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paper extends an individual-tree mixed model with direct additive genetic, genetic and environmental competition effects, by incorporating a two-dimensional smoothing surface to account for complex patterns of environmental heterogeneity (Competition + Spatial Model, CSM). We illustrate the proposed model using simulated and real data from a loblolly pine progeny trial. The CSM was compared with three reduced individual-tree mixed models using a real data set, while simulations comprised only CSM versus true parameters comparisons. Dispersion parameters were estimated using Bayesian techniques via Gibbs sampling. Simulation results showed that the CSM yielded posterior mean estimates of variance components with slight or negligible biases in the studied scenarios, except for the permanent environment variance. The worst performance of the simulated CSM was under a scenario with weak competition effects and small-scale environmental heterogeneity. When analyzing real data, the CSM yielded a lower value of the Deviance Information Criterion than the reduced models. Moreover, although correlations between predicted BV calculated from CSM and from a standard model with block effects and direct genetic effects only were high, the ranking among the top 5% ranked individuals showed differences which indicated that the two models will have quite different genotype selections for the next cycle of breeding.

Introduction

Advanced forest genetic evaluation involves analyzing data from progeny tests using mixed linear models to calculate "best linear unbiased predictors" (BLUP) of tree breeding values (BV). As BLUP prediction depends on the values of the covariance matrices for the assumed model, the specification of the dispersion parameters should take into account the negative correlation caused by competition among individuals, and the positive spatial correlation due to the environmental heterogeneity. In field trials with perennial plants, both phenomena (i.e., competition and environmental heterogeneity) are dynamic and coexist simultaneously [START_REF] Magnussen | A method to adjust simultaneously for statial microsite and competition effects[END_REF]. Therefore, statistical genetic analyses neglecting these factors or considering only one of them can lead to biases in the estimation of genetic parameters and in the prediction of individual additive genetic effects (i.e., BLUP of BV). Simulation studies have shown that positive spatial correlation inflates the additive genetic variance, while moderate levels of negative correlation caused by competition depresses it [START_REF] Magnussen | A method to adjust simultaneously for statial microsite and competition effects[END_REF]. Therefore, when both competition and environmental heterogeneity are present in a forest genetic trial, a complete model approach that allows fitting simultaneously both processes is necessary [START_REF] Resende | Joint modelling of competition and spatial variability in forest field trials[END_REF]. However, appropriate choice of the model is likely to influence how well the two processes can be separated analytically [START_REF] Durban | Adjusting for fertility and competition in variety trials[END_REF].

Competition reflects the impairing interplay of closely neighboring trees, often when local resources are limiting. It depends on the genetic composition and the spatial arrangement of neighboring trees [START_REF] Hinson | Competition studies in soybeans[END_REF], and it can be decomposed into genetic and environmental sources [START_REF] Magnussen | Effects and adjustments of competition bias in progeny trials with single-tree plots[END_REF]). [START_REF] Cappa | Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model[END_REF] presented an approach to account for competition effects in forest genetic evaluation. The mixed linear model included direct and indirect (i.e., competition) genetic effects, as well as environmental competition effects. Competition effects, either genetic or environmental, are identified in the phenotype of a competitor tree by means of the "intensity of competition" elements (IC). The ICs are inverse functions of the distance and the number of competing individuals, either row/column-wise or diagonally. The ICs allow standardization of the variance of competition effects, so that the model accounts for unequal number of neighbors in locations with mortality and borders. [START_REF] Cappa | Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model[END_REF] applied this approach to data on growth at breast height in loblolly pines, resulting in a strong negative correlation between direct and competition breeding values of -0.79. In the model where competition effects were not fitted, the value of the additive genetic variance was smaller and the residual variance was larger than in the model with competition effects. However, [START_REF] Stringer | Joint modeling of spatial variability and within-row interplot competition to increase the efficiency of plant improvement[END_REF] noted that the approach proposed by [START_REF] Cappa | Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model[END_REF] was limited due to not taking into account environmental heterogeneity within trials.

There are usually two types of spatial environmental variation within a site: global trend (or largescale variation), and/or local trend (or small-scale variation). Both are empirically known in forestry field trials, and result from variations in soil characteristics and terrain orientation. Many studies applying spatial analysis techniques to single forest genetic trials reported a consistent reduction in residual variance and an increase in estimated heritability. This typically results in a gain of accuracy of BV and in greater genetic gain when compared with different a priori experimental designs (e.g. [START_REF] Dutkowski | Spatial analysis enhances modeling of a wide variety of traits in forest genetic trials[END_REF][START_REF] Zas | Iterative kriging for removing spatial autocorrelation in analysis of forest genetic trials[END_REF]; Cappa functions as random variables (and using a covariance structure for the random spline effects based on the spatial arrangement) in a two-dimensional grid. The mixed model with the fit of a two-dimensional surface displayed a consistent reduction in the residual variance, an increase in the estimated additive genetic variance and heritability, and an increase in the accuracy of the predicted breeding values of parent and offspring in both large [START_REF] Cappa | Bayesian estimation of a surface to account for a spatial trend using penalized splines in an individual-tree mixed model[END_REF] and small (< 1 ha) forest genetic trials [START_REF] Cappa | Two-dimensional penalized splines via Gibbs sampling to account for spatial variability in forest genetic trials with small amount of information available[END_REF]. [START_REF] Finley | Hierarchical spatial modeling of additive and dominance genetic variance for large spatial trial datasets[END_REF] proposed an individual linear mixed model with spatial random effects modeled with two methods: the first used an exponential Ornstein-Uhlenbeck process, whereas the second was based on a hierarchical Gaussian predictive process model with a set of knots for rows and columns. In a dataset from Scots pine (Pinus sylvestris L.) progeny trial conducted in northern Sweden, they demonstrated that estimates from the predictive process approach provided a reliable reduction in the residual variance and an increment in the heritability even when the underlying spatial process was misaligned with the grid"s rows and columns.

However, where both environmental heterogeneity and competition effects are important, a full model approach is needed [START_REF] Resende | Joint modelling of competition and spatial variability in forest field trials[END_REF].

In a simulation study of an empirical sib-trial data set from Pinus banksiana Lamb., [START_REF] Magnussen | A method to adjust simultaneously for statial microsite and competition effects[END_REF] suggested modeling both effects by means of an iterative nearest neighbor adjustment and a standard linear model (two-way ANOVA). In a series of 70 sugar beet trials, [START_REF] Durban | Adjusting for fertility and competition in variety trials[END_REF] simultaneously modeled the fertility trend and the genetic competition by means of a mixed model. They used the "treatment interference model" proposed by [START_REF] Besag | Statistical analysis of field experiments using neighbouring plots[END_REF] to model the interplot competition, and a onedimensional smoothing spline to account for environmental heterogeneity. However, [START_REF] Durban | Adjusting for fertility and competition in variety trials[END_REF] considered varieties as fixed effects, and did not account for additive relationships among genotypes, a usual assumption in variety selection. A more realistic joint modeling approach was proposed recently by [START_REF] Stringer | Joint modeling of spatial variability and within-row interplot competition to increase the efficiency of plant improvement[END_REF] and applied in two early-stage data sets from sugarcane trials. They extended the model proposed by [START_REF] Durban | Adjusting for fertility and competition in variety trials[END_REF] modeling the variability from the local environmental trend with a Kronecker product of first order autoregressive (AR(1)) covariance structures for rows and columns [START_REF] Gilmour | Accounting for Natural and Extraneous Variation in the Analysis of Field Experiments[END_REF], and included random variety genetic effects. However, when in a forest genetic trial both competition and environmental effects are important, the AR(1) covariance residual structure reflects a mixture of environmental competition and local trend. To minimize this confounding of effects, [START_REF] Stringer | Joint modeling of spatial variability and within-row interplot competition to increase the efficiency of plant improvement[END_REF] proposed modeling the environmental competition effects using an autoregressive residual process, but in this case of order 2 (EAR2), or 3 (EAR3). While analyzing sorghum trials from Australia, [START_REF] Hunt | Predicting additive and non-additive genetic effects from trials where traits are affected by interplot competition[END_REF] accommodated both spatial heterogeneity and interplot competition while using pedigree information. The spatial heterogeneity was modeled with an AR(1) residual covariance structure for rows and columns, and the interplot competition using the "treatment interference model" [START_REF] Besag | Statistical analysis of field experiments using neighbouring plots[END_REF]. Following [START_REF] Stringer | Joint modelling of spatial variability and interplot competition to improve the efficiency of plant improvement[END_REF], [START_REF] Resende | Joint modelling of competition and spatial variability in forest field trials[END_REF] modeled simultaneously competition effects and spatial variability in two field forest trials, they used the approach proposed by [START_REF] Besag | Statistical analysis of field experiments using neighbouring plots[END_REF] to account for competition, and the approach of [START_REF] Gilmour | Accounting for Natural and Extraneous Variation in the Analysis of Field Experiments[END_REF] to model via AR(1) row and column environmental variation. In that tree study, however, [START_REF] Resende | Joint modelling of competition and spatial variability in forest field trials[END_REF] did not account for additive relationships among trees, they applied the joint competition and spatial model at the plot level instead of at the individual-tree level, and did not accommodate unequal number of neighbors due to mortality or edge plot effects.

In the current research, statistical and methodological aspects of joint analysis of competition effects and environmental heterogeneity of forest genetic trials are developed. We extend the individual-tree mixed model with additive direct, genetic and environmental competition effects of [START_REF] Cappa | Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model[END_REF] with a two-dimensional smoothing surface [START_REF] Cappa | Bayesian estimation of a surface to account for a spatial trend using penalized splines in an individual-tree mixed model[END_REF] that captures the complex patterns of environmental heterogeneity. A Bayesian approach via Gibbs sampling was employed to make inference in all dispersion parameters of the model. Developments are illustrated with simulated datasets covering a wide range of competition and environmental parameters, and with real data for diameter at breast height of Pinus taeda L. used by [START_REF] Cappa | Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model[END_REF]. The resulting estimates of all dispersion parameters are compared with the corresponding estimates from three reduced individual-tree mixed models: the standard model with block and direct genetic effects only (no competition and spatial continuous effects), the competition model [START_REF] Cappa | Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model[END_REF], and the spatial model [START_REF] Cappa | Bayesian estimation of a surface to account for a spatial trend using penalized splines in an individual-tree mixed model[END_REF]. The ranking of selection candidates calculated for the joint and standard models are compared to determine the importance of simultaneously accounting for competition and environmental heterogeneity effects.

Methods

Competition individual-tree mixed model

We follow closely [START_REF] Cappa | Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model[END_REF] to describe the models presented in this research. The individual-tree mixed model that includes direct and competition genetic effects plus a permanent environmental competition effect, is described by the following model equation
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where y = [y i ] (n 1) contains the phenotype of tree i (i = 1, ...., n; n is the total number of trees with recorded data); X is the n p incidence matrix relating records to the vector of fixed effects ; p c is a vector that includes permanent environmental effects such that p c = [p ci ], such that p c ~ N n (0, I n respectively, with j = 1, ..., q > n. The breeding values for an observed individual i are the a .j(i) components of both vectors. Direct and competition breeding values are related to y by the n q incidence matrices Z d and Z c , respectively. Every row (i) of Z d has all elements equal to 0 except for a 1 in the column j(i). Similarly, each row i of matrix Z c has all elements equal to zero except in the position j = j 1 , ..., j mi corresponding to the m i neighbors of the tree i, where they are f ij . These positive coefficients can be interpreted as the intensity of competition (IC) that each neighbor exerts over the phenotype of the ith tree. As show by [START_REF] Cappa | Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model[END_REF], the standardization of the variance of competition effects within the phenotypic variance of any individual-tree, when accounting for unequal number of neighbors, can be achieved by using intensity of competition factors (f ij ) under the following restriction:
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where n i R-C and n i D are the respective numbers of jth competitors that lie either in the same row or column of the tree i (R-C; see Cappa and Cantet 2008 Figure 1) and jth competitors that lie in the diagonal (D; see Cappa and Cantet 2008 Figure 1), and f iR-C and f iD are the IC for R-C and for D competitors to tree i. In trees planted at certain distances, [START_REF] Cappa | Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model[END_REF] assumed that the ICs are related to the inverse of the distance between i and j (i.e., [START_REF] Radtke | Conditioning a distance-dependent competition index to indicate the onset of intertree competition[END_REF]. If d is the regular spacing of the planting design, for R-C competitors the IC is proportional to 1/d. However, the distance of a tree located diagonal to i is 2 1/2 d by the Pythagorean theorem, so that competition is proportional to 1/(2 1/2 d) for D competitors. Thus, f iR-C and f iD are:
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For a more detailed explanation of the derivation of these formulas, see [START_REF] Cappa | Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model[END_REF]. Matrix Z p is composed of the non-zero columns of Z c and has order equal to n × n.

The covariance matrix of a d is A 2 Ad, where the q q matrix A is the additive relationship matrix and A d is the variance of the direct additive genetic effects. Also, a c ~ N (0, A A c ) where A c is the variance of the competition breeding values, and cov(a d , a c ) = A AA dc , where AA dc is the covariance between direct and competition breeding values. Thus, the covariance matrix of the stacked vector of breeding values is equal to
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In the following section, we focus on an extension of model [1] with a two-dimensional smoothing surface to account for large-and/or small-scale environmental heterogeneity.

Joint competition and spatial individual-tree mixed model

The individual-tree mixed model with competition effects [1] can be extended to include a twodimensional smoothed surface to account for the environmental heterogeneity, as follows where B b is the matrix expression approximating the two-dimensional surface with a tensor product of cubic B-spline bases [START_REF] Eilers | Multivariate calibration with temperature interaction using two-dimensional penalized signal regression[END_REF]. Matrix B has dimension n × (nx r = number of splines for rows × nx c = number of splines for columns), and is equal to is the variance of the Bspline coefficients for rows and columns, and the U matrix is the covariance structure in two dimensions for the B-splines coefficients. In the present study, we select the tridiagonal matrix originally proposed by [START_REF] Green | Nonparametric Regression and Generalized Linear Model[END_REF]page 13) and then used by [START_REF] Durban | Adjusting for fertility and competition in variety trials[END_REF] to fit a fertility trend. A more detailed explanation of the two-dimensional surface (B b) and the U matrix covariance structure can be found in [START_REF] Cappa | Bayesian estimation of a surface to account for a spatial trend using penalized splines in an individual-tree mixed model[END_REF], pp. 2678-2680).

Taking into account the random effects in model [3], the covariance matrix (V) of the data vector y is given by:
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A set of mixed model equations [START_REF] Henderson | Applications of Linear Models in Animal Breeding[END_REF] for model 
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The conditional likelihood of the observed data is written as being proportional to: [START_REF] Sorensen | Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics[END_REF]. Below we describe in detail the prior distribution of all parameters, and the joint and conditional posterior densities for the joint individual-tree model with competition and spatial effects, as these are needed to make posterior inference with the Gibbs sampler. In doing so, we follow closely Cappa andCantet (2007, 2008).

Specification of prior distributions:

In a conjugate approach the prior densities for all parameters are chosen to be closed under sampling [START_REF] Robert | Monte Carlo statistical methods[END_REF], which means that both prior and posterior belong to the same family of distributions. In order to reflect a prior state of uncertainty for the fixed effects in a mixed linear model, while keeping the posterior distribution proper [START_REF] Hobert | The effects of improper priors on Gibbs sampling in hierarchical linear models[END_REF], β is taken to be N p (0, K). The matrix K is diagonal with large elements (k ii > 10 8 ), so that the prior density of β is then
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The Following [START_REF] Sorensen | Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics[END_REF], we choose to use independent scaled inverted chi-square densities as prior distributions for the variance components 
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where β , b , Expression [START_REF] Brotherstone | Competition effects in a young sitka spruce (Picea sitchensis, Bong. Carr) Clonal Trial[END_REF] may suggest that sampling of β, b, a d , a c , and p c is in block. However, it is simpler to sample the elements of those vectors individually, as discussed by Sorensen and Gianola (2002, page 566, expressions (13.11) and (13.12)), which was the way it was done in the current research.

Collecting the third and seventh terms in the right of [14], the full conditional posterior distribution .

Collecting the fourth and sixth terms on the right of [14], the full conditional posterior distribution of G 0 is equal to () ,,, , , e x p tr
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Expression [17] is the kernel of a 2 2 scaled inverted Wishart distribution, with degrees of freedom equal to ( g + q + 3) and scale matrix Further details about the experimental data are given in [START_REF] Cappa | Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model[END_REF].

Models of analysis

Four individual-tree mixed models were evaluated in the loblolly pine data set. All models included a random direct additive genetic effect and a random effect of commercial seed lots. The latter was to avoid 
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. It is important to examine the impact of competition effects and environmental heterogeneity on selection decisions (in addition to their impact on the variance component), when both types of effects exist. In that sense, Spearman rank correlations were calculated to assess the extent by which the ranking of predicted tree breeding values for all individuals (offspring) differed among the standard and the competition + spatial models. Additionally, the proportion of common individuals (offspring) in the top 5%

(47 trees) from the two models was also compared.

Identification of spatial and competition effects

As in [START_REF] Gilmour | Accounting for Natural and Extraneous Variation in the Analysis of Field Experiments[END_REF], we examined the spatial distribution of residual to identify spatial patterns in the data, using an exploratory model with fixed overall mean and random commercial seed lot [START_REF] Kusnandar | The Identification and Interpretation of Genetic Variation in Forestry Plantation[END_REF]) revealed strong genetic competition, meaning that a tree with a positive breeding value for its own growth has -on average -a negative genetic influence on the growth of its neighbors (Costa e Silva et al. 2013). The magnitude of this correlation was moderate to large and negative (-0.85, see below). Finally, a two-dimensional autoregressive (AR(1) × AR(1)) residual structure was fitted to the standard model using the ASREML program [START_REF] Gilmour | ASReml User Guide Release 2[END_REF]). The sign and magnitude of the autocorrelation parameters for row and column suggest that competition between neighbors may be present, and it is dominant over the environmental heterogeneity at the small scale (ρ row = -0.34 and ρ column = -0.10).

Comment citer ce document : Munoz, F., Cappa, E., Sanchez, L., Cantet, R. 

Computational details and posterior inference

The values of the hypervariances in the priors of A ˆd and ˆe were estimated from the same data set using an empirical Bayes approach via Gibbs sampling, with an individual-tree model including fixed effects of blocks, and random additive genetic effects (standard model). As there was no prior information on the The hypervariance 2 ˆp was chosen to be equal to the prior value for A ˆc . The deviance information criterion (DIC) was computed for each model using the output from the Gibbs sampling.

A single Gibbs chain of 1,010,000 samples were drawn as discussed above. The first 10,000 iterations were discarded as burn-in. Convergence was monitored by plotting the iterations against the parameter value (trace plots) and against the mean of the draws up to each iteration (running mean plots) for each parameter, and using the Z criterion of [START_REF] Geweke | Evaluating the accuracy of sampling-based approaches to calculating posterior moments[END_REF] for each parameter. To evaluate the impact of autocorrelations in the variability of the samples, the "effective sample size" (ESS) proposed by R. Neal [START_REF] Kass | Markov chain Monte Carlo in practice: a roundtable discussion[END_REF]) was calculated for each parameter as: 

Simulation example

To further illustrate the performance of the proposed model, a stochastic simulation study was carried out. In order to simplify the simulation procedure without loss of generality, data were generated according to a structure mimicking loblolly pine data, using the same design (e.g., the same number of families and trees per family) and similar variance components. Simulated data were investigated under 27 different scenarios varying the type of environmental heterogeneity (i.e., Small = small-scale variation, Large = large-scale variation, and Mixed = large-scale together with small-scale variation; see Supplementary Table S1). These spatial variations were simulated with a B-spline model, in a rectangular region of 25 rows and 40 columns with 10 knots in each dimension for the small-scale scenario, and 4 knots in each dimension for the large-scale. The Mixed scenario was obtained from the sum of a small-scale surface and a large-scale surface.

Some of the parameters used in the simulation were fixed: A ˆd = 10; 2 ˆb = 31.52, 2 ˆp = 1, and 2 ˆe = 5.

However, in view of the importance of the additive genetic variance for competition breeding values ( 2 A ˆc )

and the correlation between direct and competition breeding values ( AA dc ), we examine three values of these parameters. Specifically, we used the values of 1, 2.5, and 5 for 2 A ˆc which represent a 10, 25 and 50 percent, respectively, of the additive genetic variance for direct effects ( A ˆd ). Since negatives correlations values are expected when strong competition for resources exist (e.g. Muir 2005), we used the values -0.3, -0.6, and -0.9

for AA dc representing low, moderate, and high levels of competition, respectively. Altogether, the three environmental scales of variations, three levels of genetic competition variance, and three values of correlation between direct and competition genetic effects resulted in 3 3 = 27 scenarios. We produced 6 replicates for each scenario, giving rise to 162 simulated data sets. All data sets were simulated through the function breedR.sample.phenotype() of the R-package breedR [START_REF] Muñoz | breedR: Statistical methods for forest genetic resources analysts[END_REF]. Finally, the simulated data were analyzed using the CSM (model [3]), and the simulated values were compared with the true values using the mean and the average relative deviation from the true value (bias) averaged over the 6 replicates. The average root mean squared relative error was used to measure the performance of the proposed joint CSM [3] in the different scenarios studied, according to the following formula: The hypervariances of all parameters were set equal to the true values used in the simulated data, and degrees of belief were set to 5 to reflect a relatively high degree of uncertainty. A single Gibbs chain of 510,000 samples were drawn, with first 10,000 iterations were discarded as burn-in. 

Results from the simulation

Table 1 shows the posterior means of each parameter under each of the 27 simulation scenarios. The deviations of the estimates relative to true values are shown in the Supplementary Table S2. In general, the CSM (Model 3) yielded posterior means of variance components with slight or negligible biases, except for the permanent environment variance that showed important systematic overestimations across scenarios. For the rest of variables, estimates of parameters of interest agree well with the true values (Table 1 and Supplementary Table S2). Variances of estimates (Table 1) over 6 replicates, were generally small with the exception of the permanent environment variance, particularly under small-scale and mixed-scale variation and lower competition additive genetic variance. The average root mean squared relative error varies from 0.33 to 2.18 for the different scenarios studied. Additionally, the marginal posterior (and prior) distributions of each parameter in each scenario are shown in the Supplementary Figure S1. A quick view of the figure clearly suggests that the posterior distributions have distinguishable modes for all of the parameters. The prior distributions follow the shape of the posteriors for all parameters; but, in general, the priors are at a lower value, reflecting the vague prior information characteristics induced by the degrees of freedom used (i.e., 5 in all parameters). In summary, the proposed CSM gives reliable inferential answers about unknown parameters in the model under the different scenarios studied. 

Note:

1 Small corresponds to small-scale environmental variation; Large correspond to large-scale environmental variation; Mixed correspond to small-scale together with large-scale variation. 

Results from the real data analysis of loblolly pines

Lack of convergence of the Gibbs sampler was not detected by inspection of trace plots of all unknowns parameters from the four models evaluated in the real data set (Supplementary Figure S2). When comparing the four models, it is clear that adding competition and/or environmental heterogeneity effects improved the fit compared to TM. This can be seen in Table 2 via the DIC, for which CSM resulted in the lowest value, followed by CM and SM. The CM showed a greater reduction in DIC than SM, most likely due to the fact that competition had a higher effect than the small-scale environmental heterogeneity in this loblolly pine data set. 

Note:

a TM (Standard model): Individual-tree mixed model does not account for competition effects and continuous environmental heterogeneity (only fit blocks fitted as fixed effects).

CM (Competition model):

Individual-tree mixed model that accounts competition effects.

SP (Spatial model):

Individual-tree mixed model that accounts environmental heterogeneity using P-splines with 15 knots for rows and 15 knots for columns.

CSM (Competition + Spatial model):

Individual-tree mixed model that accounts competition effects and environmental heterogeneity using P-splines with 15 knots for rows and 15 knots for columns. Posterior summaries for A ˆd , A ˆc , AA dc , ˆb , ˆp , ˆt and ˆe are shown in Table 2. Posterior means, medians, and modes were quite similar, except for ˆt , and ˆe from CSM. The 95% high posterior density intervals for these variance components were shifted away from zero, which reflects the constraint of the priors but also the fact that all the effects in these models had detectable variation. TM resulted in the Conversely, ˆe was highest for TM and lowest for CSM, and differences between both can be easily labeled as competition and environmental heterogeneity components. Relative to TM, the reduction in ˆe was much larger for the CM (34%) than for the SM (18%). This further confirms the observation that competition effects predominate over the small-scale environmental heterogeneity in this loblolly pine trial. Although smaller when compared with the estimates of A d , the estimates of A c were similar in CM (1.56) and CSM

(1.62). The marginal posterior mean of ρ AdAc from CM was large and negative -0.85, and the SD was 0.05, revealing a strong competition between additive genetic effects. While CSM showed similar marginal posterior mean of ρ AdAc to CM, the estimate of 2 p was smaller in the former (1.21 and 0.98, respectively).

The estimate of 2 b from SM (3.00) was slightly higher than the corresponding values of CSM (2.88).

The Spearman rank correlations between offspring predicted breeding values from TM, and the direct and total breeding values from CSM (i.e., the one with the smallest DIC) were high and positive (0.96 and 0.70, respectively).

Discussion

This research presents an extension of the method of [START_REF] Cappa | Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model[END_REF] to account for environmental heterogeneity within genetic trials using a smoothing surface. This extension produces more realistic model, making possible to fit simultaneously competition effects and spatial environmental variability. To do this, we included in the individual-tree model with competition effects proposed by [START_REF] Cappa | Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model[END_REF] a surface that is smoothed in the direction of both the columns and the rows, to account for large-and/or small-scale environmental variation.

There are other approaches that simultaneously dealt with competition and spatial modelling. [START_REF] Stringer | Joint modeling of spatial variability and within-row interplot competition to increase the efficiency of plant improvement[END_REF] developed a joint model to account for interplot competition in one dimension and spatial variability. They fitted the "treatment interference model" presented by [START_REF] Besag | Statistical analysis of field experiments using neighbouring plots[END_REF] and originally proposed by [START_REF] Pearce | Experimenting with organisms as blocks[END_REF], to model the genetic competition as a random effect. In this approach, each treatment is assumed to have a direct effect and a neighbor effect on adjacent plots. In other words, the average genotypic value is associated with the nearest neighboring plots of many plants, rather than with the observed individual-tree data. Moreover, it does not account for the genetic relationship between units (plots or trees). If selection is designed to select genotypes for the next generation of the breeding population, the most convenient way is to add a random genetic effect that accounts for the additive relationship between individuals, as we have proposed here. Additionally, our approach accounts for unequal numbers of neighbors due to mortality or border location, and for different competition intensity between the trees in the different spatial directions (i.e., row, column and diagonal), by incorporating the IC elements [START_REF] Cappa | Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model[END_REF] 2013) modeled the largescale environmental variation using the mixed model proposed by [START_REF] Verbyla | The analysis of designed experiments and longitudinal data by using smoothing splines (with discussion)[END_REF] to fit a smoothing spline in row and/or column directions only.

In the present study, a two-dimensional surface using the tensor product of B-splines bases [START_REF] Marx | Multidimensional penalized signal regression[END_REF]) was used to model both global-and small-scale spatial variation. The literature is extremely limited on the application of a tensor product of B-splines bases to capture both kinds of spatial heterogeneity in forest genetic evaluation [START_REF] Cappa | Bayesian estimation of a surface to account for a spatial trend using penalized splines in an individual-tree mixed model[END_REF][START_REF] Cappa | Two-dimensional penalized splines via Gibbs sampling to account for spatial variability in forest genetic trials with small amount of information available[END_REF]. In research that is not yet published, we observed the utility of the approach in accommodating complex patterns of spatial heterogeneity in several large forest genetic trials of western hemlock (Tsuga heterophylla (Raf.) Sarg.). [START_REF] Stringer | Joint modeling of spatial variability and within-row interplot competition to increase the efficiency of plant improvement[END_REF] proposed to account for global trend by including design factors based on row and column coordinates, or by fitting in one dimension either low order polynomials or cubic smoothing splines [START_REF] Verbyla | The analysis of designed experiments and longitudinal data by using smoothing splines (with discussion)[END_REF]. [START_REF] Durban | Adjusting for fertility and competition in variety trials[END_REF] also proposed to model the large-scale fertility variation using cubic smoothing splines in one dimension [START_REF] Green | Nonparametric Regression and Generalized Linear Model[END_REF]. Nevertheless, in forest genetic trials where trees are planted in squares or rectangles, a large portion of the global trend is usually present in two dimensions, and onedimensional polynomials or cubic smoothing splines may not completely account for spatial covariance [START_REF] Cappa | Bayesian estimation of a surface to account for a spatial trend using penalized splines in an individual-tree mixed model[END_REF]. Moreover, it is extremely rare to find large-scale continuous spatial variability either in the direction of the rows or of the columns, and some sort of interaction between rows and columns has to be considered to account for such variability [START_REF] Federer | Recovery of interblock, intergradient, and intervarietal information in incomplete block and lattice rectangle designed experiments[END_REF]. Additionally, polynomials do a poor job when fitting observations in the extremes, and small changes in the data produce a dramatic effect in the estimated values of the parameters, and this is specially so for polynomials of higher degree.

As interacting trees share the same environment when competition and environmental heterogeneity are present, there is a risk of confounding environmental competition and local trend effects [START_REF] Bijma | The quantitative genetics of indirect genetic effects: a selective review of modelling issues[END_REF].

Following Cappa and Cantet (2008) (model [1]), the proposed model [3] included permanent competition effects through a random variable (p c ) to model a competition effect at the environmental or residual level. To model the permanent environmental competition effects and local environmental trend, [START_REF] Stringer | Joint modeling of spatial variability and within-row interplot competition to increase the efficiency of plant improvement[END_REF] proposed including an autoregressive residual process EAR2 or EAR3. The EAR3 has two parameters, one nominally representing the local trend, the other representing the environmental competition. They recommended modeling the permanent environmental competition using an EAR2 in trials where competition was dominant, while an EAR3 allowed for competition and local trend variability. However, when the permanent environmental competition seemed to be dominant over small-scale trend, Costa e [START_REF] Silva | Genetic control of interactions among individuals: contrasting outcomes of indirect genetic effects arising from neighbour disease infection and competition in a forest tree[END_REF] suggested that the EAR2 did not appear to produce a better fit than the AR(1) in preliminary analysis of diameter growth from forest genetic trials. Instead, in an empirical study of the trait DBH, Costa e Silva et al. (2013) used a separable EAR3 residual structure in the column direction. However, when the environmental trend was stronger than the permanent environmental competition and the full model was fitted (i.e., a mixed model including genetic and environmental competition effects and large -and smallenvironmental trend), the autocorrelation coefficient for columns was estimated with a large standard error. 
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There seems to be a problem of residual confounding in this analysis, a ubiquitous process in mixed model inference with errors following autoregressive processes [START_REF] Gustafson | The Performance of Random Coefficient Regression in Accounting for Residual Confounding[END_REF][START_REF] Paciorek | The Importance of Scale for Spatial-Confounding Bias and Precision of Spatial Regression Estimators[END_REF].

The issue can be compounded by the fact that models including autoregressive processes are prone to bias, especially if the series is short [START_REF] Shaman | The Bias of Autoregressive Coefficient Estimators[END_REF]. In these conditions, fitting permanent environmental effects as random variables, apart from the error term, and with an informative covariance structure between direct and competition breeding values seems to be advantageous. The procedure mimics the fitting of a prior distribution to avoid residual confounding as suggested by [START_REF] Gustafson | The Performance of Random Coefficient Regression in Accounting for Residual Confounding[END_REF]. In their words, "the benefit from modeling residual confounding is maintained when the prior distributions employed only roughly correspond to reality". Additionally, while the competition additive genetic effects extend over the whole area of the trial, the environmental permanent competition effects act locally, i.e. in the nearest eight neighbors. In our approach, every row of the incidence matrix Z p has all elements equal to zero except for a 1 in the column belonging to a pj of the nearest j neighbor competitor tree. However, the EAR3 residual structure could be unnecessary in most cases, given that it is unlikely that the environmental competition effects be spatially extended in the direction of columns or/and rows beyond of first-or second-order competitors.

There are few empirical studies that combine competition and spatial variability in agronomic crops [START_REF] Durban | Adjusting for fertility and competition in variety trials[END_REF][START_REF] Stringer | Joint modeling of spatial variability and within-row interplot competition to increase the efficiency of plant improvement[END_REF][START_REF] Hunt | Predicting additive and non-additive genetic effects from trials where traits are affected by interplot competition[END_REF]) and forest genetic trials [START_REF] Magnussen | A method to adjust simultaneously for statial microsite and competition effects[END_REF][START_REF] Resende | Joint modelling of competition and spatial variability in forest field trials[END_REF] and Costa e [START_REF] Silva | Genetic control of interactions among individuals: contrasting outcomes of indirect genetic effects arising from neighbour disease infection and competition in a forest tree[END_REF]. When the root mean squared relative error was calculated to evaluate the performance of the proposed joint model in the different scenarios studied, lower values were found for those scenarios with large-scale environmental heterogeneity and stronger competition genetic effects (i.e., highest and negative correlation between direct and competitive additive genetic effects). On the contrary, the highest values were observed for those scenarios with small-scale environmental heterogeneity and weak competition effects. These results suggest that the performance of the proposed model under situations with weak competition effects and environmental heterogeneity operating at the same spatial scales (i.e., small-scale) may be somewhat limited. In the empirical analysis reported here, conditions a priori were more favorable than the worst-case scenario from simulations, with the former showing strong competition and small-scale environmental heterogeneity. In these circumstances, the proposed CSM showed better fit (i.e., smallest DIC) than simpler models with no competition and spatial continuous effects, or either of these effects alone (i.e., TM, CM, and SM, Table 2). Similar results have been found in crop [START_REF] Stringer | Joint modeling of spatial variability and within-row interplot competition to increase the efficiency of plant improvement[END_REF][START_REF] Hunt | Predicting additive and non-additive genetic effects from trials where traits are affected by interplot competition[END_REF]) and forest species [START_REF] Resende | Joint modelling of competition and spatial variability in forest field trials[END_REF] and Costa e [START_REF] Silva | Genetic control of interactions among individuals: contrasting outcomes of indirect genetic effects arising from neighbour disease infection and competition in a forest tree[END_REF], when competition and environmental spatial effects are present regardless of whether the spatial trend predominated over competition or vice-versa. However, different traits responded differently to competition. The substantial improvement in the fit from CSM was followed by CM, and this may be attributed to the fact that DBH is more affected by competition than, for example, the height trait (Hunnrup et al. 1998;[START_REF] Dutkowski | Spatial analysis enhances modeling of a wide variety of traits in forest genetic trials[END_REF][START_REF] Ye | Efficiency of using spatial analysis in firest-generation coastal Douglas-fir progeny tests in the US Pacific Northwest[END_REF].

Our results from the simulation data using the proposed CSM show that the permanent environment variance estimates were biased upwards in most scenarios. However, it is important to note that this component accounts for a very small part of the variation. We further investigated the possible causes of this bias, and one possible explanation is the fact that there were slight differences between the incidence matrices used to simulate the data and to analyze the data. Another possible source of this bias is the simple form of the covariance matrix used for these permanent environmental effects, i.e., an identity matrix. This simple structure specifies that these environment effects are independent. A more complex and informative covariance structure for this environmental parameter will be considered in a future work.

Our empirical results show that not fitting the detected competition effects (i.e., TM or SM) and/or small-scale trend (i.e., TM or CM) resulted in a consistent increase in the posterior mean of ˆe and a decrease in the posterior mean of A ˆd 2). Costa e Silva and Kerr ( 2013) have observed a similar phenomenon when comparing TM with the CM proposed by [START_REF] Cappa | Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model[END_REF]. This was observed from simulated data where competition was the most important source of residual autocorrelation, and the environmental heterogeneity was negligible so that it was not modeled. These results are also in agreement with those of [START_REF] Brotherstone | Competition effects in a young sitka spruce (Picea sitchensis, Bong. Carr) Clonal Trial[END_REF] who studied the diameter trait in a 19-year old Sitka spruce clonal trial growing in Scotland. They fitted the simple competition model proposed by [START_REF] Bijma | Multilevel selection 1: quantitative genetics of inheritance and response to selection[END_REF] jointly with an AR(1) × AR(1) covariance structure for the residual. There was evidence of a global trend in the latter model, but this effect was not formally accounted for.

In the current research, where the empirical data shows strong competition effects, ignoring the genetic and environmental competition effects leads to overestimation of environmental heterogeneity; i.e., the spatial model yielded estimates of b that were higher than those of CSM (3.00 vs. 2.88, respectively).

While CM yielded estimates of ρ AdAc that were equal to those of CSM (-0.85), ignoring the environmental heterogeneity led to overestimation of the environmental competition effects; i.e., CM yielded higher ˆp than the estimate from CSM (1.21 vs. 0.98, respectively). This is the first study applying the competition model proposed by [START_REF] Cappa | Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model[END_REF] plus a two-dimensional smoothing surface to account for environmental heterogeneity in forest genetic trials. Therefore, it is not possible to compare the variance estimates b and p with estimates from other studies.

Trees may compete at an early stage for water and nutrients, and after canopy closure they compete mainly for light [START_REF] Brotherstone | Competition effects in a young sitka spruce (Picea sitchensis, Bong. Carr) Clonal Trial[END_REF]. In small row-plot designs (as with the five-tree row-plot) the sharing of these resources could be different, because the interacting plants are genetically different [START_REF] Stanger | Final results from a trial to test the effect of plot size on Eucalyptus hybrid clonal ranking in coastal Zululand, South Africa[END_REF]. In this work, a maximum of eight first-order neighbor trees were used in both CM and CSM models. However, the larger negative autocorrelation coefficient for row (-0.34) than for column (-0.10) identified in the first step of the analysis, suggests a slight asymmetric competition. When an asymmetric genetic competition effect was fitted in the CM and CSM models, i.e., when considering only the maximum of two row-neighbor trees to calculate the ICs, the values of DIC were higher (2571.97 and 2563.04, respectively) than the respective values considering all the eight first-order neighbors trees ( 1 Small corresponds to small-scale environmental variation; Large correspond to large-scale environmental variation; Mixed correspond to small-scale together with large-scale variation. 2 Intensity of competition based on the information from AA dc : + low; ++ medium; +++ strong. 1 Small corresponds to small-scale environmental variation; Large correspond to large-scale environmental variation; Mixed correspond to small-scale together with large-scale variation. 
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  ); and e ~ N n (0, I n 2 e ) is the random of residuals, and 2 e is the residual variance. Direct and competition breeding values for parents without records plus offspring with data in y are included in the random vector a d = [a dj ] and a c = [a cj ],

  the symbols and # indicate the Kronecker and Hadamard products of matrices, respectively[START_REF] Harville | Matrix algebra from a statistician"s perspective[END_REF]. The matrices B contain the B-splines bases evaluated in the corresponding rows and columns for each tree. Calculations of the B coefficients were performed using the recursive algorithm of De[START_REF] Boor | B(asic)-spline basics[END_REF]. The vector of random effects b contains the nx r × nx c coefficients of the tensor products of B-splines bases. The vector b is assumed normally distributed with mean zero and covariance
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  environmental variance, the full conditional posterior distribution is Comment citer ce document : Munoz, F., Cappa, E., Sanchez, L., Cantet, R. J. C.(2015). A novel individual-tree mixed model to account for competition and environmental heterogeneity: a Bayesian approach. Tree Genetics and Genomes, 11 (6), 15 p. , DOI : 10.1007/s11295-015-0917-3 Version définitive du manuscrit publié dans / Final version of the manuscript published in : Tree Genetics & Genomes, 2015, 11(6), 11:120 http://dx.doi.org/10.1007/s11295-015-0917-3 Manuscrit d'auteur / Author Manuscript Manuscrit d'auteur / Author Manuscript Manuscrit d'auteur / full conditional posterior density of the residual variance is proportional to i.e. a scaled inverted 2 density with n+ ee degrees of freedom and scale parameter 2 of the Gibbs algorithm, we first sampled from distribution [15], then from [19], next from [17], next from [18], and finally from [16], to start the process back again. A program was written in FORTRAN to perform all calculations. The FORTRAN program is available from the first author on request.An application to loblolly pinesDataData came from a field trial of 20 open-pollinated families of loblolly pine (Pinus taeda L.), originating from Marion County, Florida, USA, and belonging to CIEF (Forestry Research and Experimentation Centre). Five lots of commercial seeds were used as control populations (about 7% of the total of phenotypic data). These trees were included in the analysis due to their contribution to the estimation of environmental variation[START_REF] Dutkowski | Spatial analysis enhances modeling of a wide variety of traits in forest genetic trials[END_REF]). The trait analyzed was diameter at breast height (1.3 m, DBH) measured at age 13 on the 932 surviving trees (93.2 % of survival). The trial site was located in Villa Olivari (lat. 27º 36' S long. 56º 55' W), northern Corrientes province, Argentina. Families were arranged in randomized complete blocks, with eight replicates of five-trees row-plots, and the spacing was 3.5 m × 3.5 m.

Figure 1 :

 1 Figure 1. The grayscale intensity represents the magnitude of the residuals -the darker and bright the square, the larger the residual values -and shows the small-scale environmental variation observed within the loblolly pine trial studied.

Figure 2 :

 2 Figure 2: Residuals from the exploratory model vs. mean of tree diameter at breast height of the nearest neighbor trees.

  found that the algorithm converged always to the same posterior mean of 2 ˆb in the spatial model. The same strategy was used for AA ˆcd and A ˆc , by trying different prior values of AA ˆcd (+, 0, and -) and of A ˆc (high and low relative to A ˆd ) under CM.
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 S1 Figure S1. Marginal posterior densities by scenario for direct additive variance A ˆd , the competition additive genetic variance A ˆc , the correlation
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). The Deviance Information Criterion (DIC,

[START_REF] Spiegelhalter | Bayesian measures of model complexity and fit (with discussion)[END_REF] 

was employed to compare the models. The DIC combines a measure of model fit (the posterior mean deviance), with a measure of model complexity (the "effective number of parameters").

Models with more parameters display better fit, but at the expense of adding complexity. Similar to Akaike Information Criterion (AIC), DIC penalizes the additional parameters that improve the fit while in the search for a more parsimonious model. Therefore, models with the smallest value of DIC should be favored, as this indicates a better fit and a lower degree of model complexity. Total tree breeding value (TBV i ) from CSM

[3] 

was calculated following Costa e Silva and Kerr (2013; equation 14); i.e., TBV i = a di + 2.32 a ci , where the quantity 2.32 is the sum of the products of the means across all focal individuals in the loblolly pine trial for the number of their neighbors and IC elements in the row, column and diagonal directions
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Tree Genetics & Genomes, 2015, 11(6) (9.71 vs. 8.25) than when the eight first-order neighbors were fitted. Similar results were obtained for the CSM. Therefore, this result suggests that, if left out of the analysis, those competitors may bias the predictions of the direct breeding values.

From the tree breeder"s viewpoint, a relevant question is whether or not the predicted tree BV from TM and the predicted direct and total tree BV from CSM lead to a different ranking. In our study, rank correlations of predicted BV were high, but not perfect. Assuming 100 % survival and using simulated data with a similar additive covariance matrix of breeding values (i.e., A ˆd = 20; A ˆc = 2; AA dc = -0.9), Costa e [START_REF] Silva | Genetic control of interactions among individuals: contrasting outcomes of indirect genetic effects arising from neighbour disease infection and competition in a forest tree[END_REF], also found that the Spearman correlations were high and positive between predicted breeding values from SM and direct (0.99) and total breeding values (0.79) from a model including both competition and spatial effects. Although our empirical study showed high correlations between predicted tree BVs, the ranking among the top 5% (47) individuals from TM and CSM displayed some differences. The proportion of common individuals within the top 47 trees (5%) was 0.83 between the BV of TM and direct BV from CSM, and 0.34 between the BVs of TM and total BV from CSM. These differences demonstrate that using overly simplified models may substantially compromise selection decisions and genetic progress.

Summary and Conclusions

A novel Bayesian approach to effectively model simultaneously and effectively two of the sources of potential bias in forest genetic trials -the genetic and environmental competition and environmental heterogeneity -was developed in the current research. Models that were previously suggested for dealing with competition and spatial environmental variation neglect some aspect, like the additive relationships among trees, or the full spatial covariance. The fitting of a more complex model to accommodate both competition and environmental heterogeneity effects was illustrated using simulated data and also real data of diameter at age 13, from an open-pollinated progeny trial of loblolly pine. The simulation and the real data example showed the importance of simultaneously accounting for competition and environmental heterogeneity effects, and make it possible to understand the dynamics of both phenomena and their effects on the estimation of genetic parameters and the prediction of breeding values in single forest genetics trials. In particular, the real data analysis carried out with the proposed joint model showed that: a) by not fitting the detected competition and the small-scale trend resulted in a consistent increase in the residual variance and in a decrease in the estimated direct genetic variance; b) correlations between predicted tree BV from TM and CSM were high; however, the ranking among the top 5% ranked individuals showed differences which indicated that the two models will have quite different genotype selections for the next cycle of breeding; and c) total tree breeding values led to more realistic results. 1 for dispersion parameters" abbreviations). 
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