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Abstract

Next-generation sequencing opened up new possibilities in phylogenetics; however, choosing an appropriate method of
sample preparation remains challenging. Here, we demonstrate that restriction-site-associated DNA sequencing (RAD-
seq) generates useful data for phylogenomics. Analysis of our RAD library using current bioinformatic and phylogenetic
tools produced 400� more sites than our Sanger approach (2,262,825 nt/species), fully resolving relationships between
18 species of ground beetles (divergences up to 17 My). This suggests that RAD-seq is promising to infer phylogeny
of eukaryotic species, though potential biases need to be evaluated and new methodologies developed to take full ad-
vantage of such data.

Key words: phylogenomics, next-generation sequencing, restriction-site associated DNA sequencing, empirical data,
Insecta, Carabidae.

Next-generation sequencing opened up new possibilities for
phylogenetics, allowing rapid and cost-effective generation of
millions of reads from different loci on nonmodel species;
however, choosing an appropriate method of library con-
struction remains challenging. Consequently, Sanger sequenc-
ing of a few genes is still widely used to infer species
phylogenies (McCormack et al. 2013). Sequencing complete
eukaryotic genomes to infer species phylogenies remains ex-
pensive, time consuming, and unrealistic. Sequencing mito-
chondrial genomes is more affordable, but trees can be
misleading due to introgression and heteroplasmy. Thus,
methods based on reduced representations of the nuclear
genome appear most adequate to generate large amounts
of data across many individuals at reasonable costs.

Restriction-site-associated DNA sequencing (RAD-seq,
Baird et al. 2008; supplementary fig. S1, Supplementary
Material online) has been used to infer the recent evolution-
ary history (<3 My) of few organisms (e.g., Jones et al. 2013;
Nadeau et al. 2013). However, with increasing genetic dis-
tances, mutations in the restriction sites may reduce the
number of orthologous loci, making RAD-seq inappropriate
to infer deeper relationships (McCormack et al. 2012).
Conversely, recent in silico studies suggested that a sufficient
number of markers could be obtained from distant species
(up to 60 My old, Rubin et al. 2012). Here, we empirically
tested this prediction by comparing the power of Sanger and
RAD sequencing approaches to resolve relationships between
18 nonmodel species of ground beetles (Carabus), whose

divergences ranged from 1.2 to 17 My (supplementary table
S1, Supplementary Material online).

Details regarding data generation and analysis are de-
scribed in the supplementary materials, Supplementary
Material online.

Sanger—After a lengthy process of screening loci for vari-
ability, primer design and PCR optimization, maximum like-
lihood (ML) analyses of sequences from three mitochondrial
and six nuclear markers led to poorly resolved and conflicting
topologies, highlighting possible mitochondrial introgression
between species (fig. 1A and B).

RAD-seq—After 4 days of library preparation following the
protocol by Etter et al. (2011) (PstI enzyme), 2 weeks of se-
quencing on one lane of a HiSeq 2000 flowcell and a week of
data processing on a standard computer (using Stacks;
Catchen,et al. 2011), we obtained 400� the volume of
Sanger data and 270� more informative sites. Our data set
resulted from a stringent loci selection to ensure for homol-
ogy and minimize the amount of missing data. More than
half of the individuals should have sequences for a loci to be
included in our analysis, and the number of mismatches al-
lowed when merging loci from all individuals varied from 4 to
10 (parameter n, cstacks)

Whatever the value of n, ML analysis of the RAD-seq
data sets (up to 25,425 loci, i.e., one every 12,000 nt, sup-
plementary table S2, Supplementary Material online) pro-
duced the same fully resolved topology (fig. 1C and
supplementary fig. S2, Supplementary Material online),
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different from the nuclear and mitochondrial Sanger trees.
These two last topologies were rejected by statistical tests
(P< 0.001). Although significant loss of RAD markers oc-
curred for the oldest DNA sample (78.3%–75.4%, Carabus
olympiae, extraction performed in 1998), enough signal re-
mained for its placement. Loss of RAD markers also oc-
curred with increasing genetic distances, though enough
information was retained to accurately resolve the relation-
ships within Carabus (Deuve et al. 2012). When n was set
to 10, more polymorphic loci were included and missing
data reached 68.6% for a divergence of 17 My (fig. 1C and
supplementary fig. S2, Supplementary Material online).
Preliminary tests are thus recommended to optimize the
amount of allowed mismatches within a RAD locus to
avoid loci overkill while ensuring loci homology across in-
dividuals. Nevertheless, percentages of missing data were
comparable between Sanger and RAD-seq data sets
(fig. 1D, supplementary table S2, Supplementary Material

online). Furthermore, missing data did not bias reconstruc-
tion, as topologies obtained from the complete matrices
(loci shared by all 18 species) were similar to those inferred
from the incomplete matrices (supplementary fig. S3,
Supplementary Material online).

Overall, this study illustrates the power of RAD-seq to infer
shallow relationships, and we believe that this approach may
be generalized to many groups (~90% of the insect genomes
range between 100 and 800 Mb, supplementary fig. S5,
Supplementary Material online). Here, we used only one par-
tition and relied on current evolutionary models to analyze
RAD-seq data. Testing alternative partitioning schemes or
developing more appropriate models to deal with the speci-
ficities of such data (e.g., modeling gain/loss of restriction
sites) might be promising to improve inferences.

Finally, RAD-seq definitely opens new avenues for phylo-
geneticists but possibly also a Pandora’s box of analytical
issues. These issues will need to be explored to avoid being

FIG. 1. ML phylogenies (RAxML 7.2.8-ALPHA, Stamatakis 2006; 10,000 bootstrap replicates) (A) from the six nuclear (3,659 bp) and (B) three mito-
chondrial (1,925 bp) markers sequenced using Sanger technology. Nodes with bootstrap supports (BP)< 50% are collapsed (see also supplementary fig.
S4, Supplementary Material online). Dashed arrows show possible cases of mitochondrial introgression. (C) ML phylogeny (RAxML, 10,000 bootstrap
replicates, ncstacks = 10) inferred from the RAD data sets (the same topology was recovered whatever the value of n, see supplementary fig. S2,
Supplementary Material online). BP = 100 for all nodes but three (stars) for which BP = 99. Synapomorphies supporting nodes as calculated with
MacClade 4.08 (Maddison DR and Maddison WP 2005) are between brackets. Node mean ages, taken from Deuve et al. (2012), and missing data are
given as follows: ages/percentage of missing data. (D) Comparison between Sanger and RAD-seq data sets. Percentages of missing data were obtained
using Geneious 6.1.6. (Drummond et al. 2010). Percentages of variable and informative sites were calculated using MEGA 5.2.2 (Tamura et al. 2011). See
details for all data sets in supplementary table S2, Supplementary Material online.
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misled by systematic (Lemmon EM and Lemmon AR 2013) or
other biases (Arnold et al. 2013), which may differ depending
on the level of genetic divergence among samples.

Supplementary Material
Supplementary figures S1–S5 and tables S1 and S2 are avail-
able at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org.)
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