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Naturally-occurring epimutants are rare and have mainly been described in plants. However how these
mutants maintain their epigenetic marks and how they are inherited remain unknown. Here we report that
CHROMOMETHYLASE3 (SlCMT3) and other methyltransferases are required for maintenance of a
spontaneous epimutation and its cognate Colourless non-ripening (Cnr) phenotype in tomato. We screened
a series of DNA methylation-related genes that could rescue the hypermethylated Cnr mutant. Silencing of
the developmentally-regulated SlCMT3 gene results in increased expression of LeSPL-CNR, the gene
encodes the SBP-box transcription factor residing at the Cnr locus and triggers Cnr fruits to ripen normally.
Expression of other key ripening-genes was also up-regulated. Targeted and whole-genome bisulfite
sequencing showed that the induced ripening of Cnr fruits is associated with reduction of methylation at
CHG sites in a 286-bp region of the LeSPL-CNR promoter, and a decrease of DNA methylation in
differentially-methylated regions associated with the LeMADS-RIN binding sites. Our results indicate that
there is likely a concerted effect of different methyltransferases at the Cnr locus and the plant-specific
SlCMT3 is essential for sustaining Cnr epi-allele. Maintenance of DNA methylation dynamics is critical for
the somatic stability of Cnr epimutation and for the inheritance of tomato non-ripening phenotype.

S
pontaneous epimutations can result from heritable changes in DNA methylation without alteration in the
underlying sequence, but these changes can influence gene expression and associated phenotypes1–5. Indeed
epimutations can affect inbred traits in plants and animals6–14. However natural epigenetic variations are

rare and little is known about how spontaneous epimutations retain their heritable stability1–5. In plants, methy-
lation occurs at cytosines in CG, CHG and CHH contexts (where H 5 A, T, C) through the combined enzymatic
activity of DOMAINS REARRANGED METHYLTRANSFERASEs (DRMs), METHYLTRANSFERASE1
(MET1) and the plant specific CHROMOMETHYLASEs (CMTs)15,16. These enzymes are required for RNA-
directed DNA methylation (RdDM) and methylation maintenance. In Arabidopsis, DRM2 catalyses de novo
methylation in all sequence contexts and CMT2 is involved in non-symmetrical methylation while MET1, CMT3
and DRM2 participate in methylation maintenance at the CG, CHG and CHH sites, respectively15,16.

The tomato Colourless non-ripening (Cnr) is one of the best characterized naturally occurring epimutants3. Cnr
differs from structural epi-variants such as CmWIP, FWA, FOLT1 and SP1117–20 in Arabidopsis, melon and
Brassica, of which the epigenetic changes are either induced by transposon or trans-acting small RNAs, or genetic
non-ripening mutants such as tomato rin, ripening-inhibitor21. Cnr contains eighteen hypermethylated cytosines
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in a 286-bp region of the LeSPL-CNR promoter at the Cnr locus and
the Cnr epimutation and phenotype are very stable3. We only
observed four Cnr fruits with revertant sectors showing red stripes
out of thousands of fruits grown over more than twenty years. In this
paper, using the spontaneous Cnr epimutant together with VIGS-
based gene functional screening, targeted and whole-genome DNA
methylation profiling and qRT-PCR assay, we investigate the mech-
anism responsible for somatic inheritance of Cnr. We unravel that
SlCMT3 silencing results in reduction of DNA methylation and leads
to Cnr-to-ripening reversion in tomato. Our results demonstrate that
SlCMT3, possibly along with other key components including
SlCMT2, SlDRM7 and SlMET1 in the RdDM and methylation main-
tenance pathways, is required to maintain the Cnr epi-allele, and
CMT3 possesses an important role in epigenetic regulation of struc-
tural genes such as transcription factors in addition to its role in
maintaining the methylation of repetitive DNA and transposon-
related sequences.

Results
Silencing of DNA methylation-associated genes affects Cnr fruit
ripening. Cnr phenotype could be recreated in normal fruits by
repression of LeSPL-CNR3,22 or by increasing methylation level in
the 286-bp region23 (Supplementary Fig. 1), demonstrating that
hypermethylation causes the phenotype. The eighteen hypermethy-
lated cytosines in a 286-bp region of the LeSPL-CNR promoter are
thought to be responsible for the non-ripening phenotype (Fig. 1a).
To uncover the mechanism guarding the stability of the Cnr epi-
allele, we used Potato virus X (PVX)-based VIGS3,22 to silence a
range of DNA methylation-associated genes including SlDRM7,
SlMET1, SlCMT2, SlCMT3 and SlCMT424 (Fig. 1b). These genes
were selected based on sequence homology to the well-characterized
Arabidopsis DNA-methyltransferases (DMTs; Supplementary Fig.

2). Specific cDNA fragments corresponding to each of the SlDMT
genes were cloned into the PVX-based VIGS vector (Fig. 1b). It is
worthwhile noting that nucleotide similarities among sequences of
VIGS inducers are mostly around 30% or lower (Supplementary
Table 1). Considering the requirement of perfect complementarity
between silencing inducer and target sequences for small RNA
(siRNA and microRNA)-mediated silencing in plants, we expect
that these constructs including PVX/SlCMT2 and PVX/SlCMT3
should target their intended genes for gene-specific VIGS.

Indeed, Cnr fruits undergoing VIGS of SlDRM7, SlMET1, SlCMT2
and SlCMT3 ripened to various degrees (Fig. 1c–e, Supplementary
Fig. 3a–n). Particularly VIGS of SlCMT3 by PVX/SlCMT3, targeting
the coding region of SlCMT3 mRNA, caused Cnr fruits to reach the
stage of losing chlorophyll (equivalent to breaker) approximately 4
days earlier than Cnr fruits mock-inoculated with TE buffer or
injected with PVX (Supplementary Fig. 4). SlCMT3-silenced fruits
continued to ripen almost completely (Fig. 1f, Supplementary Fig.
5a–h). PVX/SlCMT3UTR targeting the 39-UTR of SlCMT3 mRNA
could also trigger Cnr fruit ripening (Fig. 1g, Supplementary Fig. 6a–
i). However, not all CMT genes are necessary for maintenance of Cnr
since SlCMT4 silencing had no effect on ripening (Fig. 1h,
Supplementary Fig. 3o), further demonstrating that the observed
ripening phenotypes were resulted from gene-specific VIGS by spe-
cific SlDMT constructs (Fig. 1b–i).

More than 60% of fruits at 5–15 days post anthesis were injected
with PVX/SlCMT3, PVX/SlCMT3UTR or PVX/SlCMT2 developed
ripening phenotype. Only approximately 29% and 48% of fruits
treated with PVX/SlMET1 or PVX/SlDRM7 appeared ripening.
There was no ripening of Cnr fruits treated with PVX/SlCMT4,
empty VIGS vector PVX, or mock-inoculated (Fig. 1i). It is worth-
while noting that no ripening was observed in rin fruits injected with
PVX/SlCMT3 (Supplementary Fig. 3p). Taken together, our results

Figure 1 | SlDMT silencing causes Cnr epimutant to ripening. (a), Context, number and percentage of the hypermethylated cytosines (5mC) in the 286-

bp LeSPL-CNR promoter region. (b), Diagram of VIGS vectors PVX/SlDRM7, PVX/SlMET1, PVX/SlCMT2, PVX/SlCMT3, PVX/SlCMT3UTR and PVX/

SlCMT4. (c–h), Ripening in Cnr fruits, assessed by red colour as compared to wild-type fruits (AC, (e)). No ripening was observed in fruits mock-

inoculated (mock), inoculated with PVX or PVX/SlCMT4 (h). Photographs were taken at the indicated day post-anthesis (dpa). Bar 5 1 cm. (i), Number

of ripening fruits out of total number of inoculated fruits from at least two independent experiments.

www.nature.com/scientificreports
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demonstrate that functional SlDMTs in the RdDM and methylation
maintenance pathways are required for maintain the somatic stabi-
lity of the non-ripening Cnr phenotype in the natural epimutant.

Developmentally regulated SlCMT3 is likely the key modulator for
maintaining the Cnr epi-allele. In Arabidopsis, CMT genes are
predominantly associated with maintenance of cytosine methyla-
tion in transposable elements12,13,15. It is therefore surprising that
silencing of SlCMT2 and SlCMT3 (a close relative of Arabidopsis
CMT3) should rescue Cnr ripening. It is also intriguing that SlCMT3
silencing had a greater effect on reverting the Cnr phenotype than
silencing of SlDRM7 (a homologue of the Arabidopsis de novo
methyltransferase DRM2) or other SlDMTs (Fig. 1). These pheno-
typic differences may be due to variations in VIGS efficiencies,
although this is unlikely because the PVX system is highly effective
at silencing genes in tomato3,22. Alternatively, our results may suggest
that SlCMT3 plays a more prominent role in maintaining epi-alleles
such as Cnr than SlDRM7 and other SlDMTs. This is consistent
with a high frequency of CHG hypermethylation in the LeSPL-
CNR epimutated-region (Fig. 1a), the maintenance of which mainly
requires functional SlCMT316. We interpret these data to mean that
SlCMT3 is probably one of the key genetic regulators underlying the
inheritable maintenance of Cnr epimutation.

This hypothesis is supported by the fact that SlCMT3 expression is
subject to developmental regulation. Expression of SlCMT3 changed
dramatically in developing Cnr fruits, being extremely high at the
immature stage then declining in mature green fruits (Fig. 2). The
levels of SlCMT3 expression in immature Cnr fruits are so high that
they dwarf those at all other stages of fruit development in normal
and Cnr fruits (inset panels, Fig. 2). The SlCMT3 transcripts were
again up-regulated in fruits at breaker before declining to lower levels
in later stages. Expression of SlCMT3 in normal fruits was highest in
green stages, but significantly lower than in immature Cnr fruits, and
was down-regulated at breaker stage (Fig. 2). The prominent quant-
itative differences in expression of SlCMT3 between wild-type and
Cnr fruits suggest that high level expression of SlCMT3 may be
associated with the maintenance of the Cnr epi-status.

Silencing of SlCMT3 enhances LeSPL-CNR and other key ripening
TF gene expression. To dissect the mechanism by which SlCMT3

repression causes the reversion of the Cnr to ripening, we analyzed
whether SlCMT3 silencing affects expression of LeSPL-CNR and
other key ripening transcription factor (TF) genes including
LeMADS-RIN, LeHB1, SlAP2a and SlTAGL122,25–27. Viral RNA de-
clined dramatically in PVX/SlCMT3-injected fruits (Fig. 3a) and the
silencing trigger SlCMT3 RNA was detected (Fig. 3b). Endogenous
SlCMT3 mRNA in ripening pericarps was significantly reduced
although only a moderate decrease was observed in the weakly ripe
tissues of the same fruits (Fig. 3c, Supplementary Fig. 7a). In contrast
with the reduction of SlCMT3 mRNA in silenced fruits, LeSPL-CNR
was up-regulated when compared to levels in the control (Fig. 3d,
Supplementary Fig. 7b). LeMADS-RIN, SlAP2a and SlTAGL1 were
also up-regulated, although LeHB1 expression was not significantly
affected (Fig. 3e–h, Supplementary Fig. 7c–f). It should be noted that
all TFs tested are known to be developmentally regulated in normal
and Cnr fruits, although their expression levels differ and are
generally much lower in Cnr3,22,25–27 (Supplementary Fig. 7g–h).
These results demonstrate that Cnr-to-ripening reversion by SlCMT3
silencing is inversely correlated not only to the expression of LeSPL-
CNR, but also to that of other ripening-associated TF genes. How-
ever, how VIGS of SlCMT3 influences expression of additional
ripening TF genes remains to be elucidated. It is possible that such
an impact could be a secondary effect of ripening or the change of
the LeSPL-CNR expression, or/and is due to altered methylation of
promoters of these TF genes.

Silencing of SlCMT3 enhances expression of genes involved in the
biosynthesis and signal transduction of the ripening hormone
ethylene. We also examined the expression of ethylene biosyn-
thesis genes SlACS1, SlACS2, SlACS4 and SlACO1, and two
ethylene signal transduction genes SlEBF1 and SlEBF224 during
ripening of Cnr fruits. Consistent with up-regulation of ripening-
associated TF gene expression, these ripening hormone-related
genes were all found to be up-regulated in the ripe pericarp tissues
in which SlCMT3 was silenced (Fig. 3i–m, Supplementary Fig. 8a–f).
Indeed TFs such as LeMADS-RIN are known to regulate the
expression of ethylene biosynthetic genes25. It is also possible that
SlCMT3 is involved in the epigenetic regulation of these genes
because levels of DNA methylation in their promoter regions in
SlCMT3-silenced fruits were reduced, or that their up-regulation is
the direct or indirect down-stream effect of LeSPL-CNR.

Silencing of SlCMT3 reduces cytosine methylation in the epimu-
tated region of the LeSPL-CNR promoter. Targeted-bisulfite sequ-
encing3 was used to examine methylation in the 286-bp region, and
its flanking sequences, of the LeSPL-CNR promoter in the SlCMT3-
silenced epi-allele fruits. A marked reduction of methylation was
observed at eight specific cytosines, seven at the CHG sites and
one in the CG context among the eighteen cytosine residues that
are fully methylated in Cnr (Fig. 4a; Supplementary Fig. 9a–i). No
clear difference in methylation was observed up- and downstream of
the 286-bp region. These results indicate that the hypermethylation
status of the eight cytosines is critical for inhibition of the LeSPL-
CNR promoter activity, and the reduction in methylation of these
residues may allow an increase in LeSPL-CNR expression; resulting
in the ‘‘Cnr-to-ripening’’ reversion in the epimutant fruits. Taken into
account of the gene-specific VIGS (Fig. 1, Supplementary Table 1,
Supplementary Figs. 3, 5, 6), the effect of SlCMT3 reduction on the
eight specific cytosine residues seems to refine the Cnr epi-allele in
terms of functional hypotethylation.

Effect of SlCMT3 silencing on whole-genome DNA methylation.
The single-base resolution methylome of the SlCMT3-silenced Cnr
fruit was further profiled by whole-genome bisulfite sequencing
(WGBS), and confirmed the loss of methylation at the eight speci-
fic cytosines in the 286-bp promoter region (Fig. 4a, b). Moreover we
observed that genome-wide hypomethylation occurred at CHG as

Figure 2 | Developmental regulation of SlCMT3 expression. Relative

levels of SlCMT3 mRNA in fully-opened flowers (F) and pericarps from

wild-type (AC) and Cnr epimutant fruits at immature green (IMG),

mature green (MG), breaker (B), breaker 1 three days (B13) and breaker

1 nine days (B19) stages. The inset-figures have different y-axis scales to

show the low levels of SlCMT3 mRNA at different ripening stages of in the

AC and Cnr fruits. These values are dwarfed by the exceptionally high levels

of expression of SlCMT3 in IMG Cnr fruit.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 9192 | DOI: 10.1038/srep09192 3



well as CG and CHH sites in repeats and gene regions (Fig. 4c–e). It is
unlikely that the occurrence of hypomethylation at CG and CHH
sites was due to non-specific silencing of other DMT genes by PVX/
SlCMT3-mediated VIGS (Fig. 1, Supplementary Table 1, Supple-
mentary Figs. 3, 5, 6, 10), although the underlying mechanism for
such reduction of methylation requires further investigation. On the
other hand, it has been well-documented that LeMADS-RIN is
required for the activation of fruit ripening genes by directly
binding to promoters of those genes21,28,29. It has also been shown
that LeMADS-RIN binding sites are demethylated in normal fruit

and that LeMADS-RIN is unable to bind to the same sites in Cnr fruit
due to a higher methylation level at those binding sites in Cnr than
normal fruit29. We thus examined the methylation levels of LeMADS-
RIN binding sites in our WGBS data and found that these sites
became hypomethylated after SlCMT3 silencing (Fig. 4f). These
findings suggest that SlCMT3 loss-of-function not only disrupted
the Cnr epi-allele but might have also helped to elevate LeMADS-
RIN expression (Fig. 3e, Supplementary Fig. 7c) that would allow
functional restoration of the LeMADS-RIN activity for binding to
these demethylated sites.

Figure 3 | SlCMT3 affects expression of LeSPL-CNR and ripening genes. (a), PVX RNA. (b), Silencing trigger RNA (PVX-SlCMT3). (c–n), Endogenous

SlCMT3, LeSPL-CNR, LeMADS-RIN, LeHB1, SlAP2a, SlTAGL1, SlACS1, SlACS2, SlACS4, SlACO1, SlEBF1 and SlEBF2 mRNAs in non-ripening fruits

mock-inoculated (Mo), inoculated with PVX, or in red-ripening (RR) and weak-ripening (WR) sectors of Cnr fruits inoculated with PVX/SlCMT3

(SlCMT3) at 31 days post inoculation. The inset-figure in (a) shows a low level of PVX RNA. Asterisk (*) indicates statistical significance (p , 0.001) by

Student’s t-tests between the SlCMT3-silenced and PVX control samples.

www.nature.com/scientificreports
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Discussion
We describe a mechanism that maintains the stability of a naturally
occurring epimutation, and thus of its associated phenotype in
tomato. This mechanism relies on SlCMT3, possibly along with other
key components such as SlDRM7, SlCMT2 and SlMET1, in the
RdDM and methylation maintenance pathways6–14. Silencing of
SlCMT3 in the epimutant fruits reduces methylation of eight specific
cytosines mostly in the CHG context in the region of the LeSPL-CNR

promoter and causes genome-wide hypomethylation, resulting in an
up-regulation of LeSPL-CNR and key ripening genes and ‘‘Cnr-to-
ripening’’ reversion.

It is possible that the epi-allele LeSPL-CNR and key ripening-
associated transcription factor (TF) genes including LeMADS-RIN,
SlAP2a and SlTAGL1 form a regulatory network that controls tomato
development and fruit ripening. These TFs can regulate each other
and they are involved in possible feedback loops in the genetic regu-

Figure 4 | Analysis of single-base resolution methylome. (a–b), Targeted and whole-genome bisulfite sequencing (TBS, WGBS) reveals methylation

changes in specific cytosine residues (a) and the overall Cnr promoter region (b) in the SlCMT-silenced Cnr fruit. Bar-chart shows the methylation levels

in the Cnr gene locus in epimutant fruit at breaker stage (Cnr), SlCMT3-silenced Cnr fruit at breaker stage (VIGS), and in wild-type fruit at immature

(IM), mature green (MG), breaker (Br), ripening stages (Ripen), and LeMADS-RIN ChIP-Seq (RIN binding). The location of the two differentially

methylated regions (DMR1 and DMR2) and the epi-allele in the promoter region of Cnr are shown. (c–d), Genome-wide hypomethylation caused by

SlCMT3 silencing. Kernel density plots of the loss of CG (c), CHG (d) and CHH (e) methylation in the SlCMT3-silenced Cnr fruit at breaker stage.

Methylation differences (methylation level of Cnr minus SlCMT3 silenced Cnr fruit at breaker stage) of the whole-genome (bin 5 1000 bp), annotated

gene regions, repeats and the LeMADS-RIN bindings sites are shown, and regions with zero methylation are discarded29. (f), SlCMT3 silencing causes

global demethylation in Cnr fruit. Boxplot showing the delta-methylation levels of Cnr and SlCMT3-silenced fruits at the breaker stage. For calculation of

the global methylation delta, genome is divided into 200-bp bins and the methylation levels of each bin are calculated. Gene and the repeat are defined

according to the ITAG v2.5 annotation. RIN binding sites are called as previously described29.

www.nature.com/scientificreports
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lation of ripening25–28. TFs also regulate fruit ripening via transcrip-
tional regulation of ethylene biosynthesis and signalling25–28. In
tomato, DNA methylation may also contribute to fruit ripening3,23,29.
Consistent with this hypothesis, the content of globally methylated
cytosine (5mC) is under dynamic changes during tomato develop-
ment and fruit ripening, and chemical-mediated demethylation can
facilitate early premature ripening24,28,31–33. In Cnr, DNA methylation
maintenance is critical for maintaining epigenetic stability of the
naturally occurring epimutation. Silencing of key SlDMTs in
RdDM and 5mC maintenance pathways can destabilise epigenetic
status which is required to down-regulate LeSPL-CNR. Such negative
epigenetic control may also play a direct or indirect role in modu-
lation of key ripening-associated TFs, and ethylene biosynthetic and
signalling genes. Furthermore, microRNAs may be also involved in
the fine-tuning of LeSPL-CNR expression in modulation of tomato
fruit ripening34. Taken together, this model suggests that TFs, ethyl-
ene structural and signal transduction genes, microRNAs, epigenetic
maintenance and developmentally regulated epigenetic modifying
genes such as SlCMT3 involve tomato development and fruit ripen-
ing (Fig. 5).

In summary our results demonstrate that somatic maintenance of
methylation may represent an essential layer of epigenetic regulation
in addition to the complex genetic network for the stability of the Cnr
epimutation and non-ripening phenotype. This idea is supported by
that fruit development and ripening are associated with dynamic
modifications of the whole-genome level of DNA methylation in
normal tomato. Thus spontaneous, but stable, epigenetic mutations
maintained by mechanisms such as those described in this work
afford a new route for the evolution of modern plant species and in
the case of crops such as tomato these altered phenotypes, if ‘bene-
ficial’, will be favored by natural selection and/or plant breeding.

Methods
Constructs. Non-translatable 300–525-bp fragments corresponding to the 59 ends of
each gene were PCR-amplified and cloned into the MluI/SalI sites of the Potato virus
X (PVX) vector28 to generate PVX/SlDRM7, PVX/SlMET1, PVX/SlCMT2, PVX/
SlCMT3, and PVX/SlCMT4 (Fig. 1b). The 39 UTR of the SlCMT3 was also cloned into
PVX to produce PVX/SlCMT3UTR. The full-length cDNA sequences of the nine
tomato DMT genes and the sequences of the short non-translatable fragments that
were used for construction of the PVX-based VIGS constructs are included in
Supplementary Figure 10. A non-translatable LeSPL-CNR gene and the 286-bp region
of the LeSPL-CNR promoter were cloned into the PVX/GFP vector3 to generate PVX/
mLeSPL-CNR:GFP and PVX/Pcnr-GFP (Supplementary Fig. 1a). PVX encodes a
RNA-dependent RNA polymerase (166 K), movement proteins (25 K, 12 K and 8 K)
and capsid protein (CP). Primers are listed in Supplementary Table 2. All constructs
were confirmed by sequencing.

PVX-based gene silencing and plant growth conditions. PVX-based VIGS and
Virus-induced transcriptional gene silencing in Cnr, rin and wild-type tomato
(Solanum lycopersicum cv. Ailsa Craig) fruits were performed as described3,22. The
carpopodium of tomato fruits at 5–15 days post anthesis was needle-injected with
recombinant viral RNAs for each of the PVX-based VIGS constructs. Plants were
grown in insect-free glasshouses at 25uC with supplementary lighting to give a 16-h
photoperiod, examined and photographed with a Nikon Coolpix 995 digital camera.

Quantitative real-time PCR (qRT-PCR). Total RNA was extracted from tomato
tissues using RNeasy Plant Mini Kit (Qiagen). cDNA was synthesized using a
FastQuant RT Kit (Tiangen). qRT-PCR was performed on a Bio-Rad CFX96 Real-
Time system (Bio-Rad) using an UltraSYBR Mixture Kit (CoWin Bioscience). At least
three technical replicates for each of three biological replicates for each sample were
analyzed. The relative level of specific gene expression was calculated using the
formula 22DDCt and normalized to the amount of 18S rRNA detected in the same
sample as described30.

Bisulfite sequencing. Total DNA was isolated from tomato tissues using DNeasy
Plant Mini Kit (Qiagen). Bisulfite conversion, PCR amplification and sequencing
were performed using the EZ DNA Gold Methylation Kit (Zymo Research), Blue
MegaMix Double PCR mixture (Microzone) and BigDye Terminator Reaction
Mixture (Applied Biosystems) as described3. Whole genome bisulfite sequencing and
bioinformatics analysis were performed as previously described29.
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