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Use of relationships between individuals to estimate genetic variances and heritabilities via mixed
models is standard practice in human, plant and livestock genetics. Different models or information for
relationships may give different estimates of genetic variances. However, comparing these estimates
across different relationship models is not straightforward as the implied base populations differ between

’ée{w?rdsﬁ, relationship models. In this work, I present a method to compare estimates of variance components across
Cir?élt(i)cn\iagance different relationship models. I suggest referring genetic variances obtained using different relationship
Heritability models to the same reference population, usually a set of individuals in the population. Expected genetic

variance of this population is the estimated variance component from the mixed model times a statistic,
Dy, which is the average self-relationship minus the average (self- and across-) relationship. For most
typical models of relationships, Dy is close to 1. However, this is not true for very deep pedigrees, for
identity-by-state relationships, or for non-parametric kernels, which tend to overestimate the genetic
variance and the heritability. Using mice data, I show that heritabilities from identity-by-state and kernel-
based relationships are overestimated. Weighting these estimates by D, scales them to a base comparable
to genomic or pedigree relationships, avoiding wrong comparisons, for instance, “missing heritabilities”.

© 2015 Elsevier Inc. All rights reserved.

Base population
Mixed models

1. Introduction using identity by descent measured withmarkers (Fernando and
Grossman, 1989; Almasy and Blangero, 1998; Visscher et al., 2006).
Other estimators of relationships based on markers that do not use
pedigree are based on identity by state (IBS) at markers, sometimes
corrected to be on an IBD scale (Ritland, 1996; Toro et al., 2002;
VanRaden, 2008). Finally, non-parametric theory suggests the use

of kernel matrices, whose measures of similarity can be interpreted

Recent years have seen an enormous increase in the use of
relationship matrices (Wright, 1922) in quantitative genetics (for
a general review, see Speed and Balding, 2015) due to their
flexibility to accommodate several purposes and also due to the
computational efficiency of setting up the associated Mixed Model

and the corresponding Mixed Model Equations (e.g. Henderson,
1984). In the following, I will use the term relationship for any
measure of scaled covariance between individuals regardless of
whether the term has a clear identity-by-descent interpretation or
not.

There are several ways of modeling relationships. The first one
is the use of expected identical-by-descent (IBD) relationships
based on pedigree recordings (Wright, 1922; Emik and Terrill,
1949), which are efficient, reasonably accurate and are widely used
in animal genetics. Finite size of the genome (i.e., there are no
infinite unlinked loci) causes that true “realized” IBD relationships
deviate from expected IBD relationships (Hill and Weir, 2011).
Thus, more accurate measures of relationships can be obtained
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as covariances (Gianola and van Kaam, 2008; de los Campos et al.,
2009; Morota and Gianola, 2014). Typical kernel matrices include
a smoothing parameter that can regress low relationships towards
0, resulting in more or less local regressions.

A typical reason to use relationship matrices is to estimate so-
called genetic parameters, i.e., variance components and in partic-
ular genetic variances (e.g., Henderson, 1984; Graser et al., 1987;
Yang et al., 2010; Forni et al., 2011 and Rodriguez-Ramilo et al.
(2014)). In particular, in human genetics, recent studies compare
extensively heritabilities based on markers and based on family
studies (i.e., on pedigrees), sometimes giving rise to the so-called
missing heritability (e.g., Yang et al., 2010). However, there might
be some confusion about how to compare estimates from different
models of relationships. For instance, Forni et al. (2011) reported
different estimates of heritability using different standardizations
of marker-based relationships. Differences in estimates may exist
between different relationship matrices (e.g. pedigree, molecular


http://dx.doi.org/10.1016/j.tpb.2015.08.005
http://www.elsevier.com/locate/tpb
http://www.elsevier.com/locate/tpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tpb.2015.08.005&domain=pdf
mailto:andres.legarra@toulouse.inra.fr
http://dx.doi.org/10.1016/j.tpb.2015.08.005

A. Legarra / Theoretical Population Biology 107 (2016) 26-30 27

IBD, molecular (corrected) IBS). These differences may be due to
several causes, like different data sets or noise due to uncertainty
in the estimation. Estimated variance components may also refer
to different genetic bases, for instance, genomic relationship ma-
trices refer to the genotyped population whereas pedigree rela-
tionships refer to the founders of the pedigree (VanRaden, 2008;
Hayes et al., 2009; Powell et al., 2010). In this work I will analyze
the last point, i.e., if the researcher has several available methods
for the same data set, can he/she meaningfully compare estimates
of heritabilities? Speed and Balding (2015) explicitly say that “K
[the relationship matrix should be] standardized to have a mean of
zero and a mean diagonal value of one”, in order for the estimates
of variance components to be meaningful. While this is straight-
forward to apply numerically, the reason for this recommendation
may not be obvious. Further, this condition is difficult to apply for
IBD, IBS or kernel matrices, because these are all positive by defi-
nition and therefore construction. Imposing this numerical condi-
tion may result in non-invertible matrices. Further, this condition
is not common practice in animal breeding and would preclude the
use of Henderson’s (1976, 1977) easy algorithms for inversion and
inclusion of pedigree-based relationship matrices in mixed model
analysis.

In this note, I will explain the suggestion of Speed and Balding
and why it implies the definition of the base population. Further, I
will outline how estimates of genetic variances relate to statistics
of relationship matrices and how estimates based on different
relationship matrices can be compared in a meaningful way taking
issues related to centering and scaling into account. This may
help practitioners to properly compare genetic variances and
heritabilities across studies, perhaps avoiding misinterpretations
of “missing heritability”.

2. Theory

2.1. Genetic variance of a, possibly related, reference population

The genetic variance is the variance of the genetic values of a set
of individuals who constitute the reference, or base, population. I
will use the term reference population to avoid ambiguities. The
term “genetic value” can be understood as the total genotypic
value of an individual (e.g. Henderson, 1985, who called it “total
genetic merit”; Gianola and van Kaam, 2008 and Piepho, 2009).
More frequently, only the additive part of the genotypic value
is considered (Wright, 1922; VanRaden, 2008 and Yang et al.,
2010). For a given population, the genetic value is a real (albeit
non-observable) quantity, in the sense that an experiment could
potentially clone the individuals to obtain total genetic values, or
mate them to a large population to obtain breeding values based
on differences across offspring. The genetic values of individuals of
the reference population can be stacked in a vector, u. A model with
relationships K across individuals implies that a priori these u are
drawn from a certain distribution, and the common assumption is
E (1) = 0 and Var (u) = Ko 2, where ¢ is an associated variance
component.

The genetic variance across the individuals in the reference
population is simply

1 -
55252(%’—”)2,

where 1 is the average genetic value of individuals in the reference
population. In matrix notation,

2
55 = %u/u — (%fu) = % (u/u) — nlz (1/u/u1) .

The key argument is that, due to the existence of relationships
across individuals, the role of u cannot be neglected. For

instance, if individuals are positively correlated in K (case of IBD
relationships), the mean will shift in the same direction as the
genetic values. In the most obvious case, if all individuals are
identical (all elements in K are equal to 1) then there is no genetic
variance in the reference population.

Because we do not know the genetic values of individuals, and
these are drawn from a sampling distribution, the statistic 55 hasa
certain distribution. For a set of random variables x (not necessarily
normally distributed) with covariance matrix V, it is known that,
on expectation, E (¥'x) = trace(V) (Searle, 1982, p. 355). Taking
expectations of S2 on the distribution of u:

E(S:)

1 1
—trace (K)o} — = (1K1) o}
= (diag (K) — K) 0} = Do, (1)

where diag (K) is the average of the diagonal of K and K is the
average of K, and Dy is the difference between the two. Thus,
the genetic variance in the reference population (S2) will be a
function of the variance component associated with K in the
mixed model, but the genetic variance also depends on the form
of the relationship matrices. If Dy, is equal to one, then the genetic
variance in the reference population (55) will be equal to the
variance component o,2. This conclusion clarifies the statement of
Speed and Balding outlined above.

Note that Eq. (1) applies to all or part of the individuals included
in the analysis, so there is a need to define the reference population
in (1). This choice is often not explicit in the literature. [ will show
some examples and consequences of Eq. (1).

2.1.1. Reference populations and relationships for which the variance
component equals the genetic variance

In Hardy-Weinberg equilibrium, it can be shown that the
statistic Dy is equal to 1 for “genomic” relationship matrices of the
forms (VanRaden, 2008; Yang et al., 2010):

) (% — 2px)

g
! 2Y pe(1—po)
o Z (i — 2pi) (i — 2Dx)
&= 2px (1 — pr)

where x are genotypes coded numerically across k markers for indi-
viduals i and j, and p are allelic frequencies. In this case, the genetic
variance of the individuals composing the population, Sf‘, is on ex-
pectation equal to the variance component of the mixed model, ouz.
Sometimes, Hardy-Weinberg assumptions do not hold (e.g. there
is an excess of heterozygosities). One study verified empirically
that dividing K by its average diagonal yielded estimates of auz sim-
ilar to pedigree-based estimates (Forni et al., 2011). This is similar
to the correction that I suggest later in this work.

Another example where variance component and expected
genetic variance agree resides in pedigree relationships, because
for the founders of the population it does hold that D, = 1 if the
population is large enough (i.e., founders are assumed unrelated
and have a self-relationship of 1).

A counter example is a population composed of siblings. For
instance, consider n full-sibs, all offspring of two unrelated parents.
The pedigree-based relationship matrix A for the full sibs will have
1 in the diagonal (diag (K) = 1) and 0.5 off the diagonal. The
mixed model would be y = 1y + u + e, with Var (u) = Ac2,
Var (e) = Io2. Thus,

_ 1 1
K=—-m+nn-105)=05+ -
n n

and D, = 0.5 for n large enough. Therefore, the genetic variance
within the full-sibs is not o> but 02/2, and in fact o corresponds
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to the genetic variance, not of the full-sibs, but of the unrelated
population of founders from which parents were drawn, for which
it does hold that D, = 1. In fact, it is well described in the animal-
genetics literature that, when estimating genetic variances using
a pedigree-based relationship matrix, the estimate refers to the
unrelated genetic population, not to the whole of the population
in the analysis.

2.1.2. Inbreeding and genetic variance
We may call F, the average inbreeding (according to relation-
ships K). By definition

F = diag (K) — 1.

Consider IBD relationships, in a population with random matings.
On average, inbreeding is equal to half of parents’ relationship, and
therefore

, . K
diag(K)=1+F, =1+ 5

Thus, D, = 1 — F, showing the well-known result of reduction
in genetic variance within populations due to relatedness across
individuals.

2.1.3. Scaling effects
Consider that instead of dealing with relationships (so that the
diagonal terms are similar to 1), the K matrix is constructed on
coancestries (so that they are similar to 0.5), or they are simply real
numbers without a clear interpretation. Eq. (1) provides scaling to
individual-based genetic variance. For instance, assume that with
pedigree relationships A, the estimate of the variance is &uz. An
estimate using pedigree coancestries, C = A/2, will estimate a
variance component that will be doubled (62 = 242). To obtain
a meaningful estimate we can use (1), which gives the expected
result:
E (S?) = (diag (C) — €) 62 = 0.5 267 =

u

‘:N

2.2. How to meaningfully compare estimates of genetic variances
across different models of relationships

For the reference population, the genetic variance is an
unobservable quantity, but “real” in some sense. Hence, I propose
to refer all estimates of the variance component of the mixed
model (o2) to the reference population. Assume that we have two
different relationship matrices K; and K, (say, model 1 is based
on pedigree IBD and model 2 is based on genomic relationships)
and associated variance component estimates 62, 62,. For the
reference population (not necessarily the whole populatlon) we
compute Dy and Dy,. The estimates of the genetic variance of the
reference population (SZ ; and S7 ,) will be, in turn:

Se1=Dub.: Sk, =Dib,.

And these estimates are comparable because they refer to strictly
the same thing. The choice of the reference population is not
always obvious. It is better to consider a large reference population,
because the expectation holds better (technically, the sampling
variance of 53 is reduced). On the other hand, the expectation
operation can be taken again to refer the variance in the reference
population to the variance in a “base” population. See the example
below for comparison of pedigree versus genomic relationships.

2.2.1. Use of identity by state relationships

Identity-by-state relationships can be defined as probabilities
of alikeness in state, i.e. twice the probability that two alleles, one
sampled at random for each individual, are alike in state. These

IBS relationships are known efficient, but biased, estimators of IBD
relationships. For a single locus, (uncorrected)

giss = g + (2 — giwp) (P° + ¢°)

(e.g.Ritland, 1996, Eq. (1)) where gjps (gisp) is IBS (IBD) relationship
and p and q are allelic frequencies of a biallelic marker at the base
population from which IBD is defined. Consider a population of
unrelated individuals in the IBD sense. In terms of IBS relationships,
the diagonal terms will average to 1+ p? + ¢® using the expression
above, as gigpp = 1 (self relationships for all individuals are all
identical to 1). The off-diagonal elements of the IBS relationships
will average to 2 (p2 + qz), as gp = O for across-individual
relationships. Thus, in this case, if the population is large enough,

K=20p*+¢°)
diag (K) = 1+p* + ¢

and

Dips = 1—p> — ¢°
whereas

Dy o = 1.

Now expected genetic variances in both cases can be compared.
A2
Because E (SZ 55) = Diss67 gs and E (S25p) = DiisnOy g, We

expect E (S2 55) = E (S2 5p) and therefore, on expectation,

GuIBS= uIBD/(]_p — 7).

Using the variance component a ps to estimate the heritability
will bias it upwards.

2.2.2. Comparing genomic and IBD estimates

When estimating genomic relationship matrix G (VanRaden,
2008; Yang et al., 2010 and Speed and Balding, 2015), the reference
population is most typically equal to the genotyped population. If
Hardy-Weinberg holds, then D; = 1, and the estimated variance
component can be interpreted as the genetic variance in the
population. If this population has a pedigree, a pedigree-based
relationship matrix A can be constructed, with D = 1 — F, (if
the reference population is sufficiently large and matings are at
random). The estimated variance component refers to the founders
of the pedigree, for whom Dy = 1. Two estimates of variance
component are obtained using G or A, 6 and 6,7, respectively.
In order to compare them, however, we need to refer them to the
same reference population. This is not the case generally. There are
two options to establish a common reference population.

The first is to refer to the reference population of genotyped
individuals and thus 2, = 62 and §2, = (1-— Fa) 624, and
the genetic variance of the whole genotyped population is reduced
with respect to the genetic variance of the founders of the pedigree.

Another option is to refer to the reference population of
founders of the pedigree, although computing D¢ is often not
possible because biological samples for the base population are
often unavailable. However, D; must behave in the same direction
as Dy (it reduces with generations due to inbreeding) and therefore
we may correct in the opposite sense: 52 = = 6] G(l — F,) which
means that genetic variance should be larger in the founders of the
population than in the genotyped population, because in the latter
individuals are related and this reduces variance. On the other
hand, for this reference population, Su A= auz A

3. Real data example

3.1. Material and methods

I will illustrate the ideas above with a set of mouse data
frequently used to test genomic prediction procedures (Valdar
etal.,, 2006; Legarraetal., 2008). The data set includes 1884 animals
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Table 1

Estimates of variance components (62), apparent heritabilities (flgpparent

of the relationship matrices (average of the diagonal diag (K), average relationship
K, D, = diag (K) — K), genetic variances (52), corrected heritabilities (h?
(corrected)), and minus twice the log-likelihood (—2logL) in a mice data set for body
length, for four different modelings of the relationships (Pedigree, Genomic, Kernel
and Identity by State (IBS)). The standard error of the variance components is 0.008
and of the heritabilities, 0.03.

), statistics

Pedigree Genomic Kernel IBS
62 0.038 0.033 0.094 0.102
B2 parent 0.16 0.14 033 0.34
diag (K) 1 1.031 1 1.665
K 0.0045 —0.0005 0.4963 1.3090
D, = diag (K) — K 0.995 1.0005 0.5037 0.3562
§2 = D62 0.038 0.033 0.047 0.036
72 (corrected) 0.16 0.14 0.20 0.15
—2loglL 2440.67 241173 2410.37 2412.19

genotyped and phenotyped and roughly 10,000 markers. Pedigree
includes 2272 individuals. I considered four different estimates of
relationships, with the following abbreviation: (pedigree) pedigree
relationships; (genomic) genomic relationships using markers, of
the form

Xik — 2 Xik — 2
g = Z (Xik . D) ( Gk pk)
P (1 — p)
(VanRaden, 2008), using observed allelic frequencies in the
population; (kernel) a Gaussian kernel matrix based on Euclidean
distances (e.g. Endelman, 2011), with the form

ol 2]

where dj; is a normalized distance between genotypes of individ-
uals i and j, and 6 is a smoothing parameter that was fixed at 0.5
(typical values of this parameter oscillate between 0 and 1, Endel-
man, 2011); (IBS) is a matrix of IBS relationships constructed using
identity by state similarities (i.e., they share none, one, or two al-
leles), that can be expressed as follows:

1
8 = - Z (Xikxjk — Xik — Xjk + 2) .

These IBS relationship were not corrected for heterozygosity at the
markers, so that the bias in the estimation of genetic parameters
was more apparent. The trait analyzed was body length, and the
model included sex, random cage effect, and individual genetic
effect as in Legarra et al. (2008). Variance components were
estimated by REML using remlf90 (Misztal et al., 2002) and
different matrices were constructed using preGSf90 (Aguilar et al.,
2014) except for IBS relationships, which were programmed.

3.2. Results

Table 1 shows the different variance component estimates
(&uz), the “apparent” heritability using this variance component

(ﬁﬁpparem) the relevant statistics of the different relationship matri-
ces across the genotyped and phenotyped individuals, the genetic
variance taking as reference the whole genotyped population, the
heritability estimated using this estimate, and minus twice the log-
likelihood (lower value is better). Variance component estimates
for the other effects were similar across analysis, roughly 0.050 for
the “cage” effect and 0.150 for the residual. Firstly, it can be ob-
served that all models using genomic data perform better in terms
of likelihood. Secondly, and more importantly, the transformation
that I propose puts estimates of genetic variances and heritabilities
on a similar scale across different models.

Therefore, the much higher apparent heritability of models
“IBS” and “Kernel” is an artifact of the form of their respective

relationship matrices, and it does not imply that they are more
likely or they explain better the genetic architecture (as can be seen
in the log-likelihood, where they are very similar to “genomic”).
Statistics of relationships D, and “corrected” estimates in
Table 1 take the 1884 animals genotyped and phenotyped as
the reference. When using pedigree-based relationships (as in
livestock genetics), it is customary to consider the pedigree
founders as the reference population. In order to do so, estimates of
the genetic variance across the pedigree founders can be obtained

dividing §5 by the value of Dy for “pedigree”.

4. Discussion

I have presented a method to obtain meaningful, and compa-
rable, estimates of genetic variances from estimates of variance
components across different structures of relationships. I stress the
difference between genetic variance and variance component. The
first is a biological property of the population that can, at least
conceptually, be estimated with precision by an experiment. The
latter is a scaling constant associated with a certain assumed struc-
ture of relationships across individuals, but, depending how these
relationships are conceived, this constant may or may not be in-
terpreted as the genetic variance of the particular population be-
ing analyzed. Here, I have presented a comprehensive theory that,
firstly, defines genetic variance as associated with a set of individ-
uals in a reference population and secondly, derives proper scaling
of variance component estimates towards genetic variances. The
bias that I show in this paper is of a different kind than sampling
error of estimates (sampling error vanishes with large data sets),
that is, even for very large data sets estimates using different rela-
tionships will differ systematically. For instance IBS relationships
will estimate variance components higher than IBD relationships
by a scale factor of the order 1/(1 — p?> — ¢?), no matter how large
the data set.

The work that I present is closely related to previous attempts to
reconcile genomic and pedigree relationships (Powell et al., 2010;
Vitezica et al., 2011; Meuwissen et al., 2011; Christensen, 2012).
These authors suggested making genomic relationship matrices
comparable to pedigree-based relationship matrices by scaling
and adding constants (roughly diag (K) and K) albeit they did
not explicitly address the “comparability” of variance component
estimates across different models of relationships. Implicitly, all
these works, and also the present one, draw on the fixation index
theory of Wright (e.g. Powell et al., 2010).

There are very few comparisons of heritability estimates
within the same data set across different kind of relationships,
and these have been undertaken (to my knowledge) mostly
in animal genetics. Legarra et al. (2011), Forni et al. (2011)
and Rodriguez-Ramilo et al. (2014) reported similar estimates
across pedigree and genomic relationships. However, estimates
of variance components with kernel matrices have rarely been
compared with regular estimates, on the grounds that “the
interpretation of this parameter is not obvious” (Gonzalez-Recio
et al., 2008). This is unfortunate because kernel matrices are more
flexible than genomic or pedigree relationships and have the
potential to smooth relationships across very distant individuals
(Endelman, 2011), where we know that pedigree-based estimates
of relationships, which assume infinite unlinked loci, are not
reliable (Hill and Weir, 2011). In this work I show that estimates
are indeed comparable, and hopefully this will help practitioners
to compare estimates of genetic variances across different models.

5. Conclusion

In this work I have presented a theory for a meaningful
comparison of heritability and genetic variance estimates across
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different models for relationships between individuals. The pro-
cess involves: (a) choosing a reference population common to
all models for relationships; then, for each possible relationship:
(b) computing statistics Dy of relationships within the reference
population, (c) estimating the genetic variance at the reference
population as S2 = D62, where 62 is the estimated variance com-

ponent, (d) estimating heritabilities using §3.
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