A. Abot, F. Moscardi, J. Fuxa, D. Sosagomez, and A. Richter, Development of resistance by Anticarsia gemmatalis from Brazil and the United States to a nuclear polyhedrosis virus under laboratory selection pressure, Biol. Contr, vol.7, pp.126-130, 1996.

A. Akhila, R. , and K. , Biosynthesis of some biologically active limonoids in the leaves of Azadirachta indica (the Indian neem tree), Indian J. Heterocycl. Chem, vol.11, pp.299-302, 2002.

S. Asser-kaiser, On the Inheritance and Mechanism of Baculovirus Resistance of the Codling Moth, Cydia Pomonella (L.). Doctoral dissertation, Johannes Gutenberg, 2009.

S. Asser-kaiser, E. Fritsch, K. Undorf-spahn, J. Kienzle, K. Eberle et al., Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance, Science, vol.317, pp.1916-1918, 2007.

S. Asser-kaiser, D. Heckel, J. , and J. , Sex linkage of CpGV resistance in a heterogeneous field strain of the codling moth Cydia pomonella, 2010.

, J. Invertebr. Pathol, vol.103, pp.59-64

D. Bai, S. Lummis, W. Leicht, H. Breer, and D. Sattelle, Action of imidacloprid and a related nitromethylene on cholinergic receptors of an identified insect motor-neuron, Pestic. Sci, vol.33, pp.197-204, 1991.

W. Bao, Y. Narai, A. Nakano, T. Kaneda, T. Murai et al., Spinosad resistance of melon thrips, Thrips palmi, is conferred by G275E mutation in alpha 6 subunit of nicotinic acetylcholine receptor and cytochrome P450 detoxification. Pestic, Biochem. Physiol, vol.112, pp.51-55, 2014.

C. Bass, A. Puinean, M. Andrews, P. Cutler, M. Daniels et al., Mutation of a nicotinic acetylcholine receptor beta subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae, BMC Neurosci, vol.12, p.51, 2011.

S. Baxter, F. Badenes-perez, A. Morrison, H. Vogel, N. Crickmore et al., Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera, Genetics, vol.189, pp.675-679, 2011.

S. Baxter, M. Chen, A. Dawson, J. Zhao, H. Vogel et al., , 2010.

, Mis-spliced transcripts of nicotinic acetylcholine receptor alpha 6 are associated with field evolved spinosad resistance in Plutella xylostella (L.), PLoS Genet, vol.6, p.1000802

A. Beas-catena, A. Sánchez, . Mirón, F. García-camacho, A. Contreras-gómez et al., Baculovirus bio-pesticides: an overview, J. Anim. Plant. Sci, vol.24, pp.362-373, 2014.

M. Berenbaum, Synergistic interactions among allelochemicals in crop plants, Abstr. Pap. Am. Chem. Soc, vol.190, p.75, 1985.

M. Berenbaum, N. , and J. , Interactions among allelochemicals and insect resistance in crop plants, ACS Symp. Ser, vol.330, 1987.

M. Berling, F. Pau, M. Berling, C. Blacherelopez, O. Soubabere et al., Cydia pomonella granulovirus genotypes overcome virus resistance in the codling moth and improve virus efficiency by selection against resistant hosts, Durabilité du Contrôle du Carpocapse des Pommes et des Poires (Cydia Pomonella), vol.75, pp.925-930, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02668909

M. Berling, M. Lopez-ferber, A. Bonhomme, and B. Sauphanor, Resistance of codling moth (Cydia pomonella) to granulosis virus (CpGV) in southeast france: first observations on the mode of inheritance, IOBC Bull, vol.31, p.67, 2007.

M. Berling, B. Sauphanor, A. Bonhomme, M. Siegwart, and M. Lopez-ferber, A single sex-linked dominant gene does not fully explain the codling moth's resistance to granulovirus, Pest Manag. Sci, vol.69, pp.1261-1266, 2013.

J. Bilton, H. Broughton, P. Jones, S. Ley, Z. Lidert et al., An x-ray crystallographic, mass spectroscopic, and NMR-study of the limonoid insect antifeedant azadirachtin and related derivatives, Tetrahedron, vol.43, pp.86886-86887, 1987.

D. Bishop, M. Hirst, R. Possee, C. , and J. , Genetic engineering of microbes: virus insecticides -a case study, Fifty Years of Antimicrobials: Past Perspectives and Future Trends, pp.249-278, 1995.

B. Bodereau-dubois, O. List, D. Calas-list, O. Marques, P. Communal et al., Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides, J. Pharmacol. Exp. Ther, vol.341, pp.326-339, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02649387

D. Bourguet, J. Chaufaux, M. Seguin, C. Buisson, J. Hinton et al., Frequency of alleles conferring resistance to Bt maize in French and US corn belt populations of the European corn borer, Ostrinia nubilalis, Theor. Appl. Genet, vol.106, pp.1225-1233, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02679383

S. Boyer, M. Paris, S. Jego, G. Lemperiere, and P. Ravanel, Influence of insecticide Bacillus thuringiensis subsp israelensis treatments on resistance and enzyme activities in Aedes rusticus larvae (Diptera: Culicidae), Biol. Control, vol.62, pp.75-81, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01274596

A. Bravo, S. Likitvivatanavong, S. Gill, and M. Soberon, Bacillus thuringiensis: a story of a successful bio-insecticide, Insect Biochem. Mol. Biol, vol.41, pp.423-431, 2011.

D. Briese, Insect resistance to baculoviruses, The Biology of Baculoviruses, pp.89-108, 1986.

H. Broughton, S. Ley, A. Slawin, D. Williams, M. et al., X-ray crystallographic structure determination of detigloyldlhydroazadirachtin and reassignment of the structure of the limonoid insect antifeedant azadirachtin, J. Chem. Soc. Chem. Commun, pp.46-47, 1986.

D. Bruck, Fungal entomopathogens in the rhizosphere, Biocontrol, vol.55, pp.103-112, 2010.

H. Burges, Control of insects by bacteria, Parasitology, vol.84, pp.79-117, 1982.

E. Casida, Pyrethrum: The Natural Insecticide, United Kingdom Edn, 1973.

J. Castellanos-moguel, M. Gonzalez-barajas, T. Mier, M. Reyes-montes, E. Aranda et al., Virulence testing and extracellular subtilisinlike (Pr1) and trypsin-like (Pr2) activity during propagule production of Paecilomyces fumosoroseus isolates from whiteflies (Homoptera: Aleyrodidae), Rev. Iberoam. Micol, vol.24, pp.62-68, 2007.

J. Charles, C. Nielsen-leroux, and A. Delecluse, Bacillus sphaericus toxins: molecular biology and mode of action, Annu. Rev. Entomol, vol.41, pp.451-472, 1996.

J. Chaufaux, J. Mullercohn, C. Buisson, V. Sanchis, D. Lereclus et al., Inheritance of resistance to the Bacillus thuringiensis CryIC toxin in Spodoptera littoralis (Lepidoptera:Noctuidae), J. Econ. Entomol, vol.90, pp.873-878, 1997.
URL : https://hal.archives-ouvertes.fr/halsde-00201312

H. Comins, Management of pesticide resistance, J. Theor. Biol, vol.65, pp.90206-90211, 1977.

N. Crickmore, D. Zeigler, J. Feitelson, E. Schnepf, J. Van-rie et al., Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol, Mol. Biol. Rev, vol.62, pp.807-813, 1998.

C. Curtis, L. Cook, and R. Wood, Selection for and against insecticide resistance and possible methods of inhibiting evolution of resistance in mosquitos, Ecol. Entomol, vol.3, pp.273-287, 1987.

W. David and B. Gardiner, Resistance of Pieris brassicae (Linnaeus) to granulosis virus and the virulence of the virus from different host races, J. Invertebr. Pathol, vol.7, pp.285-290, 1965.

D. Dent, Insect Pest Management, 1991.

A. Dorn, J. Rademacher, and E. Sehn, Effects of azadirachtin on reproductive organs and fertility in the large milkweed bug, Proceedings 3rd International Neem Conference, 1987.

I. Dubovskiy, E. Grizanova, N. Ershova, M. Rantala, and V. Glupov, The effects of dietary nickel on the detoxification enzymes, innate immunity and resistance to the fungus Beauveria bassiana in the larvae of the greater wax moth Galleria mellonella, Chemosphere, vol.85, pp.92-96, 2011.

J. Dunley, J. Brunner, M. Doerr, and E. Beers, Resistance and cross-resistance in populations of the leafrollers, Choristoneura rosaceana and Pandemis pyrusana, in Washington apples, J. Insect Sci, vol.6, pp.1-7, 2006.

K. Eberle, S. Asser-kaiser, S. Sayed, H. Nguyen, J. et al., Overcoming the resistance of codling moth against conventional Cydia pomonella granulovirus (CpGV-M) by a new isolate CpGV-I12, J. Invertebr. Pathol, vol.98, pp.293-298, 2008.

K. Eberle, J. Jehle, and J. Huber, Microbial control of crop pests using insect viruses, Integrated Pest Management: Principles and Practice, pp.281-298, 2012.

K. Eberle, S. Sayed, M. Rezapanah, S. Shojai-estabragh, J. et al., Diversity and evolution of the Cydia pomonella granulovirus, J. Gen. Virol, vol.90, pp.662-671, 2009.

E. Engelhard and L. Volkman, Developmental resistance in 4th instar Trichoplusia ni orally inoculated with Autographa californica M nuclear polyhedrosis virus, Virology, vol.209, pp.384-389, 1995.

W. Fang, B. Leng, Y. Xiao, K. Jin, J. Ma et al., Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence, Appl. Environ. Microbiol, vol.71, pp.363-370, 2005.

J. Farias, R. Horikoshi, A. Santos, and C. Omoto, Geographical and temporal variability in susceptibility to Cry1F Toxin from Bacillus thuringiensis in Spodoptera frugiperda (Lepidoptera: Noctuidae) populations in Brazil, J. Econ. Entomol, vol.107, pp.2182-2189, 2014.

R. Feng and M. Isman, Selection for resistance to azadirachtin in the green peach aphid, Mysus persicae, Experientia, vol.51, pp.831-833, 1995.

J. Ferre, M. Real, J. Vanrie, S. Jansens, and M. Peferoen, Resistance to the Bacillus thuringiensis bio-insecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor, Proc. Natl. Acad. Sci. U.S.A, vol.88, pp.5119-5123, 1991.

J. Ferre and J. Van-rie, Biochemistry and genetics of insect resistance to Bacillus thuringiensis, Annu. Rev. Entomol, vol.47, pp.501-533, 2002.

E. Fritsch, K. Undorf-spahn, J. Kienzle, C. Zebitz, and J. Huber, Apfelwickler-granulovirus: erste hinweise auf unterschiede in der empfindlichkeit lokaler apfelwickler populationen, Nachr. Dtsch. Pflanzenschutzd, vol.57, pp.29-34, 2005.

J. Fuxa and A. Richter, Reversion of resistance by Spodoptera frugiperda to nuclear polyhedrosis virus, J. Invertebr. Pathol, vol.53, issue.89, pp.90073-90079, 1989.

J. Fuxa, A. Richter, J. Fuxa, and A. Richter, Response of nucelar polyhedrosis virus resistant Spodoptera frugiperda larvae to other pathogens and to chemical insecticides, J. Invertebr. Pathol, vol.55, pp.159-164, 1990.

L. Gahan, F. Gould, and D. Heckel, Identification of a gene associated with bit resistance in Heliothis virescens, Science, vol.293, pp.857-860, 2001.

L. Gahan, Y. Pauchet, H. Vogel, and D. Heckel, An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin, PLoS Genet, vol.6, p.1001248, 2010.

A. Gassmann, Y. Carriere, and B. Tabashnik, Fitness costs of insect resistance to Bacillus thuringiensis, Annu. Rev. Entomol, vol.54, pp.147-163, 2009.

M. Gebhardt, K. Eberle, J. , and J. , The resistance of Cydia pomonella against baculoviruses is provoked by a mutation of the immediate-early pe38 gene of Cydia pomonella granulovirus, Proceedings of the 47th Annual Meeting of the Society for Invertebrate Pathology, 2014.

G. Georghiou, Management of resistance in arthropods, pp.769-792, 1983.

G. Georghiou, T. , and C. , Genetic and biological influences in evolution of insecticide resistance, J. Econ. Entomol, vol.70, pp.319-323, 1977.

T. Glare, J. Caradus, W. Gelernter, T. Jackson, N. Keyhani et al., Have bio-pesticides come of age?, Trends Biotechnol, vol.30, pp.250-288, 2012.

A. Gröner, Specificity and safety of baculoviruses, The Biology of Baculoviruses: Biological Properties and Molecular Biology, pp.177-202, 1986.

M. Grove and K. Hoover, Intrastadial developmental resistance of third instar gypsy moths (Lymantria dispar L.) to L-dispar nucleopolyhedrovirus, Biol. Control, vol.40, pp.355-361, 2007.

R. Gunning, H. Dang, F. Kemp, I. Nicholson, and G. Moores, New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin, Appl. Environ. Microbiol, vol.71, pp.2558-2563, 2005.

A. Hajek and R. Stleger, Interactions between fungal pathogens and insect hosts, Annu. Rev. Entomol, vol.39, pp.293-322, 1994.

D. Heckel, Learning the ABCs of Bt: ABC transporters and insect resistance to Bacillus thuringiensis provide clues to a crucial step in toxin mode of action, Pestic. Biochem. Physiol, vol.104, pp.103-110, 2012.

P. Hernandez-martinez, G. Navarro-cerrillo, S. Caccia, R. De-maagd, W. Moar et al., Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua, PLoS ONE, vol.5, p.12795, 2010.

S. Herrero, T. Gechev, P. Bakker, W. Moar, D. Maagd et al., Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes, BMC Genomics, vol.6, p.96, 2005.

S. Herrero, B. Oppert, and J. Ferre, Different mechanisms of resistance to Bacillus thuringiensis toxins in the indianmeal moth, Appl. Environ. Microbiol, vol.67, pp.1085-1089, 2001.

D. Hojland, K. Jensen, and M. Kristensen, Expression of xenobiotic metabolizing cytochrome P450 genes in a spinosad-resistant Musca domestica L. strain, PLoS ONE, vol.9, p.103689, 2014.

R. Holt and M. Hochberg, When is biological control evolutionarily stable (or is it, Ecology, vol.78, pp.1673-1683, 1997.

M. Hoy, Developing insecticide resistances in insect and mite predators and opportunities for gene transfer, Abstr. Pap. Am. Chem. Soc, vol.190, p.29, 1985.

F. Huang, R. Higgins, and L. Buschman, Baseline susceptibility and changes in susceptibility to Bacillus thuringiensis subsp. kurstaki under selection pressure in European corn borer (Lepidoptera: Pyralidae), J. Econ. Entomol, vol.90, pp.1137-1143, 1997.

J. Huang, C. Lu, M. Hu, and G. Zhong, The mitochondria-mediated apoptosis of lepidopteran cells induced by azadirachtine, PLoS ONE, vol.8, p.58499, 2013.

J. Huang, K. Shui, H. Li, M. Hu, and G. Zhong, Antiproliferative effect of azadirachtin A on Spodoptera litura Sl-1 cell line through cell cycle arrest and apoptosis induced by up-regulation of p53, Pestic. Biochem. Physiol, vol.99, pp.16-24, 2011.

D. Hunter, Credibility of an IPM approach for locust and grasshopper control: the Australian example, J. Orthoptera Res, vol.19, pp.133-137, 2010.

R. Iijima, S. Kurata, and S. Natori, Purification, characterization, and cDNA cloning of an antifungal protein from the hemolymph of Sarcophaga peregrina (flesh fly) larvae, J. Biol. Chem, vol.268, pp.12055-12061, 1993.

M. Isman, Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world, Annu. Rev. Entomol, vol.51, pp.45-66, 2006.

A. Janmaat and J. Myers, Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni, Proc. R. Soc. B Biol. Sci, vol.270, pp.2263-2270, 2003.

J. Jansen, T. Defrance, and A. Warnier, Effects of organic-farmingcompatible insecticides on four aphid natural enemy species, Pest Manag. Sci, vol.66, pp.650-656, 2010.

J. Kabaluk and J. Ericsson, Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control, Agron. J, vol.99, pp.1377-1381, 2007.

F. Kamilova, S. Validov, T. Azarova, I. Mulders, and B. Lugtenberg, Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria, Environ. Microbiol, vol.7, pp.1809-1817, 2005.

L. Karumbaiah, B. Oppert, J. Jurat-fuentes, A. , and M. , Analysis of midgut proteinases from Bacillus thuringiensis-susceptible and -resistant Heliothis virescens (Lepidoptera: Noctuidae), Comp. Biochem. Physiol. B Biochem. Mol. Biol, vol.146, pp.139-146, 2007.

P. Kaur and V. Dilawari, Inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) from India, Pest Manag. Sci, vol.67, pp.1294-1302, 2011.

C. Khajuria, L. Buschman, M. Chen, B. Siegfried, and K. Zhu, Identification of a novel aminopeptidase P-like gene (OnAPP) possibly involved in Bt toxicity and resistance in a major corn pest (Ostrinia nubilalis), PLoS ONE, vol.6, p.23983, 2011.

S. Kiewnick, Practicalities of developing and registering microbial biological control agents, CAB Rev, vol.2, pp.1-11, 2007.

J. Kohl, M. Gerlagh, B. De-haas, and M. Krijger, Biological control of Botrytis cinerea in cyclamen with Ulocladium atrum and Gliocladium roseum under commercial growing conditions, Phytopathology, vol.88, pp.568-575, 1998.

O. Koul, Azadirachtin.2. interaction with the reproductive behavior of red cotton bugs, Z. Angew. Entomol, vol.98, pp.221-223, 1984.

O. Koul, J. Shankar, and R. Kapil, The effect of neem allelochemicals on nutritional physiology of larval Spodoptera litura, Entomol. Exp. Appl, vol.79, pp.43-50, 1996.

O. Koul, G. Singh, R. Singh, J. Singh, W. Daniewski et al., Bioefficacy and mode-of-action of some limonoids of salannin group from Azadirachta indica Juss, A., and their role in a multicomponent system against lepidopteran larvae, J. Biosci, vol.29, pp.409-416, 2004.

L. Lacey, Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control, J. Am. Mosq. Control Assoc, vol.23, pp.133-163, 2007.

M. Lecadet, E. Frachon, V. Dumanoir, H. Ripouteau, S. Hamon et al., Updating the H-antigen classification of Bacillus thuringiensis, J. Appl. Microbiol, vol.86, pp.660-672, 1999.

M. Leggett, J. Leland, K. Kellar, and B. Epp, Formulation of microbial biocontrol agents -an industrial perspective, Can. J. Plant Pathol, vol.33, pp.101-107, 2011.

S. Levy, A. Falleiros, F. Moscardi, G. , and E. , , 2007.

, Susceptibility/resistance of Anticarsia gemmatalis larvae to its nucleopolyhedrovirus (AgMNPV): structural study of the peritrophic membrane, J. Invertebr. Pathol, vol.96, pp.183-186

H. Li, B. Oppert, R. Higgins, F. Huang, K. Zhu et al., Comparative analysis of proteinase activities of Bacillus thuringiensis-resistant and -susceptible Ostrinia nubilalis (Lepidoptera: Crambidae), Insect Biochem. Mol. Biol, vol.34, pp.753-762, 2004.

X. Li, S. Bai, C. , and B. , Accord insertion in the 5 ? flanking region of CYP6G1 confers nicotine resistance in Drosophila melanogaster, Gene, vol.502, pp.1-8, 2012.

Y. Li, P. Zhao, S. Liu, Z. Dong, J. Chen et al., A novel protease inhibitor in Bombyx mori is involved Beauveria bassiana, Insect Biochem. Mol. Biol, vol.42, pp.766-775, 2012.

Y. Liu, B. Tabashnik, L. Masson, B. Escriche, and J. Ferre, Binding and toxicity of bacillus thuringiensis protein Cry1C to susceptible and resistant diamondback moth (Lepidoptera: Plutellidae), J. Econ. Entomol, vol.93, pp.1-6, 2000.

Z. Liu, M. Williamson, S. Lansdell, I. Denholm, Z. Han et al., A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper), Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.8420-8425, 2005.

Z. Liu, M. Williamson, S. Lansdell, Z. Han, I. Denholm et al., A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agonist potency to a range of neonicotinoid insecticides, J. Neurochem, vol.99, pp.1273-1281, 2006.

C. Lloyd, Studies on the cross-tolerance to DDT-related compounds of a pyrethrin-resistant strain of Sitophilus granarius (L.) (Coleoptera, Curculionidae), J. Stored Prod. Res, vol.5, pp.90007-90008, 1969.

S. Macintosh, T. Stone, R. Jokerst, and R. Fuchs, Binding of Bacillus thuringiensis proteins to a laboratory selected line of Heliothis virescens, Proc. Natl. Acad. Sci. U.S.A, vol.88, pp.8930-8933, 1991.

M. Markussen and M. Kristensen, Spinosad resistance in female Musca domestica L. from a field-derived population, Pest Manag. Sci, vol.68, pp.75-82, 2012.

A. Martinez-ramirez, B. Escriche, M. Real, F. Silva, and J. Ferre, Inheritance of resistance to a Bacillus thuringiensis toxin in a field population of diamondback math (Plutella xylostella), Pestic Sci, vol.43, pp.115-120, 1995.

R. Mascarenhas, D. Boethel, B. Leonard, M. Boyd, C. et al., Resistance monitoring to Bacillus thuringiensis insecticides for soybean loopers (Lepidoptera: Noctuidae) collected from soybean and transgenic Bt-cotton, 1998.

, J. Econ. Entomol, vol.91

W. Mcgaughey, Insect resistance to the biological insecticide Bacillus thuringiensis, Science, vol.229, pp.193-194, 1985.

W. Mcgaughey and R. Beeman, Resistance to Bacillus thuringiensis in colonies of indian meal moth and almond moth (Lepidoptera, pyralidae), 1988.

, J. Econ. Entomol, vol.81, pp.28-33

W. Mcgaughey, J. , and D. , Indianmeal moth (Lepidoptera, pyralidae) resistance to different strains and mixtures of Bacillus thuringiensis, J. Econ. Entomol, vol.85, pp.1594-1600, 1992.

R. Milani and A. Travaglino, Ricerche genetiche sulla resistenza al DDT in Musca domestica concatenazione del gene kdr (knockdown-resistance) con due mutanti morfologigi, Riv. Parassitol, vol.18, pp.199-202, 1957.

L. Miller, A. Lingg, and L. Bulla, Bacterial, viral, and fungal insecticides, Science, vol.219, pp.715-721, 1983.

W. Moar, M. Pusztaicarey, H. Vanfaassen, D. Bosch, R. Frutos et al., Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Hübner) (Lepidoptera, Noctuidae), Appl. Environ. Microbiol, vol.61, pp.2086-2092, 1995.

E. Morgan, Azadirachtin, a scientific gold mine, Bioorg. Med. Chem, vol.17, pp.4096-4105, 2009.

S. Morin, R. Biggs, M. Sisterson, L. Shriver, C. Ellers-kirk et al., Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.5004-5009, 2003.

D. Mota-sanchez, R. Hollingworth, E. Grafius, and D. Moyer, Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), Pest Manag. Sci, vol.62, pp.30-37, 2006.

J. Mullercohn, J. Chaufaux, C. Buisson, N. Gilois, V. Sanchis et al., Spodoptera littoralis (Lepidoptera: Noctuidae) resistance to CryIC and cross-resistance to other Bacillus thuringiensis crystal toxins, J. Econ. Entomol, vol.89, pp.791-797, 1996.

R. Murillo, R. Lasa, D. Goulson, T. Williams, D. Munoz et al., Effect of Tinopal LPW on the insecticidal properties and genetic stability of the nucleopolyhedrovirus of Spodoptera exigua (Lepidoptera: Noctuidae), J. Econ. Entomol, vol.96, pp.1668-1674, 2003.

A. Nisbet, J. Woodford, R. Strang, C. , and J. , Systemic antifeedant effects of azadirachtin on the peach-potato aphid Mysus persicae, Entomol. Exp. Appl, vol.68, pp.87-98, 1993.

D. Nuyttens, M. De-schampheleire, P. Verboven, E. Brusselman, and D. Dekeyser, Droplet size and velocity characteristics of agricultural sprays, Trans. ASABE, vol.52, pp.1471-1480, 2009.

B. Oppert, K. Kramer, R. Beeman, D. Johnson, and W. Mcgaughey, , 1997.

, Proteinase-mediated insect resistance to Bacillus thuringiensis toxins, J. Biol. Chem, vol.272, pp.23473-23476

L. Pardo-lopez, M. Soberon, and A. Bravo, Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection, FEMS Microbiol. Rev, vol.37, pp.3-22, 2013.

T. Perry, J. Mckenzie, and P. Batterham, A Dalpha6 knockout strain of Drosophila melanogaster confers a high level of resistance to spinosad, Insect Biochem. Mol. Biol, vol.37, pp.184-188, 2007.

C. Pigott and D. Ellar, Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol, Mol. Biol. Rev, vol.71, pp.255-281, 2007.

G. Prakash, V. Padmaja, S. Jami, and P. Kirti, Expression of chitinase genes of Metarhizium anisopliae isolates in lepidopteran pests and on synthetic media, J. Basic Microbiol, vol.52, pp.628-635, 2012.

X. Pu, Y. Yang, S. Wu, and Y. Wu, Characterisation of abamectin resistance in a field-evolved multiresistant population of Plutella xylostella, Pest Manag. Sci, vol.66, pp.371-378, 2010.

A. Puinean, S. Lansdell, T. Collins, P. Bielza, and N. Millar, A nicotinic acetylcholine receptor transmembrane point mutation (G275E) associated with resistance to spinosad in Frankliniella occidentalis, J. Neurochem, vol.124, pp.590-601, 2013.

G. Qi, N. Lan, X. Ma, Z. Yu, and X. Zhao, Controlling Myzus persicae with recombinant endophytic fungi Chaetomium globosum expressing Pinellia ternata agglutinin, J. Appl. Microbiol, vol.110, pp.1314-1322, 2011.

J. Qiao, X. Zou, D. Lai, Y. Yan, Q. Wang et al., Azadirachtin blocks the calcium channel and modulates the cholinergic miniature synaptic current in the central nervous system of Drosophila, Pest Manag. Sci, vol.70, pp.1041-1047, 2014.

W. Ravensberg, A Roadmap to the Successful Development and Commercialization of Microbial Pest Control Products for Control of Arthropods, 2011.

B. Raymond, P. Johnston, C. Nielsen-leroux, D. Lereclus, C. et al., Bacillus thuringiensis: an impotent pathogen?, Trends Microbiol, vol.18, pp.189-194, 2010.

C. Regnault-roger, B. Philogene, and C. Vincent, Bio-pesticides D'origine Végétale, 2002.

C. Reichelderfer and C. Benton, Some genetic aspects of the resistance of Spodoptera frugiperda to a nuclear polyhedrosis virus, J. Invertebr. Pathol, vol.23, pp.378-382, 1974.

M. Reyes and B. Sauphanor, Resistance monitoring in codling moth: a need for standardization, Pest Manag. Sci, vol.64, pp.945-953, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02659861

F. Rinkevich, M. Chen, A. Shelton, and J. Scott, Transcripts of the nicotinic acetylcholine receptor subunit gene Pxyl alpha 6 with premature stop codons are associated with spinosad resistance in diamondback moth, Plutella xylostella. Invertebr Neurosci, vol.10, pp.25-33, 2010.

G. Rohrmann, Baculovirus Molecular Biology, 2013.

G. Rosenthal, J. , and D. , Herbivores: Their Interaction with Secondary Plant Metabolites, 1979.

R. Roush and B. Tabashnik, Pesticide Resistance in Arthropods, 1990.

C. Ruscoe, Growth disruption effects of an insect antifeedant, Nat. New Biol, vol.236, pp.159-160, 1972.

B. Sauphanor, M. Berling, F. Jtoubon, M. Reyes, J. Delnatte et al., Cases of resistance to granulosis virus in the codling moth, Phytoma, vol.590, pp.24-27, 2006.

F. Sayah, C. Fayet, M. Idaomar, and A. Karlinsky, Effect of Azadirachtin on vitellogenesis of Labidura riparia (Insect Dermaptera), Tissue Cell, vol.28, pp.741-749, 1996.

F. Sayah, M. Idaomar, L. Soranzo, and A. Karlinsky, Endocrine and neuroendocrine effects of Azadirachtin in adult females of the earwig Labidura riparia, Tissue Cell, vol.30, pp.80009-80017, 1998.

A. Sayyed, M. Ahmad, and M. Saleem, Cross-resistance and genetics of resistance to indoxacarb in Spodoptera litura (Lepidoptera: Noctuidae), J. Econ. Entomol, vol.101, pp.472-479, 2008.

A. Sayyed, R. Haward, S. Herrero, J. Ferre, W. et al., Genetic and biochemical approach for characterization of resistance to Bacillus thuringiensis toxin Cry1Ac in a field population of the diamondback moth, Plutella xylostella, Appl. Environ. Microbiol, vol.66, pp.1509-1516, 2000.

A. Sayyed, D. Omar, W. , and D. , Genetics of spinosad resistance in a multi-resistant field-selected population of Plutella xylostella, Pest Manag. Sci, vol.60, pp.827-832, 2004.

A. Schmitt, I. Bisutti, E. Ladurner, M. Benuzzi, B. Sauphanor et al., The occurrence and distribution of resistance of codling moth to Cydia pomonella granulovirus in Europe, J. Appl. Entomol, vol.137, pp.641-649, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02649421

H. Schmutterer, Which insect pests can be controlled by application of neem seed kernel extracts under field conditions, Z. Angew. Entomol, vol.100, pp.468-475, 1985.

R. Sheppard and G. Stairs, Dosage mortality and time mortality studies of a granulosis virus in a laboratory strain of codling moth, Laspeyresia pomonella, J. Invertebr. Pathol, vol.29, pp.216-221, 1977.

M. Simmonds, W. Blaney, S. Ley, J. Anderson, and P. Toogood, , 1990.

, Azadirachtin -structural requirements for reducing growth and increasing mortality in lepidopterous larvae, Entomol. Exp. Appl, vol.55, pp.169-181

S. Singer, Potential of Bacillus sphaericus and related spore-forming bacteria for pest control, Microbial Control of Pests and Plant Diseases 1970-1980, pp.283-298, 1981.

M. Soberon, C. Rodriguez-almazan, C. Munoz-garay, L. Pardo-lopez, H. Porta et al., Bacillus thuringiensis Cry and Cyt mutants useful to counter toxin action in specific environments and to overcome insect resistance in the field, Pestic. Biochem. Physiol, vol.104, pp.111-117, 2012.

D. Soderlund and D. Knipple, The molecular biology of knockdown resistance to pyrethroid insecticides, Insect Biochem. Mol. Biol, vol.33, pp.563-577, 2003.

T. Sparks, J. Dripps, G. Watson, and D. Paroonagian, Resistance and cross-resistance to the spinosyns -a review and analysis. Pestic, Biochem. Physiol, vol.102, pp.1-10, 2012.

T. Sparks, G. Thompson, H. Kirst, M. Hertlein, L. Larson et al., Biological activity of the spinosyns, new fermentation derived insect control agents, on tobacco budworm (Lepidoptera: Noctuidae) larvae, J. Econ. Entomol, vol.91, pp.1277-1283, 1998.

R. Starnes, C. Liu, and P. Marrone, History, use, and future of microbial insecticides, Am. Entomol, vol.39, pp.83-91, 1993.

R. St-leger, L. Joshi, M. Bidochka, and D. Roberts, Construction of an improved mycoinsecticide overexpressing a toxic protease, Proc. Natl. Acad. Sci. U.S.A, vol.93, pp.6349-6354, 1996.

B. Subrahmanyam, T. Muller, and H. Rembold, Inhibition of turnover of neurosecretion by azadirachtin in Locusta migratoria, J. Insect Physiol, vol.35, pp.493-497, 1989.

B. Subrahmanyam and H. Rembold, Effect of azadirachtin-A on neuroendocrine activity in Locusta migratoria, Cell Tissue Res, vol.256, pp.513-517, 1989.

L. Suty, La Lutte Biologique. Dijon: Sick, I, 2010.

B. Tabashnik, Evolution of resistance to Bacillus thurinigienis, Annu. Rev. Entomol, vol.39, pp.47-79, 1994.

B. Tabashnik and B. Croft, Managing pesticide resistance in croparthropod complexes -interactions between biological and operational factors, Environ. Entomol, vol.11, pp.1137-1144, 1982.

B. Tabashnik and B. Croft, Evolution of pesticide resistance in apple pests and their natural enemies. Entomophaga, vol.30, pp.37-49, 1985.

B. Tabashnik, Y. Liu, T. Malvar, D. Heckel, L. Masson et al., Insect resistance to Bacillus thuringiensis: uniform or diverse? Phil, Trans. R Soc. Lond. B Biol. Sci, vol.353, pp.1751-1756, 1998.

R. Tanwar, P. Dureja, R. , and H. , Bio-pesticides, " in Pesticides, Evaluation of Environmental Pollution, pp.587-603, 2012.

C. Taylor and G. Georghiou, Suppression of insecticide resistance by alteration of gene dominance and migration, J. Econ. Entomol, vol.72, pp.105-109, 1979.

C. Taylor, F. Quaglia, and G. Georghiou, Evolution of resistance to insecticides -a cage study on the influence of migration and insecticide delay-rates, J. Econ. Entomol, vol.76, pp.704-707, 1983.

D. Taylor, Azadirachtin -a study in the methodology of structure determination, Tetrahedron, vol.43, pp.86884-86892, 1987.

Y. Thakore, The bio-pesticide market for global agricultural use, Ind. Biotechnol, vol.2, pp.194-208, 2006.

K. Tiewsiri, W. , and P. , Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.14037-14042, 2011.

W. Timmins, R. , and S. , Azadirachtin inhibits secretion of trypsin in midgut of manduca sexta caterpillars -reduced growth due to impaired protein digestion, Entomol. Exp. Appl, vol.63, pp.47-54, 1992.

R. Townsend, C. Ferguson, J. Proffitt, M. Slay, J. Swaminathan et al., Establishment of Serratia entomophila after application of a new formulation for grass grub control, N. Z. Plant Prot, vol.57, pp.310-313, 2004.

M. Tsukamoto, T. Narahashi, Y. , and T. , Genetic control of low nerve sensitivity to DDT in insecticide resistant houseflies, Botyu-Kagaku, vol.30, pp.128-132, 1965.

C. Turner, M. Tempesta, R. Taylor, M. G. Zagorski, J. S. Termini et al., An NMR spectroscopic study of azadirachtin and its trimethyl ether, Tetrahedron, vol.43, p.86885, 1987.

Y. Tyutyunov, E. Zhadanovskaya, D. Bourguet, A. , and R. , Landscape refuges delay resistance of the European corn borer to Bt-maize: a demo-genetic dynamic model. Theor, Popul. Biol, vol.74, pp.138-146, 2008.

K. Undorf-spahn, E. Fritsch, J. Huber, J. Kienzle, C. Zebitz et al., High stability and no fitness costs of the resistance of codling moth to Cydia pomonella granulovirus (CpGV-M), J. Invertebr. Pathol, vol.111, pp.136-142, 2012.

C. Virto, C. Zarate, M. Lopez-ferber, R. Murillo, P. Caballero et al., Gender-mediated differences in vertical transmission of a nucleopolyhedrovirus, PLoS ONE, vol.8, p.70932, 2013.

D. Wang, X. Qiu, X. Ren, W. Zhang, W. et al., Effects of spinosad on Helicoverpa armigera (Lepidoptera: Noctuidae) from China: tolerance status, synergism and enzymatic responses, Pest Manag. Sci, vol.65, pp.1040-1046, 2009.

L. Wang, X. Li, J. Zhang, J. Zhao, Q. Wu et al., Monitoring of resistance for the diamondback moth to Bacillus thuringiensis Cry1Ac and Cry1Ba toxins and a Bt commercial formulation, J. Appl. Entomol, vol.131, pp.441-446, 2007.

P. Wang and R. Granados, Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control, Arch. Insect Biochem. Physiol, vol.47, pp.110-118, 2001.

Z. Wang, M. Yao, and Y. Wu, Cross-resistance, inheritance and biochemical mechanisms of imidacloprid resistance in B-biotype Bemisia tabaci, Pest Manag. Sci, vol.65, pp.1189-1194, 2009.

J. Washburn, B. Kirkpatrick, E. Haas-stapleton, and L. Volkman, Evidence that the stilbene-derived optical brightener M2R enhances Autographa californica M nucleopolyhedrovirus infection of Trichoplusia ni and Heliothis virescens by preventing sloughing of infected midgut epithelial cells, Biol. Control, vol.11, pp.58-69, 1998.

M. Whalon, D. Miller, R. Hollingworth, E. Grafius, and J. Miller, Selection of a colorado potato beetle (Coleoptera, Chrysomelidae) strain resistant to Bacillus thuringiensis, J. Econ. Entomol, vol.86, pp.226-233, 1993.

X. Xu, L. Yu, and Y. Wu, Disruption of a cadherin gene associated with resistance to Cry1Ac delta-endotoxin of Bacillus thuringiensis in Helicoverpa armigera, Appl. Environ. Microbiol, vol.71, pp.948-954, 2005.

M. Yang, M. Li, Y. Zhang, Y. Wang, J. Qu et al., Baculoviruses and insect pests control in China, Afr. J. Microbiol. Res, vol.6, pp.214-218, 2012.

G. Ye, Q. Xiao, M. Chen, X. Chen, Z. Yuan et al., Tea: biological control of insect and mite pests in China, Biol. Control, vol.68, pp.73-91, 2014.

Z. Yixi, Z. Liu, Z. Han, F. Song, X. Yao et al., Functional co-expression of two insect nicotinic receptor subunits (Nl?3 and Nl?8) reveals the effects of a resistance-associated mutation (Nl?3Y151S) on neonicotinoid insecticides, J. Neurochem, vol.110, pp.1855-1862, 2009.

S. Zhang, H. Cheng, Y. Gao, G. Wang, G. Liang et al., Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin, Insect Biochem. Mol. Biol, vol.39, pp.421-429, 2009.

J. Zhao, L. Jin, Y. Yang, and Y. Wu, Diverse cadherin mutations conferring resistance to Bacillus thuringiensis toxin Cry1Ac in Helicoverpa armigera, Insect Biochem. Mol. Biol, vol.40, pp.113-118, 2010.

J. Zhao, Y. Li, H. Collins, L. Gusukuma-minuto, R. Mau et al., Monitoring and characterization of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad, J. Econ. Entomol, vol.95, pp.430-436, 2002.

P. Zhao, Z. Dong, J. Duan, G. Wang, L. Wang et al., , 2012.

, Genome-wide identification and immune response analysis of serine protease inhibitor genes in the silkworm, Bombyx mori, PLoS ONE, vol.7, p.3168