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Abstract: With the ever-increasing number of satellites and the availability of data
free of charge, the integration of multi-sensor images in coherent time series offers
new opportunities for land cover and crop type classification. This article investigates
the potential of structural biophysical variables as common parameters to consistently
combine multi-sensor time series and to exploit them for land/crop cover classification.
Artificial neural networks were trained based on a radiative transfer model in order to
retrieve high resolution LAI, FAPAR and FCOVER from Landsat-8 and SPOT-4. The
correlation coefficients between field measurements and the retrieved biophysical variables
were 0.83, 0.85 and 0.79 for LAI, FAPAR and FCOVER, respectively. The retrieved
biophysical variables’ time series displayed consistent average temporal trajectories,
even though the class variability and signal-to-noise ratio increased compared to NDVI.
Six random forest classifiers were trained and applied along the season with different
inputs: spectral bands, NDVI, as well as FAPAR, LAI and FCOVER, separately
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and jointly. Classifications with structural biophysical variables reached end-of-season
overall accuracies ranging from 73%–76% when used alone and 77% when used jointly.
This corresponds to 90% and 95% of the accuracy level achieved with the spectral
bands and NDVI. FCOVER appears to be the most promising biophysical variable for
classification. When assuming that the cropland extent is known, crop type classification
reaches 89% with spectral information, 87% with the NDVI and 81%–84% with
biophysical variables.

Keywords: classification; biophysical variables; along the season; land cover; crop types

1. Introduction

As the number of satellites keeps increasing and the data become free of charge, the working
environment is shifting to a data-rich environment. The integration of multi-sensor images in coherent
time series and products becomes therefore of critical importance [1]. Besides, multi-sensor time series
are a sensible solution to meet the requirements for agricultural monitoring, especially in areas affected
by persistent cloud coverage at critical moments of the season [2,3]. A way forward for multi-sensor data
integration is to merge time series at the biophysical variables level, e.g., using Leaf Area Index (LAI),
because biophysical variables have a meaning that is independent from the sensors’ characteristics.
Biophysical variables from different sensors could be integrated to densify the time series, allowing a
finer monitoring to better capture the rapid changes of vegetation, such as vegetative crop development.
In principle, biophysical variables extracted from radar could then also be integrated into the
time series [4].

Biophysical variables, such as LAI and the fraction of absorbed photosynthetic active radiation
(FAPAR), can be derived from observations in the reflective solar domain [5]. These vegetation variables
play a key role in several surface processes, including photosynthesis, respiration and transpiration. LAI
is defined as half the total developed area of green elements per horizontal ground area unit [6]. The
Normalized Difference Vegetation Index (NDVI) shows a logarithmic response to LAI: the relationship
is tight at low range (LAI from 0–1.5) and scattered at medium range (LAI from 1.5–4); thereafter,
NDVI saturates (LAI > 4) [7–11]. FAPAR, one of the main inputs in light use efficiency models [12],
is defined as the fraction of radiation absorbed by the green vegetation elements in the 400–700-nm
spectral domain under specified illumination conditions. In addition to LAI and FAPAR, the FCOVER,
the fraction of green vegetation as seen from nadir, is requested by some users for vegetation monitoring,
as well as for partitioning contributions between soil and vegetation within specific models for numerical
weather prediction, regional and global climate modeling and global change monitoring [13]. FCOVER
is independent from the illumination conditions as opposed to FAPAR, while showing sensitivity to a
vegetation amount intermediate between FAPAR and LAI.

This papers aims at assessing the potential of multi-sensor structural biophysical variables (LAI,
FAPAR, FCOVER) for land cover and crop type classification at high spatial (20 m) and temporal
resolution with a focus on agriculture, as crops are dynamic and require dense observations. The use
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of biophysical variables for classification is expected to better capture the vegetation dynamics, because
they do not saturate at high NDVI values, yielding better class discrimination. Furthermore, they would
foster the re-utilization of training data for classification, as they are not sensor-specific. The first part of
the work focuses on extracting, integrating and evaluating the consistency of the retrieved high-resolution
multi-sensor biophysical time series. Second, the potential of land/crop cover classification with the
retrieved bio-physical variables along the season was assessed and compared to accuracies obtained with
spectral information or NDVI directly. Particular focus was placed on the evolution of the accuracy of the
different classifications along the season as information accumulates. Together, this permits answering
the following research questions: (1) are biophysical variables more useful compared to traditional
spectral and/or vegetation index-based inputs, and if not, what are the reasons for this underperformance;
(2) are some biophysical variables more useful than others and why; (3) what are the most critical dates
for class discrimination; and (4) how many observations are required within a given growing season for
optimum classification accuracy.

2. Material

2.1. Study Site

The experiment was performed on the Joint Experiment for Crop Assessment and Monitoring
(JECAM) site of South Midi Pyrenées in France over 4500 km2 (Figure 1). The climatic zone is
temperate with a mean annual precipitation of 650 mm. This study area is characterized by a clay
loamy soil with a small slope (3%) toward the north. The typical field size varies around 23.5 ha. Main
crop types are winter wheat and rapeseed. According to the crop calendar, sowing occurs in October and
September for winter wheat and rapeseed and harvest in July and June, respectively. Broadleaved and
needle-leaved forests cover the south of the study area.

2.2. Datasets

The remote sensing dataset is composed of 34 images acquired by two sensors: 16 SPOT-4 and
18 Landsat-8. The Landsat-8 data were obtained through the online Data Pool at the NASA Land
Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/get_data). The SPOT-4 imagery
was obtained under the SPOT4/Take5 program. To increase the satellite observation frequency, the site
was delimited by the overlap area of the area imaged during the SPOT-4 Take-5 experiment and two
Landsat-8 scenes (Paths 198–199 and Row 30). The SPOT-4 Take-5 experiment consisted of lowering
SPOT-4’s altitude to a 5-day repeat cycle orbit to mimic the revisit cycle that ESA’s Sentinel-2 mission
will provide. SPOT-4 (20 m, 5-day revisit cycle) surface reflectance data from February 2013–May
2013 (Figure 2) were corrected from atmospheric effects, including adjacency effects and the terrain
effects [14]. Clouds and associated shadows were removed from the original surface reflectance data
with the Multisensor Atmospheric Correction and Cloud Screening (MACCS) processor [15]. MACCS
is based on a multi-temporal method for cloud screening, cloud shadow detection, water detection, as
well as for the estimation of the aerosol optical thickness. Landsat-8 (30 m, 16-day revisit cycle) surface
reflectance data spanned from April–December 2013 (Figure 2). For the visible, near and short wave
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infrared bands, Landsat data were also processed with MACCS. However, the processing was enriched
thanks to the additional Landsat-8 spectral bands: (i) the 1.38-µm band enabled an enhanced detection
of high and thin clouds; and (ii) the blue band provided an additional criterion to detect the aerosols,
thanks to its quasi-constant relationship with the surface reflectances in the red above vegetation. The
precision gain due to this criterion compensates for the precision loss due to the lower repeatability of
Landsat-8 images. Besides, the thermal bands of Landsat-8 were not processed.

Figure 1. Location of the study site in southwest France. The blue box represents the study
area. The background image is a Landsat-8 False Color Composite of 20 August 2014.
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Figure 2. Temporal distribution of the images and their respective percentage of cloud-free
area expressed as a fraction of the study area along the 2013 growing season.
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Biophysical variable ground observations were collected in elementary sample units (ESU)
(20 × 20 m2) over wheat, corn and sunflower from 17 April–23 October 2013 every 10 days with
hemispherical photographs (Nikon CoolPix 8400 camera with FC-E8 fisheye lens) [16]. LAI, FCOVER
and FAPAR were derived from valid hemispherical photography inside an ESU using CAN-EYE
software [17]. Its good performance to extract LAI from hemispherical pictures compared to destructive
measurements has been demonstrated. Mougin et al. [18] showed a very good agreement between the
two estimates with a correlation coefficient R2 of 0.97 and a root mean square error of 0.26 (n = 99)
in Sahelian rangelands. For crops, Demarez et al. [19] demonstrated a strong correlation between the
estimates and the destructive measurements (root mean square error of 0.63 and correlation coefficient
of 0.95). However, they also highlighted a systematic skew (y = 0.7810x) that leads to the well-known
LAI underestimation in clumped canopies.

A reference dataset was built for the training of the classifiers and the validation of the maps based
on a field visit for the crop classes and on visual interpretation for the other land cover classes. For the
former, 616 fields were visited in 2013 and the five crop types described: winter wheat (164), rapeseed
(49), corn (277), barley (26) and sunflower (100). For the latter, the ESA CCI Land Cover [20] and
the Google Earth tool were employed to help identify 5 land cover types (water bodies, urban areas,
broadleaved forest, needle-leaved forest and grassland). Half of the sample pixels was randomly selected
as the training set, and the remaining half was selected as the validation set.

3. Methodology

3.1. Biophysical Variable Retrieval

Biophysical variable retrieval methods fall usually into four categories: parametric and
non-parametric empirical relationships, radiative transfer model inversion and hybrid methods [21].
First, parametric regression methods define relationships between selected spectral information (NDVI,
for example) and biophysical variables of interest. This implies choices on the spectral bands to select,
on the index formulation and on the fitting functions [22]. Second, non-parametric regression methods
build direct non-parametric algorithms from full optical spectral datasets based, for instance, on machine
learning tools. For these two empirical approaches (parametric and non-parametric), a calibration phase
relying on local in situ data is necessary, which decreases their generic capabilities [23]. In general,
non-parametric regressions were found to outperform simpler parametric methods [21]. However,
due to their arithmetic simplicity, empirical relationships are computationally economical, which is
very valuable when addressing large areas or to meet processing time requirements of operational
retrieval. The physically-based methods build on physical laws and well-known physical relationships
between variables [11]. The inversion of a radiative transfer model (RTM) with remote sensing data
allows retrieving biophysical variables in a generic fashion. Amongst the different existing methods,
neural networks (NN) are widely used and often preferred to look-up table approaches or iterative
optimization methods [24–26]. Finally, hybrid methods combine physical and statistical approaches to
derive the training set and define the relationships between remote sensing data and biophysical variables,
respectively [27].
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In this work, neural networks were trained using GeoSAIL, a radiative transfer model [28], to retrieve
LAI, FAPAR and FCOVER. The retrieval procedure includes three steps [16]: (1) the generation of
a training database with GeoSAIL using canopy biophysical variables—leaf structure parameter, leaf
chlorophyll concentration, dry matter content, equivalent water thickness, LAI, average leaf angle and
hot spot size parameter—and soil brightness parameters to simulate theoretical reflectances; (2) the
calibration of the NNs to inverse GeoSAIL by minimizing the root mean square error (RMSE); and (3)
the application of NNs to measured SPOT-4 and Landsat-8 reflectances and geometries of observation
in order to derive the biophysical variables of interest (LAI, FAPAR, FCOVER). Due to spectral
specificities and geometries of the two different sensors, separate neural networks were generated.
Regarding the SPOT-4, all four bands (green, red, near-infrared (NIR), short-wave infrared (SWIR))
were kept as for Landsat-8; only four bands (blue, green, NIR and SWIR-1) were selected because
they are sensitive to the canopy characteristics, such as chlorophyll, water and dry matter. The unique
geometrical configuration (VZA: view zenith angle; VAA: view azimuth angle) was used in the training
and inversion. For Landsat-8, the view angle is always nadir, so all images have the same geometrical
configurations, but for SPOT-4 images, each image has different view angles. Two thirds of the training
dataset were used to train the NNs, while the remaining was used to validate the performance. For
each biophysical variable, several neural network structures were tested, and the one that minimized the
RMSE compared to the validation dataset was selected for each variable.

As biophysical variables’ in situ measurements were only available for a limited number of classes
(wheat, corn, sunflower), the temporal consistency of the retrieval was further investigated and compared
to that of NDVI using the signal-to-noise ratio (SNR). The SNR can be estimated as [29,30]:

SNRi =
σ2
signal,i

σ2
noise,i

(1)

where σ2
i represents the variance of the signal or of the noise of the time series of a given pixel i;

the larger the signal-to-noise ratio, the higher the temporal consistency and conversely. To estimate
the signal, time series were smoothed with a cubic spline approach. The variance of the signal was
computed on the smoothed values resulting from the cubic spline filter and the variance of the noise
on the difference between the smoothed values and the observed values. The signal-to-noise ratio was
computed from the 34 dates of the NDVI, LAI, FAPAR and FCOVER time series for all pixels belonging
to the vegetation classes of the reference data. Thereby, it ensures that SNR statistics by land cover class
are free of classification errors.

3.2. Land Cover Classification along the Season and Assessment

A plethora of classifiers have been developed for land cover mapping based on satellite
imagery. Those classification methods range from unsupervised clustering algorithms (ISODATA or
K-means [31]) to supervised classifiers. The latter encompasses parametric statistical algorithms, such as
maximum likelihood [32], machine learning algorithms, such as artificial neural networks [33], decision
trees [34,35], support vector machines [36,37] and ensembles of (machine learning) classifiers[38].
Several studies have demonstrated the higher accuracy and efficiency of machine learning algorithms
especially with high dimensional datasets and large area mapping [39–41]. These algorithms are
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particularly efficient and effective, because they do not assume any data distribution (e.g., normality)
and yield generally to higher accuracy levels [42,43]. However, the number of hyper-parameters to
adjust complicates their use and their automation [44]. In addition, some machine learning algorithms
tend to overfit the data [34]. Machine learning ensemble classifiers have been developed to overcome
this drawback: they rely on a community of base machine learning classifiers that generate multiple
outputs, which are then combined according to specific decision rules. Ensemble learning circumvents
the weaknesses of the base classifiers while keeping their strengths and, therefore, yields higher accuracy
levels [45,46]. While assessing the effectiveness of random forest [47] (an ensemble of decision trees)
for land cover classification, Rodriguez-Galiano et al. [48] demonstrated that random forest does not
overfit and offers several advantages, such as: (1) the low number of user-defined hyper-parameters;
(2) the estimation of the importance of variables (bands) for the general classification of the land cover
categories and for the classification of each category by means of the Gini Index; and (3) its robustness
to noise and training dataset size reduction. For these reasons, the random forest classifier was chosen
for this study.

Object-based classifications propose additional discrimination parameters, such as texture, contextual
information and shape (e.g., see Vieira et al. [49]). Even if segmentation is time consuming, object-based
approaches offer a more generalized and more contiguous depiction of land cover, usually better
matching the landscape perception of analysts [50]. The generalized appearance of the classes may
account for an apparent preference over slightly better performing pixel-based classifications (e.g., [51]).
Nevertheless, additional processing of pixel-based imagery (such as a filter), can also result in similar
representations. The actual effects of object-based classifications seem to depend on the classes to be
mapped [52], on the classification methods [53] and the areas considered [54]. Besides, the statistical
significance of the method appears also highly variable [52,53,55,56]. As the additional discrimination
power offered by object-based analysis was assumed to be similar for all input data (reflectances,
vegetation indices or biophysical variables), pixel-based classifications were preferred.

Prior to classification, missing observations were filled in by linear interpolation between successive
values, and Landsat-8 images were resampled to SPOT’s grid using a nearest neighbor approach. The
interpolation was achieved in a sensor-specific way for the spectral bands and NDVI, as all bands are
not necessarily on-board both sensors and because their spectral responses differ. For the biophysical
variables, the missing values were interpolated from both sensors simultaneously.

The selected output legend in terms of land cover and crop type distribution includes eleven classes:
five crop types (barley, wheat, rapeseed, sunflower and corn), needle-leaved and broadleaved forests,
grassland, urban areas and water bodies. As it was shown that the random forest out-of-bag error
significantly underestimates error and can differ from independent error estimates [57], the reference data
were randomly split into two parts: half of the samples was selected to train random forest classifiers
along the season as the remote sensing data accumulates, while the other half served for independent
classification accuracy assessment (Table 1). Six classifiers were trained using as input (1) all spectral
bands; (2) NDVI; (3) LAI; (4) FAPAR; (5) FCOVER and (6) all three biophysical variables. For the sake
of clarity, these classifications are henceforth referred to as Spectral-C, NDVI-C, LAI-C, FAPAR-C,
FCOVER-C and BPV-C, respectively.
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Table 1. Number of available training and validation pixels per class. The reference data
were randomly split into two parts at the object level: half of the samples was selected to
train random forest classifiers along the season as the remote sensing data accumulates, while
the other half served for independent classification accuracy assessment.

Class Training (n pixels) Validation (n pixels)

Barley 1849 1609
Corn 16,670 18,180

Rapeseed 3755 4526
Sunflower 9393 7571

Winter Wheat 14,769 11,349
Broadleaved Forest 1645 2116

Needle-leaved Forest 1479 915
Grassland 8160 10,162

Urban 3108 1752
Water 592 434

The classification accuracy of the classifiers was assessed via quantitative accuracy indicators [58],
including overall classification accuracy, producer’s accuracy, user’s accuracy and F1-scores. In
particular, the overall accuracy and the F1-scores were computed for each classifier and at each
date to study the evolution of the accuracy. To test the statistical significance of the differences
in the classifications (LAI-C, FAPAR-C, FCOVER-C, BPV-C, NDVI-C), a z-test was applied. The
z-test assesses the significance level of differences between the accuracy indicators of different
classifications [59]:

z =
κ1 − κ2√
σκ1 + σκ2

(2)

where κ1 and κ2 represent the estimated kappa coefficients from two different classifications and
σκ1 and σκ2 represent their corresponding variances [59–63]. Assuming a normal distribution, a
statistically-significant difference is considered if |z| > α/2, where α/2 represents the cut-off value
in the standard normal curve’s upper tail. For α = 0.05, the difference can be declared significant at
the 5% significance level if the z-test yields |z| > 1.96. Pairwise significance was assessed for all
combinations of LAI-C, FAPAR-C, FCOVER-C, NDVI-C and BPV-C.

3.3. Importance of the Date and of the Length of the Time Series

Quantifying the importance of each image acquisition date permits evaluating the optimal image
acquisition periods for classification. Amongst the possible alternatives [64–66], the mean decrease of
the Gini Index (GI) was calculated and stored at each observation (34 dates) and for each classification.
To assess the date importance, the random forest turns off one of the acquisition dates and keeps the
others constant to evaluate the decline in accuracy using the Gini Index at each node of the random
forest [47]. The mean decrease in GI measures the feature importance (acquisition dates in this case):
the larger the decrease, the more important the variable. Four categories of importance were determined
based on the quartiles of mean decrease Gini values: very high importance, high importance, medium
importance and low importance.
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Finally, the influence of the number of dates on the overall accuracy of the classification was
investigated through a sensitivity analysis. For each number of dates ranging from 1–33, ten dates
were systematically randomly selected from the complete FCOVER time series. For each random
subset, a random forest classifier was trained, and the accuracy of the resulting maps was evaluated.
The distribution of the overall accuracy within each sample and against samples indicates the pertinent
number of dates to be used.

4. Results

4.1. Biophysical Variable Retrieval and Temporal Consistency

The retrieved biophysical variables show strong correlation with independent field measurements
realized on corn, wheat and sunflower fields from April–23 October (Table 2 and see [16]). The overall
RMSE is close to the Global Climate Observing System (GCOS) accuracy requirements, specifically
±0.5 for LAI and ±0.05 for FAPAR [67]. The strongest relationship and lowest bias were observed
for corn (R2 = 0.91, bias = 0.01) and the largest bias for wheat (bias = 0.11). LAI, FAPAR and
especially FCOVER retrieved from neural networks are overestimated compared to field data (all crop
types considered), as all biases are positive. This is probably due to the contribution of soil reflectance,
clumping effects or field data uncertainties [16]. Similar results are expected for rapeseed and barley, but
they cannot be ascertained in the absence of field data.

Table 2. Biophysical variable retrieval: validation with field data.

LAI FAPAR (Black Sky) FAPAR (White Sky) FCOVER

R2 0.83 0.86 0.84 0.79
Bias 0.07 0.02 0.05 0.09
RMSE 0.49 0.1 0.12 0.15

Average temporal profiles for each land cover type were extracted (Figure 3) and show that they
consistently integrate the two sensors and depict the expected temporal dynamics despite some outliers
especially apparent in the FCOVER time series. In fact, regressions between SPOT-4 and Landsat-8 for
two close dates (17 and 14 April, respectively) have a coefficient of determination of 0.61 for LAI, 0.65
for FAPAR and 0.63 for FCOVER, which confirms the good integration of the two sensors [16].

FCOVER of winter crops—barley, rapeseed and wheat—increases from the end of March until the
end of May, and begins to decrease from June, which is consistent with the growing cycle. Despite some
minor differences of the average values, their temporal profiles appear very similar. Summer crops—corn
and sunflower—reach a maximum FCOVER at the end of August and the end of July, respectively.
FCOVER of grassland rises from the end of February to the start of June and then declines slightly from
June to the end of the year. Similar seasonal profiles can be observed for broadleaved and needle-leaved
forests. From the temporal consistency viewpoint, FAPAR and LAI show profiles that are very much
alike for all classes. The drop in NDVI for the needle-leaved forest at the beginning of the season might
be due to spurious interpolation caused by high cloudiness. If the temporal dynamic appears consistent
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for all biophysical variables, an enlargement of the variability of the time series compared to the NDVI
is noticeable.
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Distributions of the class-specific signal-to-noise ratio were extracted at the pixel level for all
biophysical variables and the NDVI (Figure 4) and show contrasting distribution patterns: from
uniform distributions (sunflower) to growing or decreasing exponential distributions (broadleaf forest
and grassland) and a normal (barley) distribution. Winter crops tend to have high ratio values for NDVI,
and yet, distributions of biophysical variables are associated with lower values, especially LAI. All
biophysical variables, as well as the NDVI have similar distributions for summer crops and forest classes.
Regardless of the class, the distribution of NDVI signal-to-noise ratio values is shifted towards higher
values and, hence, shows more consistency than biophysical variables. This is particularly remarkable
for the winter wheat and the barley classes. LAI is the noisiest BPV for crops with a signal-to-noise ratio
of nine in comparison to 13 for FAPAR and FCOVER. The combined analysis of the temporal profiles
and the signal-to-noise ratio reveals that the retrieval for corn is the most reliable.

4.2. Classification Results

Six random forest classifiers were trained along the season with the spectral bands (Bands-C), NDVI
(NDVI-C) and three biophysical variables separately (LAI-C, FAPAR-C and FCOVER-C) and jointly
(BPV-C). End of season maps show akin general patterns for the six classifiers. Nevertheless, a salt
and pepper effect is more visible on maps derived from biophysical variables than on the NDVI-C and
Bands-C maps (Figure 5). Accuracy indicators were extracted form confusion matrices; in particular,
overall classification accuracies, producer’s and user’s accuracies, F1-score and kappa coefficients were
calculated for all classes (Table 3) and for crop types only (Table 4).

Bands-C provides the most accurate classification accuracy followed by NDVI-C and the biophysical
variables (85% over 73%–82%). Less trivial is that NDVI (82%) outperformed the biophysical variables
taken separately or jointly (about 75%). This is most probably because it is more efficient over urban,
water and forest types. For all land covers, the users’s and producers’s accuracy indicators are generally
in the range of 75%–95%.

In all cases, the barley class presents poor accuracy indicators, which might be explained by its
spectral, structural and temporal similarity to wheat. One can also observe a drop in accuracy for the
urban and water classes for the biophysical variable cases. This is expected, as those variables are
less meaningful over such land cover classes. The accuracy of some classes, such as corn, was not
significantly affected by the change in satellite input data. All classifications were found significantly
different from one another (z-test > 1.96). These performances ought to be related to the temporal
consistency of the input time series.

Assuming that the cropland extent is known, accuracy indicators were computed for the five crop types
solely. All six classifications improved in overall accuracy, especially for those based on biophysical
variables (+7%; see Table 3): the difference in accuracy is diminished two-fold. An overall accuracy of
84% is reached with FCOVER-C compared to 87% with NDVI-C (Table 4). FCOVER appears as the
best biophysical variable for land cover and crop type classification with similar accuracies compared
to BPV-C. The main confusion errors are encountered with classes such as barley-winter wheat (at
least 20%), barley-grassland (at least 12%), barley-rapeseed (at least 9%) and corn-sunflower (at least
9%). Such classification errors were expected because of their similar temporal profiles. NDVI-C,
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Bands-C and FAPAR-C show more difficulties to distinguish broadleaved and needle-leaved forests than
FCOVER-C and LAI-C (29%, 34%, 48% of erroneous predictions). Corn is the crop type with the
highest F1-score for all classifiers and the lowest difference between classifiers.

Figure 5. End-of-season maps for the six classifiers: (a) Band-C; (b) NDVI-C; (c) LAI-C;
(d) FAPAR-C; (e) FCOVER-C; (f) BPV-C. Bands-C provides the most accurate classification
accuracy, followed by NDVI-C and the biophysical variables. The pepper and salt is more
visible on maps derived from biophysical variables than on the NDVI-C and Bands-C maps.
This ought to be related to the lower SNR observed for biophysical variables.
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Table 3. Producer’s accuracy (PA), user’s accuracy (UA) and overall accuracy (OA) obtained at the end of the season with the six
classifiers and for the eleven land cover and crop type classes, namely Barley, Corn, Rapeseed, Sunflower, Winter wheat (W. wheat),
Broadleaved Forest (Broadleaved F.), Needleleaved forest (Needleleaved F.), Grassland, Urban and Water.

Barley Corn Rapeseed Sunflower W. wheat Broadleaved F. Needleleaved F. Grassland Urban Water OA

Bands-C PA 27.5 91.7 87.1 74.9 90.9 78.5 89.1 78.1 96.5 100 84.6
UA 52.7 87.2 92.8 84.6 79.4 93.2 64.9 86 84.2 99.3

NDVI-C PA 42.2 90.3 72.7 72.4 86.5 84.4 77.8 76 90.9 98.9 81.8
UA 59.9 86 89.7 80.8 77.7 92.8 70.4 79.2 73.3 99.8

FAPAR-C PA 38.2 89.3 49.8 70 78.1 35.6 52.9 69.4 54.6 95.9 73.2
UA 51.9 81.9 67 74.7 64.5 86.3 50.7 71.3 75.8 94.8

LAI-C PA 44.7 89.4 64 70.6 73 23 61.9 69.2 58.3 36.2 73.0
UA 49.7 81.6 69.1 74.9 66.2 76.4 86.1 69.2 64.3 43.1

FCOVER-C PA 36.2 89.9 67.2 68.6 80.1 58.6 49.5 71 51.7 96.1 75.9
UA 58.1 83.2 83.3 76.8 68.9 81.1 93 81 66.5 20.3

BPV-C PA 43.3 90.3 72 70.9 81.1 49.2 68.4 70.1 45 97.9 76.7
UA 54.8 83.5 83.7 72.8 67.4 91.7 99.4 76.2 74.6 71.4
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Table 4. Accuracy indicators obtained at the end of the season with the six input datasets
for the agricultural classes only assuming that the the cropland is already known (producer’s
accuracy (PA), user’s accuracy (UA) and overall accuracy (OA)).

Barley Corn Rapeseed Sunflower Winter Wheat OA (%)

Bands-C
PA (%) 29.3 94.7 90.2 76.7 94.3 88.6
UA (%) 61.5 90.7 94.8 87.3 85.5
F1-score 39.7 92.7 92.4 81.7 89.7

NDVI-C
PA (%) 45.2 93.9 79.1 75.7 93.2 87.2
UA (%) 67.8 89.9 93.2 84.8 84.3
F1-score 54.3 91.9 85.6 80 88.5

FAPAR-C
PA (%) 41.0 93.1 52.6 71.9 84.4 80.9
UA (%) 58.7 88.1 69.2 82.6 74.1
F1-score 48.3 90.5 59.8 76.9 78.9

LAI-C
PA (%) 47.9 92.9 67.7 72.9 79.3 81.6
UA (%) 57.1 88.8 70.3 80.1 77.5
F1-score 54.1 90.8 68.9 76.3 78.4

FCOVER-C
PA (%) 38.7 94.1 71.1 70.7 89.2 84.2
UA (%) 68.5 87.9 84.3 86.1 78.3
F1-score 49.4 90.9 77.1 77.6 83.4

BPV-C
PA (%) 45.1 93.9 74.9 72.5 86.2 84.3
UA (%) 63.5 88.7 85.0 82 80.3
F1-score 52.8 91.2 79.6 76.9 83.1

At the beginning of the season, Bands-C reaches an accuracy of 58% compared to 38% for BPV-c
and NDVI-C (Figure 6a). Along the season, all classification schemes increase at a similar rate to
reach a saturation plateau. The main difference between Bands-C and the other classifications is that
it reaches a higher plateau (83%) and sooner (July). At the end of the season, Bands-C yields the
best accuracy (85%) and delimits the upper accuracy bound: by reducing the spectral information to
structural biophysical variables, the separability decreases. BPV-C outperforms NDVI-C when only one
image is available (Figure 6). Even if NDVI saturates at high LAI values, it seems that the increased
intra-class signal variability resulting from the retrieval prevents the classification based on biophysical
variables to outperform those using simply the NDVI. By reducing the spectral information to structural
biophysical variables, the separability decreases early in the season. Looking at class-specific accuracy
measures (Figure 6b), one can distinguish three groups. The first group gathers land cover classes (corn,
broadleaved forest, water, rapeseed), always well classified with respect to the reachable accuracy. The
second group includes the classes requiring a longer time series to reach the accuracy level of the first
group (winter wheat, grassland and sunflower). Finally, the third group concerns those classes that were
not separable early in the season and whose accuracies flatten out at around 0.5 at the end of the season
(urban, barley and needle-leaved forest).
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Figure 6. Evolution of the accuracy along the season. (a) Evolution of the overall accuracy
over time. (b) Evolution of the F1-score over time for the FCOVER classification.

4.3. Importance of the Date and of the Length of the Time Series

To identify the key dates for classification, the Gini Index importance was extracted all along the
season random forest classifier for FCOVER. The Gini coefficients were grouped into four categories
of importance: very high, high, medium and low importance. For a specific date (y-axis), Figure 7a
gives the Gini importance of all of the previous date until the specific date (x-axis) for the FCOVER
classification. This demonstrates the impact of a new acquisition date on the importance of all
previous dates. Note that green values correspond to high importance, whereas yellowish/reddish colors
indicates lower importance. Two separability windows emerge: one in May–June and another in end
of July–August. To confirm that, Gini Index importance was computed at the end of the season (last
date: 10 December 2013) for all three variables, as well as for NDVI (Figure 7b). The two separability
windows are identified and appeared consistent with the seasonality of the study area. These separability
windows occurred at the time of maximum FCOVER for winter crops (minimum for summer crops) and
the maximum of FCOVER for summer crops (minimum for winter crops). This provides evidence for
supporting that the temporal trajectory matters more than the actual biophysical variable measurement.
Besides, there was no correlation between the variable importance and its fraction of cloud-free pixels
(R2 = 0.0032).

Classifications were then produced from the FCOVER time series using only the dates of the two
first classes of Gini importance. When very high Gini importance classes are used (nine dates), the
overall accuracy reaches 74.9%. When combining very high and high Gini importance (17 dates), the
overall accuracy rises to 77.4%. Therefore, using the two most important classes of date importance
outperforms the classification with all dates (75.9%), which coincides with that obtained on the overall
accuracy evolution. This is most certainly due to a reduction of the noise by the selection of the best
acquisition dates (quality of observation) or the most discriminant date of observation.

To evaluate the importance of the length of the time series, ten random date combinations with lengths
ranging from 1–33 dates were selected and assessed (Figure 8). The distributions of the overall accuracy
for different lengths of FCOVER time series underline that less than nine dates yields poor (<70%) and
highly variable accuracy measures. On the contrary, with more than nine dates, the distribution tightens
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and reaches an accuracy of less than 5% of the highest overall accuracy. It seems that adding dates affects
the spread of the overall accuracy distribution itself more than the accuracy level.
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Figure 7. Importance of the variables in FCOVER-Cs. (a) Importance of features
(acquisition dates) along the season to the overall accuracy of classification. From bottom
to top are images accumulated along the season, while from left to right, the importance of
each new date is assessed. Note that the top line in this graph corresponds to the FCOVER
line in Figure 7b. (b) Measures of the importance of the different dates in the classification
accuracy. The FCOVER temporal profiles are presented with the dotted line for winter crop
and with the continuous line for summer crop.
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Figure 8. Impact of the number of variables on the FCOVER-C accuracy. For time series
lengths ranging from 1–33, ten combinations were systematically and randomly selected.
For each random subset, a classifier was trained and its accuracy evaluated. With more than
nine dates, the increase in accuracy resulting from adding more dates flattens.

5. Discussion

The biophysical variable retrieval with neural network inversion was achieved with an RMSE of 0.49,
0.1 and 0.15 for LAI, FAPAR and FCOVER, respectively. These results are close to the GCOS accuracy
requirements that recommend ±0.5 for LAI and ±0.05 for FAPAR. The range of 15%–20% is regarded
by Baret et al. [68] as the currently achievable accuracy for LAI from remote sensing observations.
Claverie et al. [69] inverted PROSAIL with neural networks on 105 very high resolution images
(Formosat-2, 8 m) acquired in southwest France nearby the area of interest of this study: 90% of the LAI
estimates and 78% of the FAPAR estimates were within the GCOS recommendation for accuracy (RMSE
of 0.35 and 0.07, respectively). Combining Landsat-8 and HJ1 observations, Zhao et al. [70] retrieved
LAI by means of look-up tables with an RMSE of 0.74 and 1.01, respectively. They demonstrated
that averaging the LAI estimates in a 10-day LAI product after a pixel quality assessment improved
the estimation (RSME = 0.42) compared to single-product estimates. The time series used in this
study are similar to those that will be available when combining Sentinel-2 and Landsat-8 in terms of
temporal frequencies. Sentinel-2 provides a great opportunity for global vegetation monitoring due to its
enhanced spatial, spectral and temporal characteristics compared to SPOT [71], and its refined spectral
bands could improve the retrieval accuracy. Richter et al. [72] retrieved LAI from simulated Sentinel-2
imagery and achieved crop-specific retrieval with an error of 16%. To reach a higher retrieval accuracy,
Richter et al. [72] suggest that improvements could be achieved by employing spatial [73,74] and/or
temporal information [75,76]. Other suggestions for improvements refer to the addition of prior
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information on the type of canopy [77] to fine-tune the retrieval procedure or to select the retrieval
strategy to apply [78].

From the classification accuracy point of view, classifications using spectral information
systematically yielded the highest accuracies (84%). Results showed that using only structural
biophysical variables, one could classify land cover with an accuracy of above 70% in August, 90%
of the accuracy level reached with all of the spectral information. When considering that the spatial
distribution of cropland is known, the performances of the classifications relying on biophysical variables
reach 81%–84% compared to 88% for Bands-C. This ought to be related to the accuracy obtained
(Kappa = 0.87) by Petitjean et al. [79] when classifying Formosat-2 time series in southwest
France following a dynamic time warping approach. NDVI-C was found to consistently outperform
classifications based on biophysical variables. Two main factors could explain these results. First,
biophysical variables are less meaningful over certain land covers, which would consequently reduce
class separability. However, for more dynamic vegetation classes, such as barley, the classification
accuracy was improved. Second, the biophysical variable retrieval acted as an additional source
of noise. Despite high RMSE and R2, the larger variance of the biophysical time series and the
signal-to-noise ratio analysis showed that the temporal consistency of the biophysical variables was
reduced compared to NDVI. The retrieval effect on the temporal consistency was both class specific
and variable specific. LAI was the variable most affected by noise and provided the classifications
with the lowest accuracy. Despite an RMSE of 0.15, FCOVER appeared to have a high temporal
consistency (low SNR) and reached in general the highest accuracy. For this reason, this study
suggests that biophysical variable retrieval studies not only quantify the error in the inversion, but
also provide measures of temporal consistency of the retrieved variables. Finally, classes with a
high SNR ratio showed similar accuracy when classifying with spectral information, NDVI and
biophysical variables. This is typically the case of corn, which had both a low RMSE and a
high SNR.

The contribution of a specific date to the classification varies significantly along the season. These
variations are related to phenology, rather than to cloud percentage. When considering the entire time
series, critical dates occur at the peaks of the winter and summer crops. Focusing on the length of
the time series regardless of the date, nine dates were sufficient to reach 95% of the highest accuracy.
By reducing the spectral information to structural biophysical information, it appeared that classifiers
trained on the variables are more prone to errors, especially early in the season. Denser time series
would currently not improve the classification accuracy because (1) more subtle signal variations could
not be captured with the current accuracy and consistency of the retrieval and (2) the added value after
nine dates is marginal. However, if the temporal density of the time series improves jointly with its
consistency, finer vegetation changes could be exploited to improve the classification. One could also
consider to increase the density of the time series by combining optical data with radar (such as in [80]
and [4]), which would be particularly useful in cloud-prone areas.

Including other biophysical variables, such as the plant pigments—chlorophyll, anthocyanin and
carotenoids—could thus improve the classification accuracy. Leaf pigment concentration, such as
chlorophyll, would add complementary information for the classification and, therefore, new possible
windows of separability. All bands around the red-edge have been shown to be useful in assessing
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vegetation condition, specifically canopy chlorophyll content. For example, Verrelst et al. [81] tested a
machine learning regression algorithm for biophysical variable retrieval and reached the 10% precision
required by end-users in the estimation of chlorophyll.

6. Conclusions

Using biophysical variables as a common unit to combine multi-sensor time series is a sensible
way to increase the observation frequency and to foster the re-utilization of land cover and crop type
ground data. Currently, more than ten international high spatial resolution resolution satellites, such as
Landsat, SPOT, China-Brazil Earth Resources Satellite (CBERS) and the Huan Jing 1 (HJ1) satellite,
could be combined to increase the temporal frequency. This paper proposes to exploit high spatial and
temporal resolution multi-sensor time series for land cover classification with a focus on agricultural
classes, as they are more dynamic. Based on a radiative transfer model and neural networks, LAI,
white-sky FAPAR, black-sky FAPAR and FCOVER were retrieved with an RMSE of 0.49, 0.1, 0.12, 0.15
units, respectively. The retrieval was coherent between sensors and the average biophysical time series
matching the temporal patterns of the considered classes. However, the pixel-level signal-to-noise ratio
decreased for biophysical variables, especially LAI, compared to NDVI. Classifications with structural
biophysical variables reached end-of-season overall accuracies ranging from 73%–77% compared to
84 and 82% with the spectral bands and NDVI, respectively. The additional noise observed in the
biophysical variable time series substantially affected the classification accuracy: classes, such as corn,
with a high signal-to-noise ratio and a low RMSE, achieved similar accuracies with biophysical variables
or with spectral bands. FCOVER appears to be the most promising biophysical variable for land cover
and crop type classification. Selecting observations at key phenological events (peaks of vegetation for
winter and summer crops) and focusing on crop classes that are more dynamic and for which biophysical
variables are more meaningful represent two ways of increasing the classification accuracy. Further
developments of the method would include providing smoother biophysical variable time series, as well
as integrating biophysical variables on the plant pigments, such as chlorophyll, jointly might improve
the classification.
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