the area with irrigated maize to the total
area in maize production was available at the NUTSIII
level [34]. Anthesis dates were calibrated for each
simulation unit using phenology observations from
the JRCMARS database and assumingmaize was pho-
toperiod insensitive. Phenology was re-adjusted for
each scenario period and RCP combination to match
the sowing and maturity dates in the baseline period
(autonomous adaptation).

Output variables assessed in this study include
crop water use (ETc) under full irrigation. For the
Priestley–Taylor, Penman–Monteith and Hargreaves
methods, ETc is estimated by multiplying ET0 by a

Table 1.Modeling components considered for different aspects of cropwater use (and factor levels) in thefirst sensitivity analysis.

Soil water retention and flux ET0
a Crop extraction

Soil water

evaporation Rootmodel

1. SLIM1 (1 layer—average

soil horizon) [23]
1. Penman (1948) [24]

(LINTUL5 default)
1. FAO-56 based

approach [25]
1. SLIM2

default [23]
1. LINTUL5 [22]

1. SLIM2 (multiple horizons

layers) [23]
1. FAO-56 Penman–Mon-

teith [11]
1. Feddes [26] 1. FAO-56 [25] 1. SlimRoots [23]

1. Hargreaves [25]

a The Penman (1948)method is actually amethod used to estimate crop evapotranspiration (ETc).

Table 2.Modeling components considered for different aspects of
cropwater use (and factor levels used) in the second sensitivity
analysis.

Soil water retention and fluxa ET0

1. SLIM1 (multilayer layer—

aggregate soil horizon) [23]
1. Penmana (1948) (Lintul5

default) [24]

1. SLIM2 (multiple layer—multi

horizons) [23]
1. FAO-56 Penman–Mon-

teith [11]

1. LINTUL5a (1 layer—aggre-

gate soil horizon) [22]
1. Hargreaves [25]
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crop coeffiecient to relate the crop ET to that of the
reference surface, kcb and Ke, for transpiration and
evaporation respectively, as well as account for stresses
such as water deficit or salinity, ks. See SI for more dis-
cussion of methods implemented in this study (SI
appendix). The Penman (1948) method estimates
directly crop evapotranspiration (ETc). NIR is deter-
mined from an approximate soil water balance con-
sidering ETc, growing season precipitation (P), runoff
(RO) and drainage (D), all during the growing season:

= - + + ( )NIR ET P RO D. 2c

For rainfed conditions, average grain yield and the
frequency of crop failure are evaluated. In both cases,
the evaluation is conducted in the historical period as
well as in a future periods for two scenarios. Crop
grain yields were considered to have failed when yield
levels fell below 70% of simulated mean yield for a
particular scenario period, region and ET0model. The
frequency with which grain yields fell beneath this
model specific threshold was quantified as the average
interval between successive failures, here estimated by
dividing the length of the simulation period (30 years)
by the number of failures counted in the 30 year simu-
lation period.

Results

Uncertainty analysis
Under fully or near fully irrigated conditions (figure 1,
irrigation percentages 100% or 75%), most variability
in ETc was explained by the method used to estimate

ET0. Under irrigated conditions, the ET0 method
described 60% and 100% of the variability in ETc

estimates in France and New Zealand, respectively.
This was confirmed in the second analysis in which 3
water balance models were coupled with 3 ET0models
in which the ET0 method explained close to 100% of
the variability in ETc for both the experiments in
France and New Zealand (SI appendix, figure S1).
Under water limiting conditions, many components
contribute to the variability in ETc and this appears to
vary between the two locations with soil water
evaporation dominating in France whereas the soil
water extraction method explains the largest amount
of variability in the New Zealand experiment. In both
of these cases, the respective factor has an interaction
with the ET0 method that explains at least 10% of the
variability in ETc for one of the dry treatments (0%,
25% or 50% irrigation). Further, the root model
explained a large amount of variability in the New
Zealand experiment under dry soil conditions.

Likewise, the factors explaining the greatest levels
of variability in yield levels differed depending on the
level of water limitation experienced. Under rainfed
and water limiting conditions (0% to 50% irrigation),
the ET0 method explained at least 80% of the varia-
bility in grain yields for both the experiments in New
Zealand and France (figure 1). This result was con-
firmed, particularly for the French dataset, when only
water balance and ET0method were considered as fac-
tors in the SA (SI appendix, figure S1). Under high irri-
gation amounts, it appears that many of the factors
contribute to the variability in grain yields. In reality,
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Figure 1.Total sensitivity indices (TS) of different aspects ofmodelingmaize cropwater use (panels (a)–(d)) and grain yield (panels
(e)–(h)) inNewZealand (a), (c), (e), (g) and France (b), (d), (f), (h) at 5 levels of irrigation ranging from full irrigation (100%) to no
irrigation (0%). For the full factorial analysis (panels (a), (b), (e), and (f)), the TS associatedwith eachmodel component (ET0—
reference evapotranspiration, Evap—soil water evaporation, Ext—soil water extraction, root—root growth, water balance—soil
water balance) is denotedwith a different color line as indicated in panel (a). For the simple factorial analysis (panels (c), (d), (g), and
(h)), the TS associatedwith each component (ET0—reference evapotranspiration, water balance—soil water balance) is denotedwith
a different color line as indicated in panel (c).
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all model achieved close to potential yield for both
locations, and little variability was found in these esti-
mates (SI appendix, figures S2 and S3).

European net irrigation and cropwater demand
under irrigated conditions
Across Europe, median NIR in the historical period
ranged between 247 and 335mm yr−1 for the Penman
and Hargreaves methods, respectively. The Priestley–
Taylor and Penman–Monteith estimates were very close
to that of Hargreaves (figure 2). This 36% difference
between the highest and lowest estimates among ET0
methods decreased to 31% and 30% in 2050 and 2080,
respectively, averaged across all GCMs. The Hargreaves
NIR estimate was always greatest and the Penman always
least. The uncertainty in NIR estimates arising from the
ET0 method is approximately the same size as the
uncertainty stemming from the choice of GCM, which
contributes to uncertainty in both the calculation of ET0,
as well as differences in future precipitation amounts
across climate models. The average relative changes in
NIR with climate change to 2050 were 6.5%–9.4% and
8.7%–12.3% to 2080 for RCP4.5 across ET0 methods.
These relative changes increased to 7.9%–11.6% (2050)
and 12.6%–18.4% (2080) for RCP8.5. In all cases, the
smallest relative changeswere estimatedby theHargreaves

model whereas the highest relative changes were from the
Penmanmodel. All four ET0models simulated increasing
ETc under irrigation under climate change reflecting
evaporative demand from warmer temperatures (SI
appendix, figure S2). The Penman method has lower
estimated ETc across Europe, with deviation expressed
relative to thePenman–Monteith (figure3).

Grain yields under rainfed conditions
EU average rainfed maize yield levels varied as
expected across Europe (figure 4(a)). The EU average
water-limited yield was 4.8 t ha−1 in the historical
period, with the Priestley–Taylor model (similar to
Hargreaves and Penman–Monteith) giving the lowest
estimate of 4.5 t ha−1 while the Penman model pro-
duced the highest estimate at 5.6 t ha−1, 19% higher
than that of Priestley–Taylor. Average yield levels
increased for the climate scenarios considered to 2050
and 2080 (figure 5), as a result of maintaining the
current growing season with generally higher precipi-
tation. Averaged for scenarios, the EU average relative
changes in grain yield with climate change to 2050 and
2080 were 8.5%–10.9% and 9.6%–13.4%, respec-
tively. When spatial patterns across Europe are con-
sidered, the differences in average yield levels
stemming from the ET0 models is minimal in

Figure 2.Variation in estimates of cropwater use (ETc) (mmyr−1) under full irrigation, from left for the historical period and two
scenarios (2RCPs and 2 periods) averaged over three climatemodels. For each period, plots are shown from left to right for
Hargreaves, Penman, Penman–Monteith andPriestley–Taylor ET0methodswith the variability indicating the range of annual values.

Figure 3.The relative deviation (%) from the Penman–Monteith ET0model of growing season cropwater use (ETc) estimates in the
historical period from left right: Penman, Penman–Monteith,Hargreaves and Priestley–Taylor.
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Northern Europe but approaches 1–2 tonnes in much
of France and upto to 3 tonnes in part of Eastern
Europe (figure 4(b)). This range is large part explained

by the Penmanmodel having upto 50%higher average
rainfed yield levels than the othermodels (SI appendix,
figure S4).

Figure 4. (a) Simulated historical European grainmaize grain yields (t ha−1) under rainfed conditions averaged over the four ET0

models: Hargreaves, Penman, Penman–Monteith and Priestley–Taylor ET0methods and (b) the range ofmaize grain yields quantified
by taking the difference between the highest and lowest value of average yield of the four ET0methods.

Figure 5.European grainmaize grain yields (t ha−1)under rainfed conditions for four scenarios (2RCPs and 2 periods) averaged over
three climatemodels and the historical period. For each period, plots are shown from left to right forHargreaves, Penman, Penman–
Monteith and Priestley–Taylor ET0methods.

Figure 6.The European average interval (years) between crop failure in simulated grain yields (defined as grain yields dropping less
than 30% lower the historicalmean) for thefive climate scenarios (historical period and two scenarios periods by RCP combinations)
considered. Each box plots shows the return period of the 3GCMs. For each period, plots are shown from left to right forHargreaves,
Penman, Penman–Monteith and Priestley–Taylor ET0methods.
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Crop failure for rainfed grainmaize
At the European level, crop failure in the historical
period ranged between every 5.4 years for Priestley–
Taylor to 7.9 years for the Penman model, 32% less
frequent (figure 6), with spatial patterns in figure S6.
The time between successive crop failures tends to
increase with climate change. By 2080, as much
uncertainty in the average time between successive
crop failures results from the choice of GCM as from
the ET0model selected.

Discussion

Assessing agricultural water use is critical given the
large share of freshwater used in agriculture, future
increase in demand for food and the uncertainty in
water supply due to climate change. While crop
models are better suited to assess the dynamics of crop
water use and irrigation demand than hydrological
models [5], many sources of uncertainty surround the
use of crop models related to model structure
[1, 2, 35], studymethodologies and assumptions about
irrigation [4], nitrogen [21] and other technological
developments [36], among others. While the uncer-
tainty in crop model simulations has been demon-
strated in a number of crop model intercomparisons
such as those cited above, there has been little
emphasis on comparing models on their estimates of
water use. A further limitation of model comparisons
is the difficulty in generalize their findings to lead to
model improvement as the models differ in many
aspects [37]. As far as we are aware, this study is one of
the first to systematically investigate crop water use
(see also [15]), to offer insights intowhich components
explain the most variability in simulated yield and
water use. Our findings indicate that the sensitivity to
model components differed with the intensity of
resource use (irrigated versus rainfed conditions), and
also with the impact variable considered (yield versus
water use). These finding are also reported in a study
investigatingmethods to simulate crop rotations [38].

However, our study contains some limitations
which should be considered in the interpretation of
our results. We have only coupled our modeling
approaches for crop water use to one crop model and
the results may be different with other models. This
suggests a role for cross model comparison [1, 39] of
the sensitivity of crop models to various components
ofmodeling crop water use. The AgMIP project is now
undertaking a comprehensive maize model compar-
ison for estimates of crop ET involving more than 20
crop models and various experts in modeling crop
water use. Secondly, our modeling approaches did not
consider the impact of extreme events, either by expli-
citly considering heat stress effects in our model or by
including changed climate variability in the climate
scenario data, which are expected to increase [40].
However, due to the influence of soil water status and

crop water use on heat stress effects through canopy
temperature [37, 41], the differences in simulated
grain yields are expected to be greater than estimated
here. A further limitation of the study is in the sowing
and harvest dates used for simulating irrigated pro-
duction in regions that are predominantly rainfed, as
our observational dataset includes only dates for the
dominant production system. Therefore, if the grow-
ing seasonwas shifted with the use of other sowing and
harvest dates, the climate effectsmay have had a differ-
ent effect. Likewise, due to possible mismatches in
sowing dates and varieties, we only simulated rainfed
grain yields in areas that currently have at least 50%
rainfed production. As a result, we have not analyzed
rainfed production inmainly irrigated regions, despite
the fact that these regions are likely to experience water
limited conditions and high risk of crop failure.

European cropwater demandunder irrigated
conditions
A number of studies have compared ET0 methods
across environments, relating differences in ET0

estimates to the underlying sensitivity of the methods
to climate variables. In a comparison of different land
surface and global hydrologymodels,models that used
the Priestley–Taylor formula were found to produce
lower estimates of ET0 than those using the Penman–
Monteith equation in dry areas, whereas there was
little difference between methods in humid areas [42].
Results from Kingston et al [9] confirm the result that
Priestley–Taylor ET0 estimates are lower than those of
Penman–Monteith in arid and semi-arid areas. How-
ever, in a global comparison of different ET0 methods,
Weiß and Menzel [10] determined that the Priestley–
Taylor gave much greater estimates than the Penman–
Monteith in semi-arid and arid conditions. In our
study, differences between ET0 methods in estimates
of absolute crop water demand were on the order of
20%. A number of reasons explain the differences,
many of which are difficult to generalize due to the
nonlinear relationship between key variables. For
example, neither Priestley–Taylor nor Hargreaves
contain windspeed terms, which can largely explain
why they exhibit lower coefficients of variation and
deviate from FAO-56 Penman–Monteith in regions
with high wind speeds, moderated by degree of aridity.
A case of bias is found in the method used to estimate
net radiation in Penman (1948), which creates a bias of
underestimation in net radiation as compared to the
FAO-56 Penman–Monteith method. Nonetheless, the
purpose of our study is not to explain the differences
which are well explained in other studies, but rather to
investigate the implications across production condi-
tions and impact variables in a large scale impact study.
Finally, other authors have found that any of the ET0

methods that assume neutral stability conditions, such
as the four methods tested here, lead to underestima-
tion in dry arid areas [43, 44], whereas iterative
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methods without the neutral stability assumptions
performbetter.

Grain yields and risk of crop failure under rainfed
conditions
Average yield levels and the risk of crop failure
exhibited somewhat less variability across ET0method
than NIR. The increase in average rainfed grain yields
was largely due to our simulated autonomous adapta-
tion (maintaining current growing season length
through adoption of longer season varieties) and
increased precipitation for all GCMs used in this study
(SI appendix, figure S7). Differences in average rainfed
yield levels are related to differences in average
growing season crop water use, which varied across
ET0 methods to an extent similar to the fully irrigated
case in most years (SI appendix, figure S8). We suspect
that in regions where drought is more common, i.e. in
regions with a larger share of irrigated production, we
may expect more year to year variation in maize grain
yields resulting from the ET0 methods estimating
higher water use. For example, the yield distributions
of the ET0 models in water limiting (2003) versus
largely non-water limiting (2004) conditions for parts
of France and surrounding regions (IR 0.3–0.6, SI
appendix, figure S5) that suffered from the 2003
summer heat and drought event [45] are shown in
figure 7. In 2003, the Penman model shows a lower
frequency of very low grain yields, than the other
models. In 2004, which was considered a relatively wet
year, there was much less difference between the grain
yields simulated by the four ET0models in the region.

The difference between ET0 models in the expec-
ted rate of crop failure was approximately 30% and
this was constant across the scenarios and periods con-
sidered. This translates into a crop failure once in 8
years for the Penman model as opposed to a crop fail-
ure once in 5.5 years for the other three for the 25 km2

aggregate area. This may translate into much greater
yield variability at the farm level [46, 47]. The 30%
decrease compared to average yield levels was chosen

as a measure for crop failure following international
standards. The WTO Uruguay Round Agreement on
Agriculture, Annex 2 8(a), for example, defines ‘[K] a
natural or like disaster [K] by a production loss which
exceeds 30 per cent of the average of production [K]’.
The WTO definition also shaped the crop failure defi-
nition of ‘European Union Guidelines for State aid in
the agricultural and forestry sectors’ [48, 49]. The use
of a lower threshold for crop failure may be more
appropriate for risk analysis at aggregate scales. How-
ever, there are few instances of studies investigating
crop failure [50], with some previous studies having
used non-coherent indicators [51] such as standard
deviation [52]. More broadly, it is hard to translate
these yield shocks into risk for farmers [53], as farms
vary in their sensitivity to yield shocks as compared to
price shocks [54], and this depends on their produc-
tion system, crop type, diversification strategies [55],
crop insurance schemes [56, 57] as well as income sup-
port and off-farm income [54].

Conclusions

This analysis indicates that if we can improve our ET0

and related soil evaporation estimates in crop models,
building on knowledge from the irrigation scientific
community, we can reduce uncertainty in irrigation
water demand and yield estimates under drought.
Improving modeling the dynamics of crop water
movement or root growth seems only critical to
estimate crop water use under drought conditions.
While perhaps interesting from a scientific perspec-
tive, it is not as critical for planning irrigation
infrastructure investments, nor estimating yield under
drought.

Across Europe, there was considerable uncertainty
in absolute estimates of net irrigation demand and, to
a lesser extent in rainfed yield levels and the risk of
crop failure across ET0 models. However, there was
relatively less uncertainty across ET0 models in the
relative changes in either crop water use or yield levels,
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supporting the utility of crop models in assessing cli-
mate changes impacts. However, to enable crop mod-
els to be more useful in understanding adaptations
such as irrigation or crop insurance, crop models will
need to be improved regards to their estimates of crop
water use. Obtaining experimental datasets at both the
field and larger scale will be critical to support this
model improvement. Finally, the on-going initiative
in AgMIP to compare crop models for ET is a critical
step in model improvement to support decision mak-
ing AgMIP or similar networks.
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