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Florence d’Alché-Buc,4 Sebastian Böcker3 and Juho Rousu1,2

1Department of Computer Science, Aalto University, Espoo, Finland, 2Helsinki Institute for Information Technology,

Espoo, Finland, 3Chair for Bioinformatics, Friedrich-Schiller University, Jena, Germany and 4LTCI, CNRS, Télécom
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Abstract

Motivation: An important problematic of metabolomics is to identify metabolites using tandem

mass spectrometry data. Machine learning methods have been proposed recently to solve this

problem by predicting molecular fingerprint vectors and matching these fingerprints against exist-

ing molecular structure databases. In this work we propose to address the metabolite identification

problem using a structured output prediction approach. This type of approach is not limited to vec-

tor output space and can handle structured output space such as the molecule space.

Results: We use the Input Output Kernel Regression method to learn the mapping between tandem

mass spectra and molecular structures. The principle of this method is to encode the similarities in

the input (spectra) space and the similarities in the output (molecule) space using two kernel func-

tions. This method approximates the spectra-molecule mapping in two phases. The first phase

corresponds to a regression problem from the input space to the feature space associated to the

output kernel. The second phase is a preimage problem, consisting in mapping back the predicted

output feature vectors to the molecule space. We show that our approach achieves state-of-the-art

accuracy in metabolite identification. Moreover, our method has the advantage of decreasing

the running times for the training step and the test step by several orders of magnitude over the

preceding methods.

Availability and implementation:

Contact: celine.brouard@aalto.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metabolomics is a science which concerns the study of small mol-

ecules, called metabolites, and their interactions in the cell. An im-

portant problem of metabolomics is the identification of the

metabolites present in a sample. Information on metabolites can be

obtained using tandem mass spectrometry. This technology allows

to obtain a tandem mass spectrum, also called MS/MS spectrum, by

fragmenting a compound. A MS/MS spectrum is a plot containing a

set of peaks, where each peak corresponds to a fragment. These

peaks represent the relative abundance of the different fragments,

also called intensity, in function of their mass-to-charge ratio. The

identification of the metabolite from its mass spectrum is then

needed for a more detailed biological interpretation. In general this

step consists in a research of the obtained spectrum in databases of

reference spectra, followed by an analysis by experts of the domain.

Computational approaches for interpreting and predicting MS/

MS data of small molecules date back to the 1960s (Lindsay et al.,

1980). However, the early approaches were hampered by the unavail-

ability of large scale data on molecular structures as well as reference

spectra. The introduction of molecular structure databases such as

PubChem (Bolton et al., 2008) as well as open mass spectral reference

databases (da Silva et al., 2015; Horai et al., 2010) has in recent years

fuelled the development of novel methods. Several novel strategies

have been proposed, including simulation of mass spectra from mo-

lecular structure (Allen et al., 2014, 2015), combinatorial fragmenta-

tion (Heinonen et al., 2008; Hill and Mortishire-Smith, 2005; Ridder

et al., 2013; Wang et al., 2014; Wolf et al., 2010) and prediction of

molecular fingerprints (Heinonen et al., 2012; Shen et al., 2014).

Methods based on machine learning (Allen et al., 2014, 2015;

Dührkop et al., 2015; Heinonen et al., 2012; Shen et al., 2013,

VC The Author 2016. Published by Oxford University Press. i28

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 32, 2016, i28–i36

doi: 10.1093/bioinformatics/btw246

ISMB 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/32/12/i28/2288626 by IN
R

A Avignon user on 01 July 2019

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw246/-/DC1
Deleted Text: ; da Silva <italic>et<?A3B2 show $146#?>al.</italic>, 2015
Deleted Text: ; Heinonen <italic>et<?A3B2 show $146#?>al.</italic>, 2008; Wolf <italic>et<?A3B2 show $146#?>al.</italic>, 2010
Deleted Text: ,
http://www.oxfordjournals.org/


2014) have been proposed very recently for learning a mapping be-

tween tandem mass spectra and metabolites. These methods fall into

two general approaches. The first group of methods (Dührkop et al.,

2015; Heinonen et al., 2012; Shen et al., 2013, 2014) introduces an

intermediary step consisting in predicting molecular fingerprints for

the metabolites from their mass spectra using Support Vector

Machines (SVMs).

Molecular fingerprints are a standard representation for mol-

ecules, used in cheminformatics and drug discovery. They are typic-

ally represented as binary vectors, whose values indicate the

presence or absence of some molecular properties, e.g. the existence

of particular substructures in the metabolite or some physiochemical

properties. If two molecules share a large number of molecular prop-

erties they are likely to be similar in structure, which is the rationale

in using them for metabolite identification. To identify a metabolite,

the fingerprint predicted from its tandem mass spectrum is matched

against a large molecular database such as PubChem. In Shen et al.

(2014) and Dührkop et al. (2015) fragmentation trees are computed

to model the fragmentation process of the molecules and then used

for predicting the molecular fingerprints. The other machine learn-

ing approach for metabolite identification, used by CFM-ID (Allen

et al., 2014, 2015), also relies on a two-step scheme, where the first

step consists in predicting the mass spectra of the candidate mol-

ecules by modeling their fragmentation processes. In the second

step, the simulated spectra of the candidate molecules are compared

with the spectrum of the test metabolite.

The goal of this work is to solve the metabolite identification

problem in a single step, using a structured prediction method.

These methods make use of structural dependencies existing among

complex outputs (e.g. the fingerprints of a molecule) to improve the

accuracy and make prediction efficiently. These methods have

achieved an improved prediction performance over methods that

predict parts of a structure independently in numerous applications.

In the literature, two main structured prediction approaches can be

distinguished. The first one models the dependencies between struc-

tured inputs and outputs using a joint feature map /ðx; yÞ
(Marchand et al., 2014; Rousu et al., 2007; Su and Rousu, 2015;

Taskar et al., 2004; Tsochantaridis et al., 2004), and learns to dis-

criminate the correct structure y for an input x from all incorrect

output structures. The second one, called Output Kernel Regression,

consists in learning a mapping between the input set and the feature

space associated to some output kernel. A preimage problem, which

consists in mapping back the predicted output feature vectors to the

output space, is then solved. Existing Output Kernel Regression

methods are Kernel Dependency Estimation (Cortes et al., 2005;

Kadri et al., 2013; Weston et al., 2003), Output Kernel Trees

(Geurts et al., 2006) and Input Output Kernel Regression (IOKR)

(Brouard et al., 2011, 2015).

In this work, we show how to apply the IOKR framework for

solving the metabolite identification problem. Our method reaches

improved identification rates compared with the previous state-of-

the-art of Dührkop et al. (2015). More importantly, though,

the IOKR framework results in vast improvements in running

times: the method is one to two orders of magnitude faster in the

prediction phase, and four orders of magnitude faster during

training.

2 Methods

The main notations used in this article are summarized in Table 1.

In the following, we note X the set of input tandem mass spectra,

also known as MS/MS spectra, and Y the set containing the 2D mo-

lecular structures corresponding to the spectra. We want to learn a

function f that maps a MS/MS spectrum x 2 X to its corresponding

molecular structure y 2 Y. In this problem both input and output

data are structured. Structured data refer to data having an internal

structure, for example a graph or a tree, or to data being inter-

dependent to each other. To solve this problem we use the IOKR

framework that can learn a mapping between structured inputs and

structured outputs. This framework has been introduced by Brouard

et al. (2011) to solve link prediction in the semi-supervised setting.

In Brouard et al. (2015), this approach has been extended to address

general structured output prediction problems. In this section we de-

scribe this method and explain how it can be applied to solve metab-

olite identification.

In the IOKR approach the internal structure of the output data is

encoded using a kernel function jy : Y � Y ! R. A kernel function

is a positive semi-definite function that measures the similarity be-

tween two elements. Its values can be evaluated by computing scalar

products in a high-dimensional space, called the feature space. In the

case of the output kernel jy, this writes as follows:

8ðy; y0Þ 2 Y � Y; jyðy; y0Þ ¼ h/yðyÞ;/yðy0ÞiF y
;

where the Hilbert space F y is the feature space associated to jy and

/y : Y ! F y is a feature map that maps the outputs to the output

feature space. Depending of the kernel used, for example when using

a Gaussian kernel, the feature map /y might not be explicitly

known. We will see later that we only need to evaluate inner prod-

ucts between feature vectors for computing the solution, which is

possible using the kernel trick in the output space. This means that

the scalar products in the feature space are replaced by the kernel

values.

The spectra-metabolite mapping problem can then be decom-

posed in two tasks (see Figure 1). The first task consists in learning a

function h between the input set X and the Hilbert space F y that ap-

proximates the feature map /y. This task is called Output Kernel

Regression. The second task is a pre-image problem that requires to

learn or define a function g from F y to the output set Y. We detail

these two steps in the following subsections.

2.1 Output Kernel Regression
The values of the function h that we want to learn in the Output

Kernel Regression step are vectors belonging to the Hilbert space F y

and not scalars. IOKR uses the Reproducing Kernel Hilbert Space

(RKHS) theory devoted to vector-valued functions (Micchelli and

Table 1. Notations used in the article

Symbol Explanation

X ; Y input, output sets

x, y elements of X ; Y
jy : Y � Y ! R output scalar kernel

F y output feature space

/y : Y ! F y output feature map

Kx : X � X ! LðF y;F yÞ input operator-valued kernel

H reproducing kernel Hilbert space of Kx

KX‘
Gram matrix on training set

jx : X � X ! R input scalar kernel

F x input feature space

/x : X ! F x input feature map

KX‘
Gram matrix on training set
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Pontil, 2005; Senkene and Tempel’man, 1973) in order to find an ap-

propriate functional space H for searching the function h. This theory

extends nicely the kernel methods to the problem of learning vector-

valued functions. It has been used in the literature to solve different

learning problems such as multi-task learning (Evgeniou et al., 2005),

functional regression (Kadri et al., 2010), link prediction (Brouard

et al., 2011) and vector autoregression (Lim et al., 2014).

In this theory, a kernel Kx : X �X ! LðF y;F yÞ is a function

whose values are linear operators from F y to F y, where F y is a gen-

eral Hilbert space. This theory does not require any assumption on

the existence of an output kernel jy. Kx is called an operator-valued

kernel if it verifies the two following properties:

1. 8x;x0 2 X ; Kxðx; x0Þ ¼ Kxðx0; xÞ�, where � denotes the adjoint.

Kxðx0;xÞ� is defined as the linear operator satisfying

hKxðx0; xÞ~y i; ~y jiF y
¼ h~y i;Kxðx0; xÞ�~y jiF y

; 8~y i; ~y j 2 F y

2. 8m 2 N; 8fðxi; ~y iÞg
m
i¼1 � X � F y;

Pm
i;j¼1 h~y i;Kxðxi;xjÞ~y jiF y

� 0

In the case where the dimension d of F y is finite, the kernel Kx is a

function whose values are matrices of size d � d and the kernel ma-

trix is a block matrix.

In the IOKR approach, the function h : X ! F y is searched in

the RKHS with reproducing kernel Kx. We denote this space H.

This means that we are searching models of the following form:

8x 2 X ; hðxÞ ¼
X

i
Kxðx;xiÞci; ci 2 F y:

Let fðxi;/yðyiÞÞg‘i¼1 � X �F y be the set of training examples.

The function h is searched by minimizing a regularized optimization

problem. In this article, we chose to use the regularized least-squares

loss function in the supervised setting:

argmin
h2H

X‘

i¼1
jjhðxiÞ � /yðyiÞjj2F y

þ kkhk2
H; (1)

where k > 0 is a regularization parameter. A sufficiently high

enough value of k prevents overfitting. According to the Representer

Theorem (Micchelli and Pontil, 2005), the solution of this optimiza-

tion problem can be written as a linear combination of the operator-

valued kernel evaluated on the training examples:

bhðxiÞ ¼
X‘

j¼1
Kxðxi; xjÞcj;

where cj; j ¼ 1; . . . ; ‘, are vectors in F y. By replacing this expression

in the optimization problem (1) and computing the derivative of the

optimization problem, it has been shown by Micchelli and Pontil

(2005) that the vectors cj; j ¼ 1; . . . ; ‘ verify the following equation:X‘

i¼1
Kxðxj; xiÞ þ kdij

� �
ci ¼ /yðyjÞ;

where dii ¼ 1 and dij ¼ 0 for all j 6¼ i.

If the dimension d of the output feature space F y is finite, this so-

lution can be rewritten in closed form as follows:

vecðC‘Þ ¼ ðkI‘d þ KX‘
Þ�1vecðUY‘

Þ; (2)

where C‘ ¼ ðc1; . . . ; c‘Þ and UY‘
¼ ð/yðy1Þ; . . . ;/yðy‘ÞÞ are two

matrices of size d � ‘; I‘d denotes the identity matrix of size ‘d � ‘d;

and KX‘
is the Gram matrix of the operator-valued kernel Kx on the

training set. This is a ‘� ‘ block matrix, each block being of size d

� d. vecðC‘Þ is a column vector of length ‘d obtained by stacking

the columns of the matrix C‘ on top of each other. Equation (2) gen-

eralizes the solution obtained with kernel ridge regression to the

case of vector-valued functions.

2.2 Preimage step
To predict the output metabolite f(x) associated to the spectra

x 2 X , we must determine the pre-image of h(x) by /y. For this, we

search the metabolite y in a set of candidates Y� that minimizes the

following criteria:

bf ðxÞ ¼ argmin
y2Y�

jjbhðxÞ � /yðyÞjj2F y
: (3)

As we consider that the output kernel is normalized, Equation

(3) becomes:

bf ðxÞ ¼ argmax
y2Y�

hbhðxÞ;/yðyÞiF y
:

In this work, we consider operator-valued kernels of the follow-

ing form:

8ðx; x0Þ 2 X � X ; Kxðx; x0Þ ¼ jxðx;x0Þ � Id; (4)

where jx : X � X ! R is a scalar input kernel. We note F x the

Hilbert space associated to this kernel and /x : X ! F x a feature

map of jx. By using this operator-valued kernel and replacing bh by

the solution given in the previous subsection, we obtain the follow-

ing solution for metabolite identification with IOKR:

bf ðxÞ ¼ argmax
y2Y�

/yðyÞTUY‘
ðkI‘ þ KX‘

Þ�1UT
X‘

/xðxÞ;

where UX‘
¼ ð/xðx1Þ; . . . ;/xðx‘ÞÞ and KX‘

is the Gram matrix of the

scalar kernel jx on the training set. Using the kernel trick in the out-

put space allows us to evaluate bf ðxÞ even in the case where the out-

put feature map /y is not known explicitly. The solution can be

rewritten as follows:

bf ðxÞ ¼ argmax
y2Y�

ðky
Y‘
ÞTðkI‘ þ KX‘

Þ�1kx
X‘
;

where k
y
Y‘
¼

jyðy1; yÞ

. . .

jyðy‘; yÞ

266664
377775 and k

x
X‘
¼

jxðx1; xÞ

. . .

jxðx‘;xÞ

266664
377775 are two column

vectors.

2.3 Kernels
In the following, we describe the pairs of kernels ðjy;jxÞ that we

used for solving the metabolite identification problem with IOKR.

Fig. 1. Overview of the IOKR framework for solving the metabolite identifica-

tion problem. The mapping f between MS/MS spectra and 2D molecular

structures is learnt by approximating the output feature map /y with a func-

tion h and solving a preimage problem

i30 C.Brouard et al.
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2.3.1 Input kernels

We considered several existing mass spectral kernels for the scalar

input kernel jx (Dührkop et al., 2015; Heinonen et al., 2012; Shen

et al., 2014). The kernels we used in this article are listed in Table 2.

Most of them are defined based on fragmentation trees (Dührkop

et al., 2015; Shen et al., 2014). Introduced by Böcker and Rasche

(2008), fragmentation trees model the fragmentation process of a

molecule in a tree shape: nodes of this tree are molecular formulas

that correspond to the unfragmented molecule and its fragments. An

edge between two nodes indicates the existence of a fragmentation

reaction between two fragments or between the unfragmented mol-

ecule and one of its fragments. These edges are directed and corres-

pond to losses. An example of fragmentation tree is given in

Figure 2. Based on fragmentation trees, different categories of ker-

nels have been proposed, such as: loss-based kernels, node-based

kernels, path-based kernels or fragmentation tree alignment kernels.

We also used the recalibrated probability product kernel (PPKr),

which is computed on preprocessed spectra. The PPK kernel, intro-

duced by Heinonen et al. (2012), is computed from MS/MS spectra

by modeling each peak in a spectrum by a normal distribution with

two dimensions: the mass-to-charge ratio and the intensity. A spec-

trum is then modeled as a mixture of normal distributions. The PPK

kernel between two spectra is evaluated by integrating the product

between the two corresponding mixture distributions.

We learned a linear combination of these 24 input kernels using

multiple kernel learning (MKL). We used uniform MKL
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Fig. 2. An example of MS/MS spectrum and its fragmentation tree. Each node of the fragmentation tree corresponds to a peak and is labeled by the molecular for-

mula of the corresponding fragment. The root of the tree is labeled with the molecular formula of the unfragmented molecule. Edges represent the losses. Two

nodes and one edge are colored to show the correspondence between the MS/MS spectrum and the fragmentation tree

Table 2. Description of the input kernels used in this article

Category Name Description Reference

Loss-based kernels Loss binary (LB) counts the number of common losses Shen et al. (2014)

Loss intensity (LI) weighted variant of LB that uses the intensity of terminal nodes Shen et al. (2014)

Loss count (LC) counts the number of occurrences of the losses Shen et al. (2014)

Weighted loss count (LW) weighted variant of LC using the inverse frequency of training losses

Root loss binary (RLB) counts the number of common losses from the root to some node Shen et al. (2014)

Root loss intensity (RLI) weighted variant of RLB that uses the intensity of terminal nodes Shen et al. (2014)

Loss intensity PP (LIPP) probability product (PP) of shared losses Dührkop et al. (2015)

Node-based kernels Node binary (NB) counts the number of nodes with the same molecular formula Shen et al. (2014)

Node intensity (NI) weighted variant of NB that uses the intensity of nodes Shen et al. (2014)

Node subformula (NSF) counts the number of common substructures Dührkop et al. (2015)

Fragment intensity PP (FIPP) PP of shared fragments (nodes) Dührkop et al. (2015)

Path-based kernels Common paths counting (CPC) counts the number of common paths (identical sequences of losses) Shen et al. (2014)

Common paths of length 2 (CP2) counts the number of common paths of length 2 Shen et al. (2014)

Common paths of length

at least 2 (CP2þ)

counts the number of common paths of length at least 2 Dührkop et al. (2015)

Common paths with Kpeaks (CPK1) the PPK Kpeaks are used to score the terminal peaks Shen et al. (2014)

Common paths with Kpeaks (CPK2) same as CPK1 with a different parameter Shen et al. (2014)

Common path joined binary (CPJB) counts the number of paths for which the union of losses is equal Dührkop et al. (2015)

Common path joined (CPJ) counts paths of length 2 that have the same loss

Weighted paths counting (WPC) weighted variant of CPC that uses the inverse frequency of the losses

Subtree kernel Common subtree counting (CSC) counts the number of subtrees with common structures and losses Shen et al. (2014)

Fragmentation tree TALIGN Pearson correlation of alignment scores between fragmentation trees Dührkop et al. (2015)

alignment kernels TALIGND variant of TALIGN that modifies the scoring function Dührkop et al. (2015)

Probability product Recalibrated PPK (PPKr) PPK computed on preprocessed spectra Dührkop et al. (2015)

kernel Heinonen et al. (2012)

other Chemical element counting (CEC) weighted counts of chemical elements Dührkop et al. (2015)
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(UNIMKL), which associates the same weight to each kernel. We

also applied the ALIGNF approach (Cortes et al., 2012) which ob-

tained the best performance for metabolite identification in the com-

parison performed by Shen et al. (2014). ALIGNF searches to

maximize the centered kernel alignment between the combined ker-

nel matrix and an ideal target kernel matrix Ky:

max
l�0; jjljj2¼1

h
Xm

k¼1
lkKc

k;KyiF
jj
Xm

k¼1
lkKc

kjjF
:

Kc
k denotes the centered Gram matrices of the input kernels:

Kc
k ¼ I‘ �

11T

‘

" #
Kk I‘ �

11T

‘

" #
;

where 1 is a column vector of ones of length ‘. In Cortes et al.

(2012), the target kernel was defined as Ky ¼ yTy in the case of sin-

gle label classification. Here we used the Gram matrix of the output

kernel jy on the training set. The combination of kernels learned

with ALIGNF was then used for the scalar input kernel jx in IOKR.

2.3.2 Output kernels

For the output kernel, we have to define a similarity that takes into ac-

count the inherent structure of the metabolites. We compared the results

obtained using different graph kernels (path, shortest-path and graphlet

kernels) as well as kernels defined on molecular fingerprints. A molecu-

lar fingerprint is a vector encoding the structure of a molecule.

Generally the values of this vector are binary values that indicate the

presence or absence of certain molecular properties. A bit can indicate

for example the presence of a chemical atom, a type of ring, an atom

pair or a common functional group in the structure of the molecule.

We consider here the kernels that obtained the best perform-

ances, which are the kernels based on fingerprints. We used the set

of 2,765 binary molecular properties described in Dührkop et al.

(2015). More details about these molecular properties are given in

the Supplementary Materials. In the experiments, we considered dif-

ferent type of output kernels:

• linear kernel: jyðy; y0Þ ¼ cðyÞTcðy0Þ,
• polynomial kernel: jyðy; y0Þ ¼ cðyÞTcðy0Þ þ a

� �b
,

• Gaussian kernel: jyðy; y0Þ ¼ expð�cjjcðyÞ � cðy0Þjj2Þ,

where c(y) and cðy0Þ denote the molecular fingerprints of y and y0.

3 Results

We evaluated and compared our approach on a subset of 4138 MS/

MS spectra extracted from the GNPS (Global Natural Products

Social) public spectral library (https://gnps.ucsd.edu/ProteoSAFe/

libraries.jsp) in Dührkop et al. (2015).

3.1 Protocol
The evaluation was performed using a 10-fold cross-validation (10-

CV) procedure such that all compounds having the same structure

are contained in the same fold. The input and output kernels were

centered and normalized. The regularization parameter k and the

parameter(s) of the output kernel were selected using leave-one-out

CV on each training fold. We used the averaged mean squared error

(MSE) as error measure for tuning these parameters. The leave-one-

out estimate of the averaged MSE was computed using the closed-

form solution proved in Brouard et al. (2015).

In the prediction step, the method was evaluated on 3,868 com-

pounds. For solving the pre-image step, following Dührkop et al.

(2015) we assumed that all spectra have already their molecular for-

mula predicted as a preprocessing step, and we searched among the

PubChem (Bolton et al., 2008) structures having the same molecular

formula as the current target. We computed the distance between

the predicted output feature vector bhðxÞ (see Equation 3) and the

output feature vectors of all the candidates. After the pre-image

step, we ranked the candidates according to their distances to bhðxÞ
(from the smallest distance value to the highest one). For the evalu-

ation, we evaluated the rank obtained by the true molecular struc-

ture among the candidate set for each test example and then we

computed the percentage of structures that have been ranked lower

than k, and this for varying k values. A test compound is said to be

correctly identified if its correct structure is ranked first in the list.

3.2 Comparison with competing methods
We compared the performances of our method with two competing

methods: FingerID (Heinonen et al., 2012) and CSI:FingerID.

Dührkop et al. (2015) showed that CSI:FingerID improved signifi-

cantly the metabolite identification rate compared with competing

methods including CFM-ID (Allen et al., 2015), MetFrag (Wolf

et al., 2010), MAGMa (Ridder et al., 2013), MIDAS (Wang et al.,

2014) as well as FingerID—the second most accurate method in

their comparison. Both FingerID and CSI:FingerID train a SVM

classifier for each molecular property. A scoring function is then

used to compare the predicted fingerprint with the candidate finger-

prints and the candidate fingerprints are sorted correspondingly.

FingerID uses as input the PPK kernel, whereas CSI:FingerID learns

a combination of this kernel with different kernels defined on frag-

mentation trees using ALIGNF. In our experiment, we evaluated the

performances of CSI:FingerID with unit scoring and with the modi-

fied Platt score, which was shown to perform the best among the dif-

ferent scores compared by Dührkop et al. (2015).

3.2.1 Identification performance

CSI:FingerID and FingerID were retrained on the 4138 GNPS spec-

tra. For all methods, the parameter(s) were tuned on the training set

using an internal 10-CV procedure. For the SVM-based approaches,

the soft margin parameter C was tuned independently for each

SVM. Table 3 shows the results obtained with IOKR, FingerID and

CSI:FingerID and the differences with the identification percentage

of CSI:FingerID modified Platt are visualized in Figure 3. We ob-

serve that IOKR with UNIMKL combined kernel and Gaussian out-

put kernel reaches the first position with 30.66% of correct

identifications that are ranked first. It is followed by IOKR linear

UNIMKL, IOKR Gaussian ALIGNF and then by CSI:FingerID

modified Platt with 28.84% of correctly identified metabolites.

When considering the identification percentage between top 1 and

Table 3. Comparison of the percentage of correctly identified struc-

tures for top 1, 10 and 20 using FingerID, CSI:FingerId and IOKR

Method MKL Top 1 Top 10 Top 20

FingerID none 17.74 49.59 58.17

CSI:FingerID unit ALIGNF 24.82 60.47 68.2

CSI:FingerID mod Platt ALIGNF 28.84 66.07 73.07

IOKR linear ALIGNF 28.54 65.77 73.19

UNIMKL 30.02 66.05 73.66

IOKR Gaussian ALIGNF 29.78 67.84 74.79

UNIMKL 30.66 67.94 75.00

The highest values are shown in boldface.
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top 20, we observe that IOKR outperforms CSI:FingerID unit in all

the cases. When using a Gaussian kernel in output, IOKR improves

upon CSI:FingerID modified Platt by around 2 percentage units. We

performed statistical significance tests of the identification perform-

ance for the different approaches. These tests show that the differ-

ence between CSI:FingerID modified Platt and IOKR using a

Gaussian output kernel is very significant. The corresponding P-val-

ues are 1.8e-16 with UNIMKL combination and 8e-14 with

ALIGNF combination. A table containing all the P-values is given in

the Supplementary Materials.

3.2.2 Running times

We computed the running times of CSI:FingerID and IOKR using

the 4138 spectra from GNPS as training set and 625 spectra from

the Massbank dataset (Horai et al., 2010) as test set (see Table 4).

The running times correspond to the times that would have been ob-

tained if we were using a single core. The training times were com-

puted using fixed values for the parameters (regularization and

kernel parameters). The computation of the fragmentation trees, in-

put kernels and fingerprints was not taken into account here.

The running times for the training and the test steps are shown in

Table 4. In this table, we observe a substantial difference between

the training times obtained with these two approaches: the IOKR

method is approximately 7000 times faster to train. This can be ex-

plained by the fact that CSI:FingerID needs to train a SVM classifier

for each molecular property, this means 2765 SVMs to train in this

experiment. For the same reason, IOKR also presents smaller test

time compared with CSI:FingerID. In the case of the linear kernel,

the test running time of IOKR is smaller than when using a

Gaussian or polynomial kernel. This comes from the fact that we

can avoid kernel computations in the pre-image step for the linear

kernel by computing explicitly the output feature vectors.

3.3 Detailed evaluation of identification with IOKR
We will now analyze more in details the results obtained with our

method on the GNPS dataset.

We begin by presenting the results obtained for the different in-

put and output kernels introduced in Section 2. Figure 4 contains

the percentage of correctly identified structures (i.e. correct struc-

tures ranked top over all candidates) obtained with IOKR for the

different pairs of input and output kernels. The two last columns

correspond to the linear kernel combinations with UNIMKL and

ALIGNF. We observe that the two MKL approaches clearly improve

the results compared with the single kernels. The best performance

is obtained with the UNIMKL approach, which is performing

slightly better than ALIGNF. 30.74% of the metabolites are cor-

rectly identified with UNIMKL combined kernel. Among the indi-

vidual input kernels, tree alignment-based kernels, node-based

kernels [except Node subformula (NSF)] and the PPKr kernel obtain

the best results. At the opposite end, the loss-based kernels and

chemical element counting (CEC) are associated with low percent-

age of correct identified metabolites. Regarding output kernels, we

notice that the performance obtained with linear and polynomial

kernels are the same. This is because the optimal parameters selected

for the polynomial kernel are 0 for the offset parameter and 1 for

the degree, thus equalling linear kernel. Using Gaussian kernel seems

to slightly improve the percentage of correctly identified structures

for some input kernels, except for the root loss binary (RLB) kernel.

The averaged kernel weights learned with the ALIGNF algo-

rithm on the training folds are visualized in Figure 5 for the three

output kernels. The PPKr kernel is selected with the highest weight

by ALIGNF for the three output kernels. Consistently with Figure 4,

linear and the polynomial kernels are effectively the same. We ob-

serve that the weights are quite sparse: 14 kernels on a total of 24

are associated to a weight that is lower than 10�6. In order to ana-

lyze why these 10 particular kernels are selected by ALIGNF, we

plotted the pairwise kernel alignment scores between the input ker-

nels, as well as the alignment scores between the input and output

kernels (see in the Supplementary Materials). The first plot shows

which input kernels are similar to each other. Nine groups of kernels

can be distinguished and we notice that at least one kernel in each

group is selected by ALIGNF. The only exception is the group con-

taining the subtree kernel CSC but this might be because this input

kernel is the one having the lowest alignment score with the output

kernel. The sparsity of the kernel weights can therefore be explained

by the fact that some kernels are very similar to each other and thus

contain redundant information.

3.4 Prediction analysis
In the following, we detail the performance of the testing metabol-

ites with IOKR in function of the size of their candidate sets. For

this, we consider the best pair of kernels: UNIMKL combined kernel

in input and Gaussian kernel in output. Figure 6a shows the distri-

bution of the sizes of candidate sets, and the figure 6b represents the

percentage of correctly identified metabolites in top 1, top 10 and

above. We observe that the majority of the candidate sets contain

<1000 candidates in our dataset. For these candidate sets, 32.8% of

metabolites are identified correctly in the first position (magenta

Table 4. Running time evaluation

Training time Test time

CSI:FingerID 82 h 28 min 23 s 1 h 11 min 31 s

IOKR linear 42 s 1 min 15 s

IOKR polynomial 38 s 21 min 58 s

IOKR Gaussian 41 s 33 min 15 s

These running times were obtained by training the methods on the 4138

GNPS spectra and using 625 spectra from Massbank as test set.
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bars) and 71.7% are within the top 10 (cyan bars). The sizes of the

candidate sets do not seem to have a strong influence on the identifi-

cation accuracy. Even for large candidate sets our method is able

to identify significant proportions of molecules within top 1 and

top 10.

We found 1203 compounds in the GNPS dataset that can be

linked to the ontological classification database ChEBI (Hastings

et al., 2013). We are interested in evaluating whether there are some

classes of compounds we can identify very well and some for which

we cannot. Due to the hierarchical nature of the ontological classifi-

cation, the classes far away from the root are very specific classes

and contain very few compounds while the classes close to the root

are very generic classes which contain too many compounds. As a

result, we restrict the attention to the classes with shortest paths of

length 7 from the root node chemical entity (ChEBI id 24431). For

those classes, we count how many compounds in the GNPS dataset

belong to them and represent the counts as the size of the points in

Figure 7. For each compound, the number of candidates and rank of

the correct compound are known, so we plot the median number of

candidates associated with the compounds in each class on the

x-axis and the proportion of cases for which we have correct com-

pounds with rank �10 on the y-axis. Notice that we only show the

classes containing at least 10 compounds.

From the Figure 7, it is clear that the number of candidates asso-

ciated with the compounds is not a major factor of the identification

results. Many classes with larger number of compounds, as shown

with larger points, have around 60% of the cases where the identifi-

cation lies within top 10. There are some classes we can identify

very well like 3-aryl-1-benzopyrans (ChEBI id: 50753), also called

isoflavonoids, and heterocyclic antibiotics (ChEBI id: 24531), while

some classes, shown at the bottom of the figure, contain compounds

that are more difficult to identify with our method. Among the diffi-

cult cases, there are the compounds belonging to the cyclic amide

(ChEBI id: 23443) class and to the cyanides (ChEBI id: 23424) class.

The compounds in the cyanide class contain a cyanid-anion side-

group, which corresponds to a carbon atom connected to a nitrogen

atom via a triple bond.

We also studied the differences in prediction performance be-

tween CSI:FingerID and IOKR for the different compound classes.

A detailed plot showing the differences between the numbers of

compounds better ranked by the two methods is given in the

Supplementary Materials. This plot shows that IOKR obtains better

performances than CSI:FingerID in 74% of the classes. Interestingly

IOKR presents the highest improvement for the cyanides class and

one of its child. On the opposite CSI-FingerID considerably im-

proves the performance for the compounds belonging to the hetero-

cyclic antibiotics class and two of its children.

4 Discussion

In this article, we have proposed for the first time to solve the metab-

olite identification problem using a structured output prediction

method, namely IOKR. We have shown that our method improves

the metabolite identification rate comparing to competing methods

with considerable shorter running time, in practise allowing training

the models on a single computer instead of a large computing clus-

ter. In addition, the structured output approach provides a more

streamlined—and thus more easy to maintain—one-step prediction

pipeline, as opposed to two-step pipelines of CSI:FingerID and

FingerID which call for predicting and scoring fingerprints as an

intermediate step.

Fig. 4. Heatmap of the percentage of correctly identified metabolites (Top 1) with IOKR. The rows correspond to the different output kernels built on fingerprints

(linear, polynomial and Gaussian) and the columns to the 24 input kernels derived from spectra and fragmentation trees, as well as the two multiple kernel com-

bination schemes ALIGNF and UNIMKL

Fig. 5. Heatmap of kernel weights learned by ALIGNF for all pairs of input and output kernels on GNPS dataset. The weights have been averaged over the 10 CV

folds
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For future work, the most important direction is to address the

prediction of the ‘dark matter’ in metabolomics (da Silva et al.,

2015): the metabolites that fall outside the compounds in molecular

structure databases. There, we need to design better kernels and

preimage algorithms for molecular structures.

Finally, it is important to note that the recent breakthroughs in

machine learning methodologies for metabolite identification rely

heavily on the existence off community efforts building open refer-

ence databases such as GNPS and Massbank. At the same time, the

reference databases still cover a small fraction of relevant metabolite

space. Although machine learning can generalize and extrapolate be-

yond the training data, as also shown in this article, the scarceness

of training data still imposes limits on how accurate models can be

built. To really push metabolomics forward, we should widen and

make more systematic the community efforts in building and utiliz-

ing reference databases.
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tabolites falling in each size bin

Fig. 7. Scatter plot of classes in ChEBI ontology with shortest paths of length

7 from the class chemical entity. X-axis corresponds to the median number of
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proportion of correct compounds with rank less or equal to 10 for each class.

The size of the point is proportional to the number of compounds in GNPS
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classes we cannot are shown in blue with ChEBI id and name next to them
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