G. N. Agrios, Plant Pathology. Amstedam, 2005.

P. Amato, M. Parazols, M. Sancelme, P. Laj, G. Mailhot et al., Microorganisms 457 isolated from the water phase of tropospheric clouds at the Puy de Dôme: major groups and 458 growth abilities at low temperatures, Fems Micriobiology Ecology, vol.59, pp.242-254, 2007.

A. Ansmann, M. Tesche, and D. Althausen, Influence of Saharan dust on cloud glaciation 460 in southern Morocco during the Saharan Mineral Dust Experiment, Journal of Geophysical 461 Research, vol.113, p.4210, 2008.

W. S. Ashley, M. L. Bentley, and J. A. Stallins, Urban-induced thunderstorm modification in the 463 Southeast United States, Climatic Change, vol.113, pp.481-498, 2011.

E. Attard, H. Yang, and A. Delort, Effects of atmospheric conditions on ice nucleation 465 activity of Pseudomonas, Atmospheric Chemistry and Physics, vol.12, pp.10667-10677, 2012.

T. S. Bates, B. K. Lamb, A. Guenther, J. Dignon, and R. E. Stoiber, Sulfur emissions to the 467 atmosphere from natural sources, Journal of Atmospheric Chemistry, vol.14, pp.315-337, 1992.

F. U. Battistuzzi, A. Feijao, and S. B. Hedges, A genomic timescale of prokaryote evolution: 469 insights into the origin of methanogenesis, phototrophy, and the colonization of land, BMC 470 Evolutionary Biology, vol.4, p.44, 2004.

E. K. Bigg, A long period fluctuation in freezing nucleus concentrations, Journal, p.472, 1958.

, Meteorology, vol.15, pp.561-562

K. Bower, S. Moss, and D. Johnson, A parametrization of the ice water content observed 474 in frontal and convective clouds, Quarterly Journal of the Royal Meteorological Society, vol.475, pp.1815-1844, 1996.

R. M. Bowers, C. L. Lauber, and C. Wiedinmyer, Characterization of airborne microbial 477 communities at a high-elevation site and their potential to act as atmospheric ice nuclei, 2009.

, Applied and Environmental Microbiology, vol.75, pp.5121-5130

R. M. Bowers, S. Mcletchie, R. Knight, and N. Fierer, Spatial variability in airborne bacterial 480 communities across land-use types and their relationship to the bacterial communities of 481 potential source environments, The ISME journal, vol.5, pp.601-613, 2011.

S. M. Burrows, T. Butler, P. Jöckel, H. Tost, A. Kerkweg et al., Bacteria 483 in the global atmosphere -Part 2: Modeling of emissions and transport between different 484 ecosystems, Atmospheric Chemistry and Physics, vol.9, pp.9281-9297, 2009.

, Version postprint Comment citer ce document

C. E. Morris, F. Conen, A. Huffman, J. Phillips, V. Pöschl et al., Bioprecipitation: a feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere, Global Change Biology, vol.20, issue.2, pp.341-351, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02637995

, Version définitive du manuscrit publié dans / Final version of the manuscript published in Global Change Biology, vol.20, pp.341-51, 2014.

, Global Change Biology, vol.20, pp.341-351, 2014.

B. C. Christner, C. E. Morris, C. M. Foreman, R. Cai, and D. C. Sands, Ubiquity of biological ice 486 nucleators in snowfall, Science, p.1214, 2008.

F. Conen, C. E. Morris, J. Leifeld, M. V. Yakutin, and C. Alewell, Biological residues define the ice 488 nucleation properties of soil dust, Atmosphere Chemistry and Physics, vol.11, pp.9643-9648, 2011.

R. Conrad, The global methane cycle: recent advances in understanding the microbial 491 processes involved, Environmental Microbiology Reports, vol.1, pp.285-292, 2009.

H. A. Constantinidou, S. S. Hirano, L. S. Baker, and C. D. Upper, Atmospheric dispersal of ice 493 nucleation-active bacteria : the role of rain, Phytopathology, vol.80, pp.934-937, 1990.

N. A. D'souza, Y. Kawaraski, and J. D. Gantz, Diatom assemblages promote ice formation 495 in large lakes, ISME Journal, vol.7, pp.1632-1640, 2013.

A. Deangelis, F. Dominguez, Y. Fan, A. Robock, M. D. Kustu et al., Evidence of 497 enhanced precipitation due to irrigation over the Great Plains of the United States, Journal 498 of Geophysical Research, vol.115, pp.1-14, 2010.

R. M. Deconto, Plate tectonics and climate change, Encyclopedia of Paleoclimatology 500 and Ancient Environments, pp.784-797, 2008.

P. J. Demott, An exploratory study of ice nucleation on soot aerosols, J. Appl. Meteorol, vol.29, pp.502-1072, 1990.

P. J. Demott, D. J. Cziczo, and A. J. Prenni, Measurements of the concentration and 504 composition of nuclei for cirrus formation, Proceedings of the National Academy of 505 Sciences, vol.100, pp.14655-14660, 2003.

P. J. Demott, O. Möhler, and O. Stetzer, Resurgence in ice nuclei measurement research. 507 Bulletin of the, vol.92, pp.1623-1635, 2011.

P. J. Demott and A. J. Prenni, New Directions: Need for defining the numbers and sources of 509 biological aerosols acting as ice nuclei, Atmospheric Environment, vol.44, pp.1944-1945, 2010.

V. R. Despres, J. A. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov et al.,

J. , E. W. Andreae, M. O. Pöschl, U. , and J. R. , Primary biological aerosol 512 particles in the atmosphere: A review, Tellus B, vol.64, p.15598, 2012.

W. Elbert, P. E. Taylor, M. O. Andreae, and U. Pöschl, Contribution of fungi to primary biogenic 514 aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic 515 ions, Atmospheric Chemistry and Physics, vol.7, pp.4569-4588, 2007.

, Version postprint Comment citer ce document

C. E. Morris, F. Conen, A. Huffman, J. Phillips, V. Pöschl et al., Bioprecipitation: a feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere, Global Change Biology, vol.20, issue.2, pp.341-351, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02637995

, Version définitive du manuscrit publié dans / Final version of the manuscript published in Global Change Biology, vol.20, pp.341-51, 2014.

, Global Change Biology, vol.20, pp.341-351, 2014.

G. M. Fahy, The role of nucleation in cryopreservation, Biological Ice Nucleation and Its, p.517, 1995.

R. J. Applications-;-lee, G. J. Warren, and L. Gusta, , pp.315-336

R. Fall and R. C. Schnell, Association of an ice-nucleating pseudomonad with cultures of the 520 marine dinoflagellate, Heterocapsa niei, Journal of Marine Research, vol.43, pp.257-265, 1985.

C. M. Foreman, R. M. Cory, and C. E. Morris, Microbial growth under humic-free conditions 522 in a supraglacial stream system on the Cotton Glacier, Environmental Research, vol.523, 2013.

, Letters, vol.8, p.35022

B. C. Freeman and G. A. Beattie, Bacterial growth restriction during host resistance to 525, 2009.

, Pseudomonas syringae is associated with leaf water loss and localized cessation of vascular 526 activity in Arabidopsis thaliana, Molecular Plant Microbe Interactions, vol.22, pp.857-67

T. L. Friesen, E. D. De-wolf, and L. J. Frankl, Source strength of wheat pathogens during combine 528 harvest, Aerobiologia, vol.17, pp.293-299, 2001.

E. Garcia, T. C. Hill, A. J. Prenni, P. J. Demott, G. D. Franc et al., Biogenic ice 530 nuclei in boundary layer air over two U.S. High Plains agricultural regions, Journal, p.531, 2012.

, Geophysical Research

F. Gonçalves, J. A. Martins, R. I. Albrecht, C. A. Morales, S. Dias et al., Effect 533 of bacterial ice nuclei on the frequency and intensity of lightning activity inferred by the 534 BRAMS model, Atmospheric Chemistry and Physics, vol.13, pp.5677-5689, 2012.

C. J. Hahn, W. B. Rossow, and S. G. Warren, ISCCP cloud properties associated with standard cloud 536 types identified in individual surface observations, Journal of Climate, vol.14, pp.11-28, 2001.

J. Hallett and S. C. Mossop, Production of secondary ice particles during the riming process, 1974.

, Nature, vol.249, pp.26-28

R. L. Harris-hobbs and C. Wa, Field evidence supporting quantitative predictions of 540 secondary ice production rates, Journal of Atmospheric Science, vol.44, pp.1071-1082, 1987.

R. M. Harrison, A. M. Jones, and P. Biggins, Climate factors influencing bacterial count 542 in background air samples, Int. J. Biometeorol, vol.49, pp.167-178, 2005.

S. S. Hirano, L. S. Baker, and C. D. Upper, Raindrop momentum triggers growth of leaf-associated 544 populations of Pseudomonas syringae on field-grown snap bean plants. Applied and 545 Environmental Microbiology, vol.62, pp.2560-2566, 1996.

S. S. Hirano and C. D. Upper, Bacteria in the leaf ecosystem with emphasis on Pseudomonas 547 syringae-a pathogen, ice nucleus, and epiphyte, Microbiology and Molecular Biology, vol.548, pp.624-653, 2000.

, Version postprint Comment citer ce document

C. E. Morris, F. Conen, A. Huffman, J. Phillips, V. Pöschl et al., Bioprecipitation: a feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere, Global Change Biology, vol.20, issue.2, pp.341-351, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02637995

, Version définitive du manuscrit publié dans / Final version of the manuscript published in Global Change Biology, vol.20, pp.341-51, 2014.

, Global Change Biology, vol.20, pp.341-351, 2014.

J. M. Hirst, O. J. Stedman, and W. H. Hogg, Long-distance spore transport : Methods of 550 measurement, vertical spore profiles and the detection of immigrant spores, Journal of 551 General Microbiology, vol.487, pp.329-355, 1967.

C. Hoose, J. E. Kristjánsson, and S. M. Burrows, How important is biological ice nucleation in 553 clouds on a global scale, Environmental Research Letters, vol.5, p.24009, 2010.

J. A. Huffman, C. Pöhlker, and A. J. Prenni, High concentrations of biological aerosol 555 particles and ice nuclei during and after rain, Atmospheric Chemistry and Physics, vol.13, pp.1767-556, 2013.

J. A. Huffman, B. Sinha, and R. M. Garland, Size distributions and temporal variations of 558 biological aerosol particles in the Amazon rainforest characterized by microscopy and real-559 time UV-APS fluorescence techniques during AMAZE-08. Atmospheric Chemistry and 560, Physics, vol.12, pp.11997-12019, 2012.

R. Iannone, D. I. Chernoff, A. Pringle, S. T. Martin, and A. K. Bertram, The ice nucleation ability of 562 one of the most abundant types of fungal spores found in the atmosphere, Chemistry and Physics, vol.563, pp.1191-1201, 2011.

M. Joly, E. Attard, and M. Sancelme, Ice nucleation activity of bacteria isolated from 565 cloud water, Atmospheric Environment, vol.70, pp.392-400, 2013.

A. M. Jones and R. M. Harrison, The effects of meteorological factors on atmospheric bioaerosol 567 concentrations--a review, Science of the Total Environment, vol.326, pp.151-180, 2004.

A. V. Kajava, . Lee, . Re, and G. J. Warren, Molecular modeling of the three-dimensional structure of bacterial ina 569 proteins, Biological Ice Nucleation and its Applications, p.570, 1995.

L. Gusta, , pp.101-114

T. Kanitz, P. Seifert, A. Ansmann, R. Engelmann, D. Althausen et al., , p.572, 2011.

, Contrasting the impact of aerosols at northern and southern midlatitudes on heterogeneous 573 ice formation, Geophys. Res. Lett, vol.38, pp.1-5

J. F. Kasting and J. L. Siefert, Life and the evolution of Earth's atmosphere, Science, vol.296, pp.1066-575, 2002.

E. Lerat, V. Daubin, and N. A. Moran, From gene trees to organismal phylogeny in prokaryotes: 577 the case of the gamma-Proteobacteria, PLoS Biology, vol.1, p.19, 2003.

B. Lighthart, The ecology of bacteria in the alfresco atmosphere, FEMS Microbiology, vol.579, pp.263-274, 1997.

J. Lindemann, H. A. Constantinidiou, W. R. Barchet, and C. D. Upper, Plants as source of airbone 581 bacteria, including ice nucleation-active bacteria, Applied and Environmental Microbiology, vol.582, pp.1059-1063, 1982.

, Version postprint Comment citer ce document

C. E. Morris, F. Conen, A. Huffman, J. Phillips, V. Pöschl et al., Bioprecipitation: a feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere, Global Change Biology, vol.20, issue.2, pp.341-351, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02637995

, Version définitive du manuscrit publié dans / Final version of the manuscript published in Global Change Biology, vol.20, pp.341-51, 2014.

, Global Change Biology, vol.20, pp.341-351, 2014.

E. Lioubimtseva, R. Cole, J. M. Adams, and G. Kapustin, Impacts of climate and land-cover 584 changes in arid lands of Central Asia, Journal of Arid Environments, vol.62, pp.285-308, 2005.

J. E. Mcdonald, Collection and washout of airborne pollens and spores by raindrops, 1962.

, Science, vol.135, pp.435-437

D. S. Meridith, Significance of spore release and dispersal mechanisms in plant disease 588 epidemiology, Annual Review of Phytopathology, vol.11, pp.313-342, 1973.

O. Möhler, P. J. Demott, G. Vali, and Z. Levin, Microbiology and atmospheric processes: the role 590 of biological particles in cloud physics, Biogeosciences, vol.4, pp.1059-1071, 2007.

O. Möhler, D. G. Georgakopoulos, and C. E. Morris, Heterogeneous ice nucleation activity 592 of bacteria: new laboratory experiments at simulated cloud conditions, Biogeosciences, vol.5, pp.593-1435, 2008.

C. L. Monteil, C. Guilbaud, C. Glaux, F. Lafolie, S. Soubeyrand et al., Emigration of the 595 plant pathogen Pseudomonas syringae from leaf litter contributes to its population dynamics 596 in alpine snowpack, Environmental Microbiology, vol.14, pp.2099-2112, 2012.

C. E. Morris, D. G. Georgakopoulos, and D. C. Sands, Ice nucleation active bacteria and their 598 potential role in precipitation, Journal of Physics IV, vol.121, pp.87-103, 2004.

C. E. Morris, C. Leyronas, and P. C. Nicot, Movement of bioaerosols in the atmosphere and its 600 consequences on climate and microbial evolution, Aerosol Science: Technology and, p.601, 2013.

. Applications,

C. E. Morris, C. L. Monteil, and O. Berge, The life history of Pseudomonas syringae: Linking 603 agriculture to Earth system processes, Annual Review of Phytopathology, vol.51, pp.85-104, 2013.

C. E. Morris, D. C. Sands, and M. Bardin, Microbiology and atmospheric processes: research 605 challenges concerning the impact of airborne micro-organisms on the atmosphere and 606 climate, Biogeosciences, vol.8, pp.17-25, 2011.

C. E. Morris, D. C. Sands, and C. Glaux, Urediospores of rust fungi are ice nucleation active 608 at > ?10 °C and harbor ice nucleation active bacteria. Atmospheric Chemistry and Physics, vol.609, pp.4223-4233, 2012.

C. E. Morris, D. C. Sands, J. L. Vanneste, J. Montarry, B. Oakley et al., Inferring 611 the evolutionary history of the plant pathogen Pseudomonas syringae from its biogeography 612 in headwaters of rivers in North America, Europe and New Zealand. mBio, vol.1, pp.107-117, 2010.

C. E. Morris, D. C. Sands, and B. A. Vinatzer, , p.615, 2008.

, Pseudomonas syringae is linked to the water cycle, ISME Journal, vol.2, pp.321-334

, Version postprint Comment citer ce document

C. E. Morris, F. Conen, A. Huffman, J. Phillips, V. Pöschl et al., Bioprecipitation: a feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere, Global Change Biology, vol.20, issue.2, pp.341-351, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02637995

, Version définitive du manuscrit publié dans / Final version of the manuscript published in Global Change Biology, vol.20, pp.341-51, 2014.

, Global Change Biology, vol.20, pp.341-351, 2014.

R. Mortazavi, C. T. Hayes, and P. A. Ariya, Ice nucleation activity of bacteria isolated from snow 617 compared with organic and inorganic substrates, Environmental Chemistry, vol.5, pp.373-381, 2008.

S. C. Mossop, Atmospheric ice nuclei, vol.619, pp.456-486, 1963.

B. J. Murray, S. L. Broadley, T. W. Wilson, S. J. Bull, R. H. Wills et al., , 2010.

, Kinetics of the homogeneous freezing of water, Physical Chemistry Chemical Physics, vol.12, pp.10380-10387

B. J. Murray, D. A. Knopf, and A. K. Bertram, The formation of cubic ice under conditions relevant 624 to Earth's atmosphere, Nature, vol.434, pp.202-205, 2005.

B. J. Murray, D. O'sullivan, J. D. Atkinson, and M. E. Webb, Ice nucleation by particles immersed 626 in supercooled cloud droplets, Chemical Society Reviews, vol.41, pp.6519-6554, 2012.

S. Nagarajan and D. V. Singh, Long-distance dispersion of rust pathogens, Annual Review, p.628, 1990.

, Phytopathology, vol.28, pp.139-153

R. Nielsen, Molecular signatures of natural selection, vol.39, pp.197-218, 2005.

D. O'sullivan, M. Bj, T. Malkin, T. Whale, N. S. Umo et al., , p.632

J. Browse and W. Me, Ice nucleation by soil dusts: relative importance of mineral 633 dust and biogenic components, vol.13, pp.20275-634, 2013.

V. Phillips, C. Andronache, and B. C. Christner, Potential impacts from biological 636 aerosols on ensembles of continental clouds simulated numerically, Biogeosciences, vol.6, pp.1-28, 2009.

V. Phillips, C. Andronache, and S. C. Sherwood, Anvil glaciation in a deep cumulus 638 updraught over Florida simulated with the Explicit Microphysics Model. I: Impact of 639 various nucleation processes, Quarterly Journal of the Royal Meteorological Society, vol.131, pp.640-2019, 2005.

V. Phillips, A. M. Blyth, P. Brown, T. W. Choularton, and J. Latham, The glaciation of a 642 cumulus cloud over New Mexico, Quarterly Journal of the Royal Meteorological Society, vol.643, pp.1513-1534, 2001.

V. Phillips, T. W. Choularton, A. J. Illingworth, R. J. Hogan, and P. R. Field, Simulations of the 645 glaciation of a frontal mixed-phase cloud with the Explicit Microphysics Model, Quarterly 646 Journal of the Royal Meteorological Society, vol.129, pp.1351-1371, 2003.

V. Phillips, P. J. Demott, and C. Andronache, An empirical parameterization of heterogeneous 648 ice nucleation for multiple chemical species of aerosol, Journal of the Atmospheric Sciences, vol.649, issue.65, pp.2757-2783, 2008.

, Version postprint Comment citer ce document

C. E. Morris, F. Conen, A. Huffman, J. Phillips, V. Pöschl et al., Bioprecipitation: a feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere, Global Change Biology, vol.20, issue.2, pp.341-351, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02637995

, Version définitive du manuscrit publié dans / Final version of the manuscript published in Global Change Biology, vol.20, pp.341-51, 2014.

, Global Change Biology, vol.20, pp.341-351, 2014.

V. Phillips, P. J. Demott, C. Andronache, K. A. Pratt, K. A. Prather et al., , p.651, 2013.

, Improvements to an empirical parameterization of heterogeneous ice nucleation and its 652 comparison with observations, Journal of the Atmospheric Sciences, vol.70

R. A. Pielke, J. Adegoke, and A. Beltrán-przekurat, An overview of regional land-use and 655 land-cover impacts on rainfall, Tellus B, vol.59, pp.587-601, 2007.

U. Pöschl, S. T. Martin, and B. Sinha, Rainforest aerosols as biogenic nuclei of clouds and 657 precipitation in the Amazon, Science, vol.329, pp.1513-1516, 2010.

A. J. Prenni, M. D. Petters, and S. M. Kreidenweis, Relative roles of biogenic emissions and 659 Saharan dust as ice nuclei in the Amazon basin, Nature Geoscience, vol.2, pp.402-405, 2009.

A. J. Prenni, Y. Tobo, and E. Garcia, The impact of rain on ice nuclei populations at a 661 forested site in Colorado, Geophysical Research Letters, vol.40, pp.227-231, 2013.

R. L. Raddatz, Evidence for the influence of agriculture on weather and climate through the 663 transformation and management of vegetation: Illustrated by examples from the Canadian 664 Prairies, Agricultural and Forest Meteorology, vol.142, pp.186-202, 2007.

A. Reid, Incorporating microbial processes into climate models, 2011.

P. S. Respondek, A. I. Flossmann, R. R. Alheit, and H. R. Pruppacher, A theorectical study of the wet 670 removal of atmospheric pollutants. 5. The uptake, redistribution, and depostion of 671 (NH4)2SO4 by a convective cloud containing ice, Journal of the Atmospheric Sciences, vol.52, pp.672-2121, 1995.

W. B. Rossow and R. A. Schiffer, Advances in Understanding Clouds from ISCCP. Bulletin of the, p.674, 1999.

D. C. Sands, V. E. Langhans, A. L. Scharen, and G. De-smet, The association between bacteria and 676 rain and possible resultant meteorological implications, Journal of the Hungarian 677 Meteorological Service, vol.86, pp.148-152, 1982.

T. ?antl-temkiv, K. Finster, T. Dittman, B. M. Hansen, R. Thyrhaug et al., Hailstones: A window into the microbial and chemical inventory of a storm cloud, Karlson UG, vol.679, 2013.

, PLoS ONE, vol.8, p.53550

A. Sesartic and T. N. Dallafior, Global fungal spore emissions, review and synthesis of literature 682 data, Biogeosciences, vol.8, pp.1181-1192, 2011.

, Version postprint Comment citer ce document

C. E. Morris, F. Conen, A. Huffman, J. Phillips, V. Pöschl et al., Bioprecipitation: a feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere, Global Change Biology, vol.20, issue.2, pp.341-351, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02637995

, Version définitive du manuscrit publié dans / Final version of the manuscript published in Global Change Biology, vol.20, pp.341-51, 2014.

, Global Change Biology, vol.20, pp.341-351, 2014.

W. Szyrmer and I. Zawadzki, Biogenic and anthropogenic sources of ice-forming nuclei: A 684 review, Bulletin of the American Meteorological Society, vol.78, pp.209-228, 1997.

Y. Tobo, A. J. Prenni, P. J. Demott, J. A. Huffman, C. S. Mccluskey et al., , p.686

S. M. Kreidenweis, Biological aerosol particles as a key determinant of ice nuclei 687 populations in a forest ecosystem, Journal of Geophysical Research. Atmospheres, vol.118, p.688, 2013.

C. D. Upper and S. S. Hirano, Aerial dispersal of bacteria, Biotechnology, vol.15, pp.690-75, 1991.

P. K. Wolber, Bacterial ice nucleation, Adv. Microb. Physiol, vol.34, pp.203-237, 1993.

K. E. Zachariassen and E. Kristiansen, Ice nucleation and antinucleation in nature, Cryobiology, vol.693, issue.41, pp.257-79, 2000.

N. Zeng and J. Yoon, Expansion of the world's deserts due to vegetation-albedo feedback under 695 global warming, Geophysical Research Letters, p.36, 2009.

J. Zhou, C. J. Poulsen, N. Rosenbloom, C. Shields, and B. Briegleb, Vegetation-climate 697 interactions in the warm mid-Cretaceous, Climate of the Past, vol.8, pp.565-576, 2012.

C. E. Morris, F. Conen, A. Huffman, J. Phillips, V. Pöschl et al., Bioprecipitation: a feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere, Global Change Biology, vol.20, issue.2, pp.341-351, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02637995

, Version définitive du manuscrit publié dans / Final version of the manuscript published in Global Change Biology, vol.20, pp.341-51, 2014.

, Global Change Biology, vol.20, pp.341-351, 2014.

, Acknowledgments: The authors thank the Epicurus Fund at DonorsTrust for funding to cover 702 travel for authors to meet, J. A. H. acknowledges internal faculty, p.703

. V. Denver, acknowledges support from US Department of Energy's BER program for an 704 award supporting modeling research into aerosol impacts on glaciated clouds, p.705

, US NSF Division of Atmospheric and Geospace Sciences for funding to stimulate scientific 706 communication on the interaction of bioaerosols with atmospheric processes