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Abstract

Background In the last decade, metabolomics has

emerged as a powerful diagnostic and predictive tool in

many branches of science. Researchers in microbes, ani-

mal, food, medical and plant science have generated a large

number of targeted or non-targeted metabolic profiles by

using a vast array of analytical methods (GC–MS, LC–MS,
1H-NMR….). Comprehensive analysis of such profiles

using adapted statistical methods and modeling has opened

up the possibility of using single or combinations of

metabolites as markers. Metabolic markers have been

proposed as proxy, diagnostic or predictors of key traits in

a range of model species and accurate predictions of dis-

ease outbreak frequency, developmental stages, food sen-

sory evaluation and crop yield have been obtained.

Aim of review (i) To provide a definition of plant perfor-

mance and metabolic markers, (ii) to highlight recent key

applications involving metabolic markers as tools for

monitoring or predicting plant performance, and (iii) to

propose a workable and cost-efficient pipeline to generate

and use metabolic markers with a special focus on plant

breeding.

Key message Using examples in other models and

domains, the review proposes that metabolic markers are

tending to complement and possibly replace traditional

molecular markers in plant science as efficient estimators

of performance.

Keywords Breeding � Metabolic marker � Metabolomics �
Plant performance � Prediction

1 Introduction

Forecasting the future is as old as the hills. How odd it

might sound today but animals’ entrails, palm-reading and

coffee grounds have been used in the past as a source of

information by leaders and decision-makers. In modern

society, we still need to anticipate. Proxy, diagnosis or

estimation remain helpful for many human activities

including scientific domains.

Metabolomics has recently taken a quantum leap for-

ward. Using a combination of approaches such as proton

nuclear magnetic resonance (1H-NMR), liquid or gas

chromatography coupled with mass spectrometry (GC–MS,

LC–MS) as well as robotized spectrometric and fluori-

metric assays, it is now possible to measure thousands of

analytes in thousands of samples whether of microbial,

plant or animal origin (Gibon et al. 2012; Nicholson et al.

2007), even in non-model species. Metabolomics has a
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wide range of applications in an impressive list of organ-

isms. For example, several ‘silent’ mutations in Saccha-

romyces cerevisiae bearing no overt phenotypes have been

revealed by measuring metabolite concentrations (Raams-

donk et al. 2001). Metabolomics has also led to consider-

able progress in understanding the regulation of cellular

metabolism in Escherichia coli (Nöh et al. 2007). In animal

science, it has been used for studying the responses to

adverse conditions in nematode and fruit fly (Coquin et al.

2008; Hughes et al. 2009; Malmendal et al. 2006) and for

classifying the stages of embryogenesis in zebra fish by

using fingerprints of highly correlated metabolites (Hayashi

et al. 2009, 2011). Metabolomics is also widely used in

edible products for predicting geographical origin, terroir

and varietal effect, e.g. for wine (Cynkar et al. 2010; Tarr

et al. 2013), green tea (Lee et al. 2015) and orange (Dı́az

et al. 2014), for assessing the legal requirements for oil,

coffee, honey (Cubero-Leon et al. 2014) and for profiling

the sensory qualities of wine and meat (Schmidtke et al.

2013; Straadt et al. 2014). Readers are referred to recent

reviews on this subject (Cubero-Leon et al. 2014; Oms-

Oliu et al. 2013; Putri et al. 2013; Sumner et al. 2015) for a

more comprehensive view of these applications. The

spread of metabolomics has been supported by increased

computational power, which facilitates statistical analyses

of large datasets and raises the possibility of applying

correlative methods and finding metabolites associated

with a given state or condition (Gibon et al. 2012; Wol-

fender et al. 2013). These so-called biomarkers can also be

referred to as metabolic markers when constructed with

metabolite concentrations.

Medical science has been precursor in the use of

metabolic markers. Indian physicians around 1500 BC

noted that the sugar-enriched urine of patients with dia-

betes attracted ants (Zajac et al. 2010). Nowadays, body

fluid analyses offer numerous opportunities to profile

metabolites and correlate them with a diagnosis and/or

prediction of disease susceptibility. This is illustrated by

the emergence of patient stratification and personalized

medicine (Lindon and Nicholson 2014; Nicholson et al.

2012). Urine metabolic profiling led to the identification of

metabolic markers of symptomatic gout (Liu et al. 2012)

and preeclampsia (Austdal et al. 2015) and blood profiling

has been used to estimate the risk of bacteremic sepsis in

emergency rescue situations (Kauppi et al. 2016). Another

promising application of metabolite analysis in medical

science is the prediction of cancer risk (Lee et al. 2014;

McDunn et al. 2013; Truong et al. 2013) or the evaluation

of the putative effect of cancer treatments (Hou et al. 2014;

Jiang et al. 2014; Wei et al. 2013).

Metabolic markers are also used in plant science. Early

examples include diagnostic methods such as Jubil� and

N-tester�. They have both been used to proxy the nitrogen

status in plants for the sustainable fertilization of wheat,

barley and maize (Justes et al. 1997; Uddling et al. 2007)

through measurements of nitrate in stem fluids or chloro-

phyll in leaves respectively. Because plant scientists and

breeders are eager to improve crop performances in chal-

lenging conditions for human food security and to find

varieties selected for more complex traits, metabolic

markers are also becoming popular in plant science and

breeding (Herrmann and Schauer 2013; Zabotina 2013).

However, the use of metabolic markers is not straightfor-

ward. Metabolite levels belong to the phenotype, which

means that they can be associated with the genotype, the

environment, the developmental stage and the interactions

between them, as any other trait. This might be why

metabolic markers were first proposed as a tool for

searching for metabolite quantitative trait loci (mQTLs)

and finding the related genes (Fridman et al. 2000), which

were subsequently used for selection. Nevertheless, meta-

bolic markers can be used as direct predictors when asso-

ciated with plant performance criteria. They can also

contribute to understanding how plant physiology pro-

cesses are co-ordinated in various growth conditions [e.g.

as detailed for water deficit by (Tardieu et al. 2011)],

although this may not be the primary objective, especially

when using metabolic markers in breeding.

The aim of this paper is to define plant performance and

metabolic markers and to explain why and when they can

be used as a tool for monitoring or predicting such per-

formance. Finally, we describe a cost-efficient pipeline

using metabolic markers as putative predictors of perfor-

mance, with notable applications in plant-breeding.

2 What is plant performance?

The definition of crop performance is often limited to the

yield of the harvested part of the plant bearing the added

value. Yield is indubitably an important trait of perfor-

mance and its pattern under various growth conditions may

allow the simple comparison of genotypes. However

practical, this definition of performance is partly inade-

quate. Performance traits can be qualitative such as

behavior in a series of environmental scenarios (high

temperature, water deficit or biotic stresses), crop subtypes

(afila in pea, bearded wheat) or the association of traits that

are desirable for a given crop. Additionally, crop perfor-

mance can be related to an industrial procedure through

which the crop has to be processed. We propose here a

general definition of plant performance as being an asso-

ciation of several traits that need to be monitored with

regard to the plant life cycle or improved through a

breeding process. We propose the following non-exhaus-

tive list of traits:
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• Grain or tissue yield

• Stability and consistency of yield over various natural

environments, meteorological conditions or stresses

• Plant morphology (number of leaves, stems, flowers per

bunch, plant height…) or phenology (duration of a

particular stage of development)

• Storage properties such as fruit shelf-life or grain

stability

• Yield of a specific compound or metabolite (to increase

its concentration or to eliminate it)

• Technological properties (e.g. malting properties for

barley, protein quantity and quality for breadmaking in

wheat, cooking properties for potato, etc.)

• Sensory quality such as the presence of aromas or

aroma precursors

• Nutritional attributes such as absence or low content of

anti-nutritional compounds, or presence of vitamins,

glycemic index, saturated lipid content

• Tolerance to a specific adverse condition, biotic or

abiotic stress (extreme temperatures, salinity…)

• Efficiency of water and nutrient use.

Several of these criteria are now included in large crop-

breeding projects such as the French aMaizING (maize,

www.amaizing.fr), BreedWheat (wheat, www.breedwheat.

fr) and SUNRISE (sunflower, www.sunrise-project.fr)

projects, which address a variety of agronomical objectives

(e.g., tolerance to water stress, chilling, low nitrogen or

sulphur availability) and include precise phenotyping.

Biochemical or metabolic phenotyping are tentatively

integrated into the breeding process, notably in order to

establish more precise estimations of plant performance

and access the underlying mechanisms.

3 Definition of a metabolic marker

The term biomarker (or biological marker) originates from

the field of medicine. It has been defined as ‘a character-

istic that is objectively measured and evaluated as an

indication of normal biologic processes, pathogenic pro-

cesses, or pharmacologic responses to a therapeutic inter-

vention’ (NIH Definitions Working Group, 2000). In

plants, the concept of biomarker is often associated with

plant performance and could be defined as a characteristic

that is objectively measured or evaluated as a predictor

of plant performance.

Biomarkers can be genotypic (e.g., nucleotide poly-

morphisms such as single-nucleotide polymorphisms or

SNPs generally) or phenotypic (e.g., transcript levels,

protein levels, enzyme activities, metabolite levels, images

in different wavelengths). In addition to being predictive,

biomarkers are preferably easy and cheap to score (Aron-

son 2005). This is probably why the use of molecular and

biochemical markers, which proved to be excellent pre-

dictors and are relatively easy to measure in high-

throughput conditions, became widespread in medicine

(Menard et al. 2013; Robinette et al. 2013).

Metabolic markers are a sub-category of biomarkers

that are involved in metabolism. Importantly, unlike DNA

sequences, most metabolic traits vary during plant devel-

opment, potentially with diurnal patterns, between tissue/

organ and in response to environmental cues. Therefore,

their use as biomarkers has to take into account develop-

mental stage, position on the plant, time of day and growth

scenario. Three types of metabolic markers can be

distinguished:

• Traits of agricultural importance. An obvious strategy

is to screen germplasm with direct measurements of

such molecules or their precursors. Such traits can be

desirable, like vitamin C or aromas (Ruiz-Garcı́a et al.

2014; Pissard et al. 2013), or undesirable (e.g., toxins

such as cyanogenic glucosides in cassava, anti-nutrients

such as erucic acid in rapeseed).

• Diagnostic markers. In plants, single metabolic markers

have been proposed to estimate the intensity of a given

stress, for example proline, which accumulates in many

species experiencing drought (Dib et al. 1994; Hayat

et al. 2012). More recently, the idea that combinations

of metabolic variables could be used to diagnose stress

damage or resistance has emerged and the use of

transcripts (Tamaoki et al. 2004), enzymes (Gibon et al.

2004) or metabolites (Korn et al. 2010, 2008; Roessner

et al. 2000) has been proposed.

• Markers of genotype performance. In 2007, metabolic

profiles were used for the first time to estimate biomass

production in the model plant species Arabidopsis

thaliana, with a coefficient of correlation of 0.58

(Table 1). This pioneering study paved the way for

several others where associations between performance

traits and metabolic markers were found, as summa-

rized in Table 1. It also opened up new possibilities for

plant breeding in which metabolic markers would be

used to search for combinations of alleles that provide

higher plant performance (Meyer et al. 2007). Ulti-

mately, this would consist in searching for associations

(e.g. with correlation, regression or classification

methods), in a given set of genotypes, between

metabolite data obtained for a given organ, develop-

mental stage and environment combinations and plant

performance, and then assuming that these associations

remain valid for any genotypes grown subsequently in

other environmental conditions.
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Table 1 List of associations of metabolic markers and plant performance in recent literature

Plant Trait Numbers of

markers

Statistical

approach

Association Statistical

validation

Reference

Arabidopsis Biomass 181 CCA/PLS corr = 0.73/0.58 Random

permutation/train-

test sets

Meyer et al.

2007

Dry weight 181 OLS/PLS Q2Y = 0.11 (C24) and 0.11

(Columbia)/Q2Y = 0.12

(C24) and 0.23 (Columbia)

Random

permutation/

random

permutation

Steinfath et al.

2010a

Dry weight 9 (Columbia)

13 (C24)

PLS Q2Y = 0.26/0.38 Random

permutation

Barley Several malt

quality traits

216 O2PLS Q2Y = 0.17 to 0.79 – Heuberger

et al. 2014

Maize Several

performance

traits

130 RR-BLUP r(ĝ,g) = 0.61 to 0.79 Fivefold cross

validation

Riedelsheimer

et al. 2012a

Dry matter yield 7 Pearson

correlation

corr = -0.35 to 0.12 p value\ 0.05 Riedelsheimer

et al. 2012b

Lignin content 7 Pearson

correlation

corr = -0.20 to 0.15 p value\ 0.01

Plant height 5 Pearson

correlation

corr = -0.23 to 0.16 p value\ 0.008

GCA for several

performance

traits

1/563 Pearson

correlation/RR-

BLUP

corr = -0.54 to 0.48/

r(ĝ,g) = 0.47 to 0.78

Fivefold cross

validation

Riedelsheimer

et al. 2013

Grain yield under

drought stress

5 Pearson

correlation

corr = -0.47 to -0.54 p value\ 0.01 Obata et al.

2015

Pine Plant height 11 Pearson

correlation

corr = 0.13 to 0.35 p value\ 0.05 Kang et al.

2015

Stem dry mass 11 Pearson

correlation

corr = 0.15 to 0.34 p value\ 0.05

Potato Chip property 2 PLS and VIP

selection

0.66 to 0.75 Random

permutation

Steinfath et al.

2010b

Susceptibility to

blackspotedness

5 PLS and VIP

selection

0.53 to 0.82 Random

permutation

Rice Tolerance to mild

salinity stress

2 t-test(foldchange)/

PLS-DA

Delta log2(FCh)[ 1/

Q2Y = 0.49

p value\ 0.05/

random

permutation

Nam et al.

2015

Yield under

drought stress

16 Pearson

correlation

corr = -0.71 to 0.53 p value\ 0.05 Degenkolbe

et al.2013

yield under

drought stress

5 Pearson

correlation

corr = -0.72 to 0.45 p value\ 0.05

Tomato Firmess and shelf

life

2 Correlation

network

– p value\ 0.001 López et al.

2015

TYLCV

resistance

120 FCH/Correlation

network

0.88 to 1.43/mean r2 = 0.62 p value\ 0.05/– Sade et al.

2015

Wheat Fusarium

graminearum

resistance

60 FCH/Correlation

network

– – Cuperlovic-

Culf et al.

2016

Grape Esca disease

sensitivity

34 PCA – – Lima et al.

2010

CCA canonical correlation analysis, corr correlation, FCH fold change, GCA general combining ability, O2PLS orthogonal partial least squares

projections to latent structures, OLS ordinary least squares, PCA principal component analysis, PLS partial least squares to latent structures, Q2Y

cumulative predictive explained variation, r(ĝ,g) correlation between predicted and unobserved true values, RR-BLUP ridge regression-best

linear unbiased prediction, VIP variables importance in the projection
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4 Why use metabolic markers?

Measuring metabolites implies destructive sampling and

sometimes costly and labor-intensive analytics. Further-

more, the use of molecular markers such as single

nucleotide polymorphisms (SNPs), which are cheap,

independent of the environment, amenable to high-

throughput and are now commonplace in the research

departments of breeding companies, is becoming the

standard for breeders. So what would metabolic markers be

good for?

4.1 When metabolite levels are the trait

of performance

Some metabolic traits are important per se. A famous

example is zero-erucic-acid rapeseed oil, which is suit-

able for human nutrition. It was obtained with a strategy

involving the non-destructive sampling of single cotyle-

dons (to guarantee seedling survival to form the next

generation) and quantification via gas liquid chromatogra-

phy (Downey and Harvey 1963). Cyanogenic glucoside

content in cassava, an important food source in tropical

regions, could be measured by a low-cost spectroscopic

method after acid hydrolysis (Bradbury et al. 1991) and

then used in classical breeding programs aiming at reduc-

ing toxin levels (Nambisan 2011). Similarly, low phytic

acid content in maize kernels is of interest for food and

animal feed (Hazebroek et al. 2007). The screening of

desirable metabolites is also possible, e.g. nutritional

compounds such as vitamin C (Pissard et al. 2013) or

aroma precursors such as rose oxide, which highly corre-

late with the ‘‘Muscat Aroma’’ in the grape cultivar (Ruiz-

Garcı́a et al. 2014). The role of metabolomics in improving

the nutritional values of crops has already been underlined

in rice (Fitzgerald et al. 2009) and these approaches could

be a way to ensure that plant breeding programs place more

emphasis on nutritional optimization (Anonymous 2016b).

4.2 When metabolites provide condensed

information

So far, most of the molecular marker–trait associations

found in academic programs that have been transferred to

commercial breeding programs involve traits with simple

genetic determinism (Heffner et al. 2009; Xu and Crouch

2008). This is probably due to the fact that the number of

molecular markers was initially low in most cases. Addi-

tionally, qualitative traits (disease resistance mostly) are

overrepresented (Gupta et al. 2010). Furthermore, pyra-

miding beneficial alleles associated with traits resulting

from complex interactions such as epistasis and genotype

by environment interactions is still considered as very

challenging (Furbank and Tester 2011).

In 2012, Riedelsheimer et al. (2012a) compared the

predictive power of metabolic and molecular markers.

Although the precision was slightly lower for metabolites

with correlations ranging from 0.60 to 0.80 (Table 1)

compared to 0.72 to 0.81, the authors underlined the fact

that 130 metabolites were almost as good predictors as

38,000 SNPs. They concluded that metabolites provide

condensed information and could be especially interesting

when dealing with highly polygenic traits.

Two further studies in maize used a similar approach.

The lipid profiling of maize leaves revealed high correla-

tions with several agronomical traits [Riedelsheimer et al.

(2013), including dry matter yield (0.47) and flowering

time (0.78); Table 1]. A tempting follow-up would be to

identify highly efficient hybrids in test-crosses via lipi-

domics. Caffeic- and p-coumaric acid also showed signif-

icant correlations with dry matter yield [-0.28 and 0.12

respectively; Table 1; Riedelsheimer et al. (2012b)], sug-

gesting that a low-cost strategy targeting these metabolites

could be developed to screen thousands of hybrids for

selection purposes. In these examples, there is little dif-

ference in dealing with metabolic markers compared to

molecular markers. Associations between metabolic

markers and performance criteria would nevertheless have

to be generated with adequate statistical methods that take

into account potential interactions, e.g., between genotype

and environment.

4.3 When metabolites open the way to mechanistic

insights

The fact that metabolic markers provide biological infor-

mation that can narrow down the genotype-phenotype gap

opens the door for mechanistic insights, starting with the

detection of SNPs or candidate genes via mQTL mapping

strategies. Riedelsheimer et al. (2012b) detected several

mQTL for lignin precursors such as p-coumaric acid and

caffeic acid,which they found tobe goodpredictors of a range

of plant performance criteria (e.g., plant height and drymatter

yield; Table 1). The corresponding region harbors a key

enzyme in monolignol synthesis (cinnamoyl-CoA reductase)

and has been proposed as a good target for improving the

quality of lignocellulosic biomass. In addition, candidate

gene allelic variability (natural or induced) could be explored

to evaluate changes in lignocellulosic quality. The use of

metabolicmarkers to gainmechanistic knowledge can alsobe

illustrated by the negative correlation of starch with biomass

(Sulpice et al. 2009). This led the authors to conclude that

starch is an integrator of plant growth, reflecting a fine bal-

ance between carbon supply and growth.
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Such findings highlight the usefulness of metabolic

markers for estimating agronomical traits and revealing

biological mechanisms underlying phenotypes.

4.4 When metabolites can be a diagnostic tool

in crop processing

An original application of metabolic markers is the eval-

uation of crop performance in an industrial or commercial

process. One of the first publications to mention such a

possibility was focused on potato susceptibility to black

spot bruising (induced by collisions during transport and

storage) and undesirable ‘browning while frying’. Five

amino acids (tyrosine, threonine, valine, serine and glu-

tamine) and two sugars (glucose and fructose) were

detected as the best metabolic markers (VIP in a PLS

analysis; Table 1) for these traits, respectively (Steinfath

et al. 2010b). To validate these markers, a model was

entrained to compare measured and predicted traits in an

independent location bearing significant correlation (rang-

ing 0.53 to 0.82 and 0.66 to 0.75 respectively for suscep-

tibility to blackspottedness and chip property; Table 1).

Another example of metabolites linked to industrial prop-

erties is the association of a profile of 216 features

(Table 1) to malting quality in barley (Heuberger et al.

2014).

Fresh fruit marketability is linked to shelf-life, which is

affected by firmness. Both traits have been shown to be

associated with malate content in tomato (López et al.

2015) through a neural network approach (self-organizing

maps; Table 1). In the same study, another important

commercial trait (fruit morphology) showed to be associ-

ated strongly with aspartate, glutamate and 2-oxoglutarate

(López et al. 2015).

4.5 When assessing diversity of crop core collections

or other genetic resources

A recent application of plant metabolomics that has already

been implemented in biotechnology and seed companies is

the assessment of metabolic diversity within their crop core

population or genetic lineage. This has been done for

instance by Monsanto� in soybean (Kusano et al. 2015;

Harrigan et al. 2015) and maize (Venkatesh et al. 2016) as

well as by Pioneer� in the latter species (Baniasadi et al.

2014; Zeng et al. 2014; Asiago et al. 2012). Authors

underline the potential of metabolomics to separate genetic

and environmental effects on crop diversity (Venkatesh

et al. 2016; Baniasadi et al. 2014) or for substantial

equivalence studies of genetically modified (GM) geno-

types (Harrigan et al. 2015; Baniasadi et al. 2014; Asiago

et al. 2012). These results could be used to improve

acceptance of GMOs and might also be used for regulatory

purposes (Zeng et al. 2014). These companies have all the

necessary tools in house to use metabolic data for breeding.

Indeed several of their publications have already shown

associations of key performance criteria with metabolites,

for instance for yield in soybean (Kusano et al. 2015) or

plant and ear height in maize (Venkatesh et al. 2016).

4.6 When working on impact of abiotic and biotic

stress

Metabolites can also be used as markers to estimate plant

performance under stress conditions (Feussner and Polle

2015; Fraire-Velázquez and Balderas-Hernández 2013).

Obata et al. (2015) found that myo-inositol accumulated in

young leaves was constitutively and negatively associated

with grain yield under at least some drought stress sce-

narios in maize (-0.54; Table 1) In rice, Quistián-Martı́nez

et al. (2011) identified trehalose as a putative inducible

marker in drought-tolerant rice genotypes, while Degen-

kolbe et al. (2013) reported eight metabolites that were

positively accumulated in drought-tolerant varieties (in-

cluding allantoin, galactaric and gluconic acid, glucose and

salicylic acid glucopyranoside; Table 1). Interestingly,

allantoin was also associated with salt-stress tolerance in

rice (Table 1; Nam et al. 2015). Although ‘constitutive’

metabolic markers, e.g. those measured in plant material

obtained under standard conditions and at young develop-

mental stages (Riedelsheimer et al. 2012b; Riedelsheimer

et al. 2012a), might be of great interest when stress resis-

tance can be estimated, it is likely that ‘inducible’ meta-

bolic markers will be needed to evaluate tolerance in

stressed conditions and to train the prediction models of

resistance. For this, the combined use of phenotyping

platforms (Tisne et al. 2013) providing reproductive and

relevant stress scenarios combined with pertinent meta-

bolic analyses could be very valuable. However, such a

strategy involving ecophysiologists, biochemists and

geneticists still requires sustained exploratory efforts.

Regarding biotic stress, metabolomics has recently

emerged as a tool for studying plant immunity, especially

for deciphering the role of small molecules involved in

plant–microbe interactions (Feussner and Polle 2015).

Diagnostic-like strategies separating diseased from healthy

plants with metabolic markers have been proposed using
1H-NMR in ornamental periwinkle and grapevine (Table 1;

Choi et al. 2004; Lima et al. 2010). Finally, metabolic

markers have been associated with tolerance to yellow leaf

curl virus in tomato (Sade et al. 2015) and to fusarium in

wheat (Cuperlovic-Culf et al. 2016). Of particular interest

in the tomato study, the authors highlighted a more coor-

dinated response of the primary metabolism in resistant

cultivars (Sade et al. 2015).
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5 What pipeline to work with metabolic markers
of plant performance?

The major challenge when using metabolic markers will be

to establish combinations of growth scenarios, sampling

strategies and metabolic marker measurements that provide

estimations of plant performance that are consistent with

the ‘real’ world. As mentioned above, it is indeed known

that QTL associated with plant performance can have

positive effects under given growth scenarios and negative

effects under others (Tardieu 2011), and that there is a

priori no reason why this would not be the case for such

estimations. Vast numbers of metabolic fingerprints can be

generated by profiling diverse organs or tissues at different

stages and under various growth conditions. The fact that

this diversity is challenging when looking for metabolic

markers of performance implies that several steps listed

below have to be taken into account.

5.1 Growth scenarios: reproducible and crop-

adapted to reveal diversity

Metabolite levels and fluxes are sensitive to growth con-

ditions, especially to temperature which modifies enzy-

matic activities independently (Strand et al. 1999; Parent

et al. 2010). They are also subject to large changes

throughout plant and organ development and even

throughout night and day cycles. Simulating the diversity

of scenarios that any crop would face in the field is not a

realistic option. Therefore, careful implementation of

reproducible growth scenarios seems necessary to find the

best metabolic markers, especially if the studied perfor-

mance criterion is tolerance towards adverse conditions.

These scenarios should be designed in order to reveal

genotype diversity for a given plant performance criterion.

They can be seen as a proxy of the growth conditions of the

crop with the additional constraint of reproducibility in

order to generate robust markers. Academic (Cabrera-

Bosquet et al. 2016; Kumar et al. 2015) and private robo-

tized phenotyping facilities offer solutions for program-

ming such scenarios and for phenotyping crops while

limiting costs compared to field trials (Humplı́k et al.

2015). These facilities, which so far tend to focus on

growth and architecture, could be used to perform meta-

bolic studies, eventually identify metabolic markers and

ultimately deepen our knowledge about how metabolism

and plant performance are integrated. It is likely that this

will require large experimental (e.g., what should be har-

vested, at what developmental stage, at what time of the

day, what should be measured) and technological (e.g.,

cost-efficient sample collection) efforts.

In association with this type of facilities, data and

metadata management solutions (Hannemann et al. 2009)

would be of great help. Indeed, the extensive follow-up of

experimental conditions (detailed scoring of all environ-

mental and developmental factors that may impact meta-

bolism…) from growth scenarios to sample handling and

metabolomics data, would greatly facilitate the integration

of such factors with plant performance and help in gener-

ating accurate metabolic markers.

5.2 Sampling procedure: easy to harvest

and process

Wen et al. (2015) studied the predictive power of meta-

bolomic data obtained from different organs/stages for

agronomical traits in a maize population (leaves at seedling

and reproductive stages and kernels at 15 days after pol-

lination). Only 33 of the 79 identified metabolites were

commonly detected between these organs/stages and the

evaluated agronomical traits were predicted by different

combinations of metabolites depending on the sampling

matrix. Metabolic marker selection might therefore be

conditioned by both the organ/tissue and the developmental

stage at sampling time, and also largely depend on the trait

studied. Pragmatically, metabolic markers would be sought

at young developmental stages first in order to reduce

screening costs, and in leaves, which are easy to collect,

handle and analyze. Furthermore, it seems logical that the

later the samples are taken during development, the greater

the chances of finding good correlations between metabo-

lite levels and traits of interest. Thus, taking samples as

early as possible in plant development would result in

robust prediction and metabolic markers. Finally, the best

option for each case needs to be carefully evaluated and

pondered considering the expected results and required

investment.

5.3 Number of metabolic markers vs sample size:

finding the right balance for cost efficiency

Although targeted metabolite profiling by electrospray

ionization tandem mass spectrometry allows hundreds of

metabolites to be measured in thousands of samples for

human Genome-Wide Association Studies (Gieger et al.

2008), in depth metabolomics remains too costly for the

analysis of very large numbers of plant genotypes (ranging

from 30 to 300 € per sample; Gibon et al. 2012). In other

words, when looking for associations with plant perfor-

mance, ‘metabotyping’ every genotype appears to be

impossible at a reasonable cost so subpanels have to be

designed. Subpanel selection is rarely described in detail.

One possibility is to maximize diversity based on
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phenotypic or molecular data (Rincent et al. 2014). The

constitution of bulks of extreme genotypes has been widely

used for genomics (Zou et al. 2016) and has been suc-

cessfully tested for metabolic data (Zhang et al. 2010).

Numerous sampling survey methods exist (Singh and

Singh Mangat 1996) but their adaptability to plant meta-

bolomics data is uncertain and has received little attention

to date. We foresee two possible non-mutually exclusive

options for in depth metabolomics analysis:

• Untargeted metabolic phenotyping in diversity

subpanels

Subpanels of highly diverse genotypes and/or given

growth scenarios could be investigated first by using non-

targeted analytical approaches and identifying the best

markers, thus keeping costs acceptable by reducing the

sample number. The number of potential metabolic mark-

ers generated via untargeted analysis could then be reduced

by selecting those that provide good discrimination

between genotypes, environments and their interactions, on

the one hand, and which are easily amenable to high-

throughput on the other. Targeted methods would then be

developed to characterize the full panel and/or the full set

of growth conditions. If the metabolic marker has been

generated through LC–MS technology, the development of

a targeted method requires accurate annotation of the

compound. Readers are referred to (Wolfender et al. 2015)

as a guideline for annotation in complex extracts.

• Targeted measurements

Such measurements should enable high numbers of

samples to be processed at low costs, thus enabling screens

of large populations and/or complex experimental setups

(diverse growth scenarios, developmental stages, etc.). For

example, LC–MS targeted profiles could be generated

automatically at moderate cost (50–100 € per sample;

Heuberger et al. 2014). Sample preparation and equipment

investment still account for a large part of LC–MS analysis

costs and they can both be improved by automation and

increase in throughput (de Raad et al. 2016; Novakova

2013). The cost of data handling, curation and analysis also

has to be taken into account (Anonymous 2016a).

High-throughput spectrophotometric analysis of major

sugars and organic acids, which are respectively powerful

predictors of potato quality (Steinfath et al. 2010b) and

tomato (López et al. 2015), could be easily implemented in

facilities using robotized microplate measurements

(Ménard et al. 2014) and for less than 20 € per sample.

However, for many volatile compounds and secondary

metabolites, there will still be certain limitations to

reducing costs by methodologic adaptations (Kallenbach

et al. 2014), although future developments may offer new

possibilities.

5.4 Data analysis for modeling plant performance:

custom-made solutions

Detection of markers is linked to the idea of associating

explanatory variables (X, markers) and response variables

(Y, targeted phenotype). Therefore, an appropriate statis-

tical method estimating such an association between

metabolites or metabolite signatures and phenotypic vari-

ables and its significance is necessary.

In the simplest scenario where one metabolite is highly

correlated to the targeted phenotypic trait, a pair-wise

Pearson’s correlation might be sufficient to detect an

appropriate marker. However, a more likely situation is

that more than one metabolite is needed to build a pre-

dictive model. In such cases, some commonly applied

statistical methods are used to maximize the correlation

between X and Y. Among them, canonical correlation

analysis (CCA) estimates the maximum correlation

between linear combinations of X and Y matrices, while

stepwise regression and best subset regression aim at

maximizing the correlation by selecting a minimum

Selection

B  Predic�ve  model of plant performance 

Full genotype panel 

Targeted  
metabolic markers 
10-100 € 

Greenhouse  
scenario  
50-100 € 

Field  
phenotyping 
200-700 € 

Pla�orm 
phenotyping 
300-500 € 

Metabotyping 
200-300 € 

A C 

D 

Subpanel 

Fig. 1 Strategy combining phenotyping, metabotyping and modeling

for selection in order to find a few performing genotypes from a full

panel of genotypes for a given criterion. Metabolic marker may

optimize cost and speed of the process by (A) ‘‘metabotyping’’ and

precision phenotyping of a diversity subpanel in a series of

representative environmental conditions, (B) using collected data to

model genotype performance. The model would generate a workable

combination of (C) adapted growth scenario, sampling procedure and

a small cost-efficient set of metabolic markers which would be used

for (D) validation on the full panel of genotypes or for a further

selection program. For the purpose of estimating costs, we consider 1

sample per genotype as a pool of 5 plants
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number of variables in X that predict Y (Song et al. 2016).

Other very widespread methods are used to maximize

covariance. If genotypes can be easily grouped in a few

clusters based on their agronomical performance(s), these

groups can be used to search for biomarkers using dis-

criminant analysis. Partial Least Square Discriminant

Analysis (PLS-DA) maximizes covariance between X and

Y, thereby reducing the explanatory variables to a set of

PLS components whose optimal number is selected by

cross-validation. PLS methods have the advantage of

handling highly collinear and noisy datasets (Wold et al.

2001), as is the case for most metabolomics data sets. A

variant of PLS, Orthogonal Partial Least Squares (OPLS),

reduces the noise effect by splitting variation in X matrix

between correlated (predictive) and uncorrelated (orthog-

onal) to Y. This orthogonal signal correction aims at

maximizing the explained covariance between X and Y on

the first OPLS component while the subsequent compo-

nents explain the uncorrelated variance to Y (Trygg and

Wold 2002). (O)PLS statistical validation is performed by

random permutation of labels and by dividing the samples

into two random groups, one of them aiming to fit a model

and the other to estimate its predictive power or quality. In

addition, (O)PLS allows variable selection among X vari-

ables through several statistics, variable importance in

projection (VIP) being the most commonly known but not

the only one (Galindo-Prieto et al. 2014; Mehmood et al.

2012). Although these are very popular methods in meta-

bolomics, there are other appropriate alternatives like

principal component-discriminant function analysis, sup-

port vector machines and random forest (Gromski et al.

2015). All the above multivariate methods are prone to

overfitting, so validation with a different dataset from the

one used to fit the model is mandatory.

A possibility is to begin a metabolic marker search

process using the following workflow. Normalization has

to be done first according to data scale and heteroscedas-

ticity (van den Berg et al. 2006). Log 2 normalization is

often preferred for univariate analysis, whereas Z-score or

Pareto normalization is done before multivariate analysis.

The data matrix is first analyzed with a univariate method

(e.g. one or two-factor ANOVA, possibly genotype and

treatment) to obtain the most significant metabolites

affected by each factor and to check whether genotype x

treatment interactions are present. Some highly correlated

variables may also be removed at this stage to improve

further modeling. Multivariate unsupervised analyses

(PCA) are generally performed to give a global snapshot of

the data and check for outlier samples. Finally, supervised

methods such as PLS-DA and OPLS-DA are carried out.

They provide VIP values that can be used to select

potential candidates for metabolic markers. In parallel,

machine learning methods (random forest, neural net-

work…) might be applied but their use is still limited in

plant metabolomics. Note that this analytic procedure is

given as a basic guideline and should be adapted for each

target and type of data matrix, then complemented with

other statistical methods.

5.5 The example of plant breeding

To illustrate and summarize the search for and use of

metabolic markers, an example of a pipeline for plant

breeding is given in Fig. 1: (1) ‘Metabotyping’ of smaller

Fig. 2 Key milestones for improving and developing the use of metabolic markers
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representative subpanels of genotypes [see for instance

Rincent et al. (2012) for discussion on panel sampling in a

predictive context] is performed in parallel with acquisition

of other phenotypic variables of interest in the field or on

phenotypic platforms (Fig. 1A). (2) These data are used to

train models estimating traits of interest (Fig. 1B) and

aiming at optimizing growth conditions and sampling, and

if possible, at reducing the number of metabolic markers

(Fig. 1C). (3) With such optimization, a small set of

metabolic markers (10–20 markers) can be measured at a

cost of 10–100 € per sample in a breeding pipeline (as

shown in Fig. 1; e.g. a pool of 5 individuals from the same

genotype), making it possible to use them for full diversity

panels (Fig. 1D). The estimated cost for use of a molecular

marker is between 10 and 30 € per sample and they will

continue to be improved thanks to sequencing technologies

(Next-generation sequencing, Genotyping by Sequencing).

Nevertheless, if the proposed pipeline is carefully fol-

lowed, metabolic markers would be able to compete with

molecular markers based on relevance rather than just on

cost in certain situations.

6 Conclusion

Metabolites have a great potential as markers of plant

performance because they contain more information in

certain scenarios and give a more realistic picture of ‘real’

plant performance than molecular markers. Indeed, leading

biotech companies have already or are in the process of

integrating these tools in their crop selection projects

(Venkatesh et al. 2016; Baniasadi et al. 2014).

However, if metabolic markers are to express their full

potential, several technological breakthroughs will be

needed (Fig. 2). Available analytical methods have to be

democratized and made more user-friendly, especially the

possibility of parallelizing sample flow and data acquisition

(Deng et al. 2002). Furthermore, solvent quantities need to

be reduced by using micro-fluidic devices (Gao et al. 2013)

and tailor-made targeted methods able to measure 10–20

metabolic markers simultaneously need to be developed.

Dedicated new methods with metabolite sensors using

microfluidics could be used for plant samples, as is already

the case in human health (Tharakan et al. 2015). In addition

to the development of methods for the parallel measure-

ment of individual small molecules such as ELAKCA (a

sandwich-type enzyme-linked assay), breeding would

benefit from a tunable platform in which such assays could

be easily adapted to each specific marker (Chovelon et al.

2016). Methods targeting other types of metabolic markers

such as transcripts or proteins could also be implemented.

Thus, enzymatic activities could well prove to be efficient

markers as well since they correlate poorly with

metabolites (Sulpice et al. 2010) and would therefore add a

new layer of information for modeling plant performance.

Closer collaboration between statisticians and bioinfor-

maticians is required and plant scientists need to become

more familiar with advanced statistical methods.

Finally, phenotypic data on existing genotypes should be

made more accessible because they offer a great potential

for correlating or associating putative markers with known

genotype performance. This is clearly the goal of the

DivSeek consortium (Anonymous 2015) but other initia-

tives, be they public or private, should be fostered.
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Nöh, K., Grönke, K., Luo, B., Takors, R., Oldiges, M., & Wiechert,

W. (2007). Metabolic flux analysis at ultra short time scale:

Isotopically non-stationary 13C labeling experiments. Journal of

Biotechnology, 129(2), 249–267. doi:10.1016/j.jbiotec.2006.11.

015.

Novakova, L. (2013). Challenges in the development of bioanalytical

liquid chromatography-mass spectrometry method with empha-

sis on fast analysis. Journal of Chromatography A, 1292, 25–37.

doi:10.1016/j.chroma.2012.08.087.

Obata, T., Witt, S., Lisec, J., Palacios-Rojas, N., Florez-Sarasa, I.,

Yousfi, S., et al. (2015). Metabolite profiles of maize leaves in

drought, heat, and combined stress field trials reveal the

relationship between metabolism and grain yield. Plant Physi-

ology, 169(4), 2665–2683. doi:10.1104/pp.15.01164.

Oms-Oliu, G., Odriozola-Serrano, I., & Martı́n-Belloso, O. (2013).

Metabolomics for assessing safety and quality of plant-derived

food. Food Research International, 54(1), 1172–1183. doi:10.

1016/j.foodres.2013.04.005.

Parent, B., Turc, O., Gibon, Y., Stitt, M., & Tardieu, F. (2010).

Modelling temperature-compensated physiological rates, based

on the coordination of responses to temperature of developmen-

tal processes. Journal of Experimental Botany, 61(8),

2057–2069.

Pissard, A., Fernández Pierna, J. A., Baeten, V., Sinnaeve, G.,

Lognay, G., Mouteau, A., et al. (2013). Non-destructive

measurement of vitamin C, total polyphenol and sugar content

in apples using near-infrared spectroscopy. Journal of the

Science of Food and Agriculture, 93(2), 238–244. doi:10.1002/

jsfa.5779.

Putri, S. P., Nakayama, Y., Matsuda, F., Uchikata, T., Kobayashi, S.,

Matsubara, A., et al. (2013). Current metabolomics: Practical

applications. Journal of Bioscience and Bioengineering, 115(6),

579–589. doi:10.1016/j.jbiosc.2012.12.007.

Quistián-Martı́nez, D., Estrada-Luna, A. A., Altamirano-Hernández,

J., Peña-Cabriales, J. J., Oca-Luna, R. M., & Cabrera-Ponce, J.

L. (2011). Use of trehalose metabolism as a biochemical marker

in rice breeding. Molecular Breeding, 30(1), 469–477. doi:10.

1007/s11032-011-9636-0.

Raamsdonk, L. M., Teusink, B., Broadhurst, D., Zhang, N., Hayes,

A., Walsh, M. C., et al. (2001). A functional genomics strategy

that uses metabolome data to reveal the phenotype of silent

mutations. Nature Biotechnology, 19(1), 45–50. doi:10.1038/

83496.

Riedelsheimer, C., Brotman, Y., Méret, M., Melchinger, A. E., &

Willmitzer, L. (2013). The maize leaf lipidome shows multilevel

genetic control and high predictive value for agronomic traits.

Scientific Reports, 3, 2479. doi:10.1038/srep02479.

Riedelsheimer, C., Czedik-Eysenberg, A., Grieder, C., Lisec, J.,

Technow, F., & Sulpice, R., et al. (2012a). Genomic and

metabolic prediction of complex heterotic traits in hybrid maize.

Nature Genetics, 44(2), 217–220. http://www.nature.com/ng/

journal/v44/n2/abs/ng.1033.html#supplementary-information.

Riedelsheimer, C., Lisec, J., Czedik-Eysenberg, A., Sulpice, R., Flis,

A., Grieder, C., et al. (2012b). Genome-wide association

mapping of leaf metabolic profiles for dissecting complex traits

in maize. Proceedings of the National Academy of Sciences of

the USA, 109(23), 8872–8877. doi:10.1073/pnas.1120813109.
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