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At low density, Bacillus cereus cells release a large variety of proteins into the extracellular
medium when cultivated in pH-regulated, glucose-containing minimal medium, either
in the presence or absence of oxygen. The majority of these exoproteins are
putative virulence factors, including toxin-related proteins. Here, B. cereus exoproteome
time courses were monitored by nanoLC-MS/MS under low-oxidoreduction potential
(ORP) anaerobiosis, high-ORP anaerobiosis, and aerobiosis, with a specific focus
on oxidative-induced post-translational modifications of methionine residues. Principal
component analysis (PCA) of the exoproteome dynamics indicated that toxin-related
proteins were the most representative of the exoproteome changes, both in terms of
protein abundance and their methionine sulfoxide (Met(O)) content. PCA also revealed
an interesting interconnection between toxin-, metabolism-, and oxidative stress–related
proteins, suggesting that the abundance level of toxin-related proteins, and their Met(O)
content in the B. cereus exoproteome, reflected the cellular oxidation under both
aerobiosis and anaerobiosis.

Keywords: exoproteome, Bacillus cereus, shotgun proteomics, methionine oxidation, toxins

Introduction

The gram-positive, motile bacterium, Bacillus cereus, is a well-known agent of gastrointestinal (GI)
tract infection (Stenfors Arnesen et al., 2008; Bishop et al., 2010). The critical step of infection
occurs in the small intestine, where B. cereus encounters carbohydrate starvation conditions and
changing oxygenation and oxidoreduction potential (ORP) conditions (Guyton, 1977; Moriarty-
Craige and Jones, 2004; Fabich et al., 2008; Marteyn et al., 2010). During the course of infection,
the survival and growth of B. cereus depend on the secretion and release into the extracellular com-
partment of multiple proteins (Gilois et al., 2007; Gohar et al., 2008). The B. cereus ATCC 14579
exoproteome, which comprises the secreted proteins and all the other released proteins found in the
pathogen’s extracellular surroundings (Armengaud et al., 2012), was recently established for cells
grown under conditions considered to mimic those encountered in the human intestine, i.e., low-
ORP anoxic conditions, high-ORP anoxic conditions, and oxic conditions, in pH-regulated culture
using glucose as the sole carbohydrate source (Clair et al., 2010). The B. cereus exoproteome is dom-
inated by toxin-related proteins (∼35% of the exoproteome, as estimated by spectral count) and
degradative enzymes plus adhesins (∼35% of the exoproteome), which are all recognized as major
virulence factors (Stenfors Arnesen et al., 2008; Ingmer and Brondsted, 2009; Kamar et al., 2013;
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Ramarao and Sanchis, 2013). The other components of the
B. cereus exoproteome comprise components of the flagellar
apparatus (∼15% of the exoproteome), as well as an impor-
tant number of proteins that lack export signal sequences,
accounting for 15% of the exoproteome. These proteins, found
more abundantly in the cytoplasm, include metabolic enzymes
(mainly glycolytic enzymes), translation-related proteins, molec-
ular chaperones, and antioxidant enzymes such as catalase,
hydroperoxide reductase, and superoxide dismutase. Several
studies have reported the moonlighting activities of these pro-
teins, which are involved in bacterial virulence. Most enzymes
in the glycolytic pathway, tricarboxylic acid (TCA) cycle and
glyoxylate cycle have adhesive properties that aid in interacting
with the host extracellular matrix. The most common moon-
lighting activity of bacterial molecular chaperones is to acti-
vate (or inhibit) mononuclear phagocyte cytokine synthesis.
Antioxidants produced by Mycobacterium bovis suppress host
immune response (Sadagopal et al., 2009; Vellasamy et al., 2009;
Henderson and Martin, 2011).

B. cereus adjusts its primary metabolism to grow efficiently
under aerobic respiratory and anaerobic fermentative conditions
and to adapt to low-ORP conditions (Duport et al., 2006; Clair
et al., 2012). In addition, as for all other bacteria, B. cereus under-
goes a major metabolic switch from primary metabolism (expo-
nential growth) to secondary metabolism (stationary phase) in
response to nutrient starvation or oxidative stress (Nieselt et al.,
2010). Aerobic respiration relies on dioxygen to drive ATP pro-
duction via the respiratory chain (Duport et al., 2006). One caveat
is that this process is accompanied by a major production of
reactive oxygen species (ROS) (Gonzalez-Flecha and Demple,
1995; Brynildsen et al., 2013; Imlay, 2013). In addition to the res-
piratory chain, endogenous ROS can be generated in response
to starvation (nutrient stress) as a secondary stress (Mols and
Abee, 2011). Under anaerobiosis, B. cereus catabolizes glucose-
using, fermentative pathways, which are not recognized as high-
ROS-producing pathways under normal conditions. However,
low-ORP conditions can induce ROS production in response to
reductive stress (Clair et al., 2012). Bacteria use a large spectrum
of ROS scavenging systems, including low-molecular-weight
molecules, metabolites, and antioxidant enzymes, to maintain
ROS at non-toxic levels and to prevent macromolecule damage
(Chi et al., 2011; Mailloux et al., 2011). Amino acid residues
in proteins represent one of the major targets of ROS and cel-
lular oxidants. The two amino acids that are the most prone
to oxidative attack by ROS are cysteine and methionine (Met),
both of which contain susceptible sulfur atoms. However, Met
residues are the most susceptible to oxidation by almost all forms
of ROS (Vogt, 1995; Stadtman et al., 2005). Met oxidation pro-
duces a stable product, methionine sulfoxide, Met(O), which can
be detected readily by mass spectrometry through a mass increase
of 15.9949 atomic mass units. Thus, Met oxidation might serve as
a sensitive marker for proteins oxidized by ROS.

The objective of the present study was to define the exopro-
teome time dynamics of B. cereus grown in three ORP conditions,
and to assess by tandem mass spectrometry the oxidation level
of the secreted proteins, which should be correlated with the
cellular oxidation level. For this purpose, we collected B. cereus

supernatant at three points of the time-growth curve, i.e., during
early exponential growth phase (EE), at the late exponential
growth phase (LE) signifying the transition between exponen-
tial and stationary phases, and during the stationary phase (S).
This was performed for cells grown under aerobiosis, as well as
under high- and low-ORP anaerobiosis. Time-course changes
in terms of exoprotein abundance level and the Met(O) pep-
tide content of exoproteins were assessed by high-throughput
nanoLC-MS/MS (Clair et al., 2010). The repertoire of exper-
imentally confirmed exoproteins of B. cereus presented here
is the largest ever reported, and more interestingly provides
new insights into the interplay between toxin-related protein
secretion and intracellular ROS production.

Materials and Methods

B. cereus Growth Conditions
B. cereus ATCC 14579 cells were grown in a batch bioreactor
on MOD medium supplemented with 30 mM glucose as the
carbon source (Rosenfeld et al., 2005) and buffered at pH 7.2
with 2 M KOH. The bioreactor was an autoclavable 3-liter glass
BioFlo R©/CelliGen R©115 (New Brunswick Scientific) with a work-
ing volume of 2 liters. It was equipped with a polarographic oxy-
gen electrode (Mettler Toledo), a pH electrode (Mettler Toledo),
and a redox-combined electrode (AgCl, Mettler Toledo). Ster-
ile gas was fed through the culture at a constant flow set to
20 mL/h. For oxic conditions, oxygen saturation was maintained
at 100% by automatic adjustment of the stirring speed. For anoxic
conditions, a dissolved oxygen tension value (pO2) of 0% was
obtained with a constant flow of pure nitrogen (high- ORP condi-
tion) or hydrogen gas (low-ORP condition). Each bioreactor was
inoculated with a subculture grown for 8 h (exponential growth
phase) in glucose-containing MOD medium under aerobiosis or
anaerobiosis. Cells from the inocula were harvested by centrifu-
gation (7000 × g for 5 min at room temperature), washed in fresh
medium, and then diluted to achieve an initial optical culture
density at 600 nm of 0.02. Batch cultures were carried out at 37◦C
under a 300 rpm agitation speed.

Exoproteome Preparations and Trypsin In-Gel
Proteolysis
For each of the three growth conditions, three independent
growth cultures in a fermenter were carried out, resulting in bio-
logical samples in triplicate for each time point. Optical density,
ORP, and pO2 were monitored every 30 min during the bacterial
growth. The growth rate was determined from the absorbance
data. A 200-mL sample of the culture was systematically taken
at the exponential, transition, and stationary phases for the nine
bioreactor cultures. Cell pellets and extracellular media were
separated by centrifugation at 10,000 × g for 10 min at 4◦C.
The extracellular media were successively filtered through acetate
membrane filters (Sartorius) with pore sizes of 0.85, 0.45, and
0.20 μm, respectively. Proteins from the 27 samples were pre-
cipitated by adding 10 mL trichloroacetic acid solution at 100%
(w/v) to 40 mL filtered solution. The precipitated material was
recovered after overnight incubation at 4◦C by centrifugation at
7000 × g for 15 min at 4◦C, and the extracellular proteins in the
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resulting pellet were then dissolved in 100 μL NUPAGE R© LDS
(Lithium dodecyl sulfate) sample buffer 1X (Invitrogen) supple-
mented with β-mercaptoethanol. Samples were boiled for 5 min
at 95◦C, sonicated for 5 × 5 s in a transonic 780H sonicator
and loaded on NuPAGE R© Novex 4–12% Bis-Tris gels (Invitro-
gen) that were run for a short 5-min migration at 200 V using
NuPAGE R© MES supplemented with NuPAGEantioxidant as the
running buffer (Hartmann and Armengaud, 2014). This avoids
any artifactual protein oxidation. Gels were stained with Sim-
ply Blue SafeStain, a ready-to-use Coomassie G-250 stain from
Invitrogen. After overnight destaining, the single band of each gel
lane was cut and divided into 2 fractions, each corresponding to a
3×4 mm2 polyacrylamide band. The 54 resulting polyacrylamide
gel pieces were processed for further destaining, reduction and
iodoacetamide treatments, and in-gel proteolysis with trypsin
(Roche) in the presence of ProteaseMax additive (Promega), as
previously described (De Groot et al., 2009; Clair et al., 2010).
The two digests obtained from the same sample were pooled as a
single peptide mixture. Exponential phase samples were injected
without being diluted, due to their lower protein content, while
the samples collected at the transition and stationary phases were
diluted 1:50 in 0.1% trifluoroacetic acid prior to nanoLC-MS/MS
analysis.

Tandem Mass Spectrometry
NanoLC-MS/MS experiments were performed using an LTQ-
Orbitrap XL hybrid mass spectrometer (ThermoFisher) coupled
to an UltiMate 3000 nRSLC system (Dionex ThermoFisher),
in similar conditions to those previously described (Dedieu
et al., 2011). Peptide mixtures were loaded and desalted on-
line on a reverse-phase precolumn (Acclaim PepMap 100 C18,
5 μm bead size, 100 Å pore size, 300 μm i.d × 5 mm (Dionex-
ThermoFisher). Peptides were then resolved on a Dionex
nanoscale Acclaim Pepmap100 C18 capillary column (3 μm bead
size, 100 Å pore size, 75 μm i.d. × 15 cm) at a flow rate of
0.3 μL/min using a 90 min. gradient from 4 to 40% solvent B
(0.1% HCOOH/100% CH3CN) prior to injection into the mass
spectrometer. Solvent A was 0.1% HCOOH/100% H2O. Full-scan
mass spectra were measured from m/z 300 to 1800 with the LTQ-
Orbitrap XL mass spectrometer in data-dependent mode using
TOP3 strategy. In brief, a scan cycle was initiated with a full scan
of high mass accuracy in the Orbitrap, followed by MS/MS scans
in the linear ion trap on the three most abundant precursor ions,
with 60 s dynamic exclusion of previously selected ions.

Protein Identification
Peak lists from the tandem mass spectrometry raw data were
generated with the MASCOT DAEMON software (version
2.3.2) from Matrix Science using the extract_msn.exe data
import filter from the Xcalibur FT package (version 2.0.7)
proposed by ThermoFisher. Data import filter options were
set as follows: at 400 (minimum mass), 5000 (maximum
mass), 0 (grouping tolerance), 0 (intermediate scans), and
1000 (threshold). Using the MASCOT search engine (version
2.3.02) from Matrix Science, we searched all MS/MS spectra
against an in-house polypeptide sequence database contain-
ing the sequences of all annotated proteins encoded by the B.

cereus ATCC 14579 chromosome (NC_004722) and plasmid,
pBClin15 (NC_004721), supplemented with 44 new proteins
discovered by a previous proteogenomic analysis (unpublished
data). This database comprises 5299 polypeptide sequences, total-
ing 1,464,675 amino acids. Searches for tryptic peptides were
performed with the following parameters: full trypsin speci-
ficity, a mass tolerance of 5 ppm on the parent ion and 0.6 Da
on the MS/MS, static modifications of carboxyamidomethylated
Cys (+57.0215), and dynamic modifications of oxidized Met
(+15.9949). The maximum number of missed cleavages was set
at 2. All peptide matches with a peptide score below a p-value of

FIGURE 1 | Growth curves of B. cereus in pH-regulated batch culture
under aerobiosis, high-ORP anaerobiosis, and low-ORP anaerobiosis.
The results from biological triplicate curves are indicated. Optical densities
(OD600 nm) and ORP values are shown in blue and red, respectively. Samples
for exoproteomic analyses were taken during the exponential growth phase
(EE), late growth phase (LE), and stationary growth phase (S), as indicated by
black arrows.
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0.05 were parsed using the IRMa 1.28.0 software (Dupierris et al.,
2009). A protein was considered to be validated when at least two
different peptides were detected in the same sample. The false-
positive rate for protein identification was estimated using the
appropriate decoy database as below 0.1% with these parameters.

Label-free Protein Quantification and Statistical
Analysis
The number of MS/MS spectra per protein (spectral counts)
was extracted for the 27 samples and used for protein quanti-
tation. The normalized spectral abundance factor (NSAF) was
calculated by dividing the spectral count for each observed pro-
tein by the polypeptide theoretical mass, as described previously
(Christie-Oleza et al., 2012). Principal component analysis (PCA)
was carried out with R version 3.0.1 (http://cran.r-project.org/
bin/windows/base/old/3.0.1/). The data analyses were performed
with “FactoMineR,” a package written in R dedicated to mul-
tivariate exploration data analysis (Lê et al., 2008). PCA was
carried out with biological replicates of each growth phase as
individuals and the spectral counts of proteins as quantitative
variables. The correlation coefficients between the variable and
the coordinates of the individuals on the axis were calculated
for all the variables, dimension by dimension. The significance
of each correlation coefficient was calculated using a Student’s
t-test. Variables, for which the p-value associated with this test
was smaller than 0.05, are reported in Table S4 in Supplementary
Material.

Proteomic Data Repository
The mass spectrometry proteomics data have been deposited
in the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the PRIDE partner repository (http://
www.ebi.ac.uk/pride/), with the dataset identifier PXD001482
and DOI 10.6019/PXD001482.

Results and Discussion

Comparative Exoproteome, Large Survey
Growth Kinetics of B. cereus ATCC 14579
Bacteria were grown in pH- and temperature-regulated biore-
actors using glucose as the sole carbon source (pH 7, 37◦C,
30 mM glucose). Growth was investigated under aerobiosis
(pO2 =100%) and anaerobiosis (pO2 =0%). Two different ORP
conditions were obtained under anaerobiosis: a high-ORP anoxic
condition (initial ORP =130 ± 20 mV) and a low-ORP anoxic
condition (iORP = −390 ± 35 mV), this latter condition being
achieved under flux of hydrogen, a non-toxic reducing agent.
Three biological replicates were performed per culture condi-
tion. Figure 1 shows the B. cereus growth curves and the extra-
cellular ORP profiles established for the three culture condi-
tions. As reported previously (Clair et al., 2012), B. cereus cells
grew more slowly and produced less biomass in anoxic fermen-
tative conditions than in oxic respiratory conditions. Changes
in the initial extracellular ORP did not alter the growth rate
and biomass production under fermentative anoxic conditions
(Table S1 in Supplementary Material). However, the extracel-
lular ORP profile differed significantly in the three conditions.

Under aerobiosis (initial ORP= 210± 13 mV), the ORP dropped
rapidly to its minimal value (final ORP = 184 ± 11 mV). This
reflects the rapid consumption of dissolved oxygen through res-
piration, to generate ATP for growth (Rosenfeld et al., 2005).
The ORP measured under high-ORP anoxic fermentative condi-
tions (iORP = 130 ± 20 mV) decreased concomitantly with the
biomass increase to a reach a minimal value of −106 ± 16 mV,
while under low-ORP conditions the ORP remained constant
(iORP = −390 ± 35 mV and fORP = −410 ± 10 mV). Clearly,
the reducing capacity of B. cereus cells is higher under high-ORP
anaerobiosis than under low-ORP anaerobiosis (Le Lay et al.,
2015). To examine the changes in exoproteome profiles associ-
ated with growth, samples were taken at the time points indicated
by the arrows in Figure 1, i.e., during early exponential growth
phase (EE), late exponential growth phase (LE), and stationary
phase (S). Proteins from the 27 filtered supernatants were con-
centrated by precipitation with trichloroacetic acid. The resulting
samples were then dissolved into NuPAGE LDS sample buffer
supplemented with β-mercaptoethanol to prevent protein oxida-
tion. Samples were loaded on NUPAGE R© precast gels that were
run for a short migration time only (Hartmann and Armen-
gaud, 2014). NUPAGE R© antioxidant was added in the upper
buffer chamber to maintain the reduced state of the proteins dur-
ing the run and avoid any protein oxidation. Each sample was
excised from the gel as a polyacrylamide band. Trypsin proteol-
ysis was carried out in-gel. The resulting peptides were analyzed

FIGURE 2 | Venn diagram–based comparison of the exoproteomes
identified in the three growth conditions. (A) Number of identified proteins
in the exoproteomes obtained from aerobically, and high-ORP and low-ORP
anaerobically grown cells. (B) Distribution of proteins specifically detected in
one growth stage (EE, LE, S) by function of the growth conditions.
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by shotgun tandem mass spectrometry (Clair et al., 2010). A total
of 120,470 MS/MS spectra were detected when considering the
three biological repeats. Among them, 50,828 were assigned to B.
cereus peptide sequences (Table S2 in Supplementary Material). A
total of 392 proteins were identified based on the confident detec-
tion of at least two different peptides (Table S3 in Supplementary
Material).

New Mass Spectrometry–Identified Exoproteins
Compared to previous large shotgun proteomic studies on exo-
proteomes from B. cereus ATCC 14579 (Clair et al., 2010;
Laouami et al., 2014), a total of 32 proteins were detected for
the first time. These 32 new mass spectrometry–certified pro-
teins account for 11% of the exoproteome, as assessed by the
global sum of their normalized spectral count abundance fac-
tors (NSAF) cumulated over the 27 samples (Table S3 in Supple-
mentary Material). Table 1 shows the sequence similarity–based
functional annotation of these proteins and their abundances
under aerobiosis, high-ORP- and low-ORP anaerobiosis. The 32
proteins could be categorized into three groups. Group A com-
prises 11 proteins that were not annotated in the first anno-
tation report of the genome (Ivanova et al., 2003), but have
been indicated by a proteogenomic study (unpublished data).
Group B comprises 9 proteins that did not accumulate in EE
growth phase in all the conditions tested, which explains why
they were not detected in our previous study focused on this
growth stage (Clair et al., 2010; Laouami et al., 2014). The pro-
tocol used in the present study probably favored the detec-
tion of the 12 other proteins (group C), which were found in
very poor abundance. Among the new proteins identified, we
identified a protein exhibiting high sequence similarity with
the three putative enterotoxins, EntA, EntB, and EntC (Clair
et al., 2010), and that we named EntD (unpublished results).
Like EntD, 13 proteins comprised a predicted peptide signal.
These were classified into cell-wall/cell-surface biogenesis, degra-
dation/adhesion, and transport functional groups on the basis
of data available in the literature and/or using the information

available in the Kegg classification (Table S3 in Supplemen-
tary Material). The other proteins did not contain typical pep-
tide signals and were classified as flagella components (BC1641
and BC1642), enzymes of the central glycolytic pathway (TpiA-
BC5137 and Pgk-BC5138), enzymes of amino acid–related
metabolic pathways (ArgC and GlnA), chaperones (BC1161-
PrsA2), translation/transcription-associated proteins (BC1177),
and proteins with unknown functions (BC4122 and BC1649).

Insights into the Core-exoproteome of B. cereus
Figure 2A, shows a Venn diagram comparing the exoproteomes
identified in the three different growth conditions. In this case,
229 of the 392 proteins identified were found to accumulate
in the extracellular milieu, whatever the redox growth condi-
tions. Regarding this feature from a quantitative perspective, this
core proteome accounts for 89% of the total NSAF. Besides this
core exoproteome, 54, 12, and 16 proteins were found exclu-
sively in aerobically, high-ORP- and low-ORP–anaerobically
grown cells, respectively. Globally, these proteins are poorly
abundant, explaining why some of them were detected in the
EE growth phase and not in the LE and S growth phases,
especially under aerobiosis (20/54) and low-ORP anaerobio-
sis (8/16), as shown in Figure 2B. However, 5 and 2 proteins
may be considered as fully representative of oxic and low-ORP
anoxic conditions, respectively, because they were systemati-
cally detected in the three growth phases. The five aerobiosis-
specific proteins are: the β-subunit of pyruvate dehydrogenase
E1 (PdhB; BC3972), which catalyzes the decarboxylation of
pyruvate into acetyl-CoA in oxic conditions; a ribosomal pro-
tein (RpsH, BC0145); a putative cell-surface protein (BC4549);
a scaffold protein (BC1893); and a putative ferrichrome ABC
transporter substrate-binding protein (BC5380). The two pro-
teins that specifically accumulated under low-ORP anaerobiosis
are a putative D-3-phosphoglycerate dehydrogenase (BC3248)
and a putative nucleoside-binding protein (BC3791). No pro-
tein was found to be specifically assigned to high-ORP anoxic
conditions.

FIGURE 3 | Relative abundance of MS/MS-detected polypeptides
under aerobiosis, high-ORP anaerobiosis, and low-ORP
anaerobiosis. Ratio expressed in percentage of the total numbers of

polypeptides (CDS), spectral counts (SC), and protein abundance normalized
by the corresponding molecular weight (NSAF) per functional category are
represented graphically by stacked bars for each condition.
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Functional Insights into the Pan-Exoproteome of
B. cereus
Figure 3 shows the whole set of exoproteins that were detected
for the three growth phases in each growth condition and were
classified into six main functional categories. The group ‘‘Others”
comprises non-classical secreted proteins (translation, transcrip-
tion, cell division, rod shape–related proteins), extracellular com-
ponent of transport systems, proteins that are usually anchored
to the bacterial membrane, and proteins with no function yet
identified. Remarkably, more than 40% of the identified exopro-
teins (CDS) were classified in this group. Among these, 27 did
not show any significant similarities with any known proteins,
as determined by BLAST searches against the NCBInr database.
Therefore, these could be considered as lineage-specific pro-
teins for the B. cereus species (for more details see Table S3 in
Supplementary Material). The number of CDS assigned to the

toxin-related group is much lower (10-fold) than to the “Oth-
ers” group, but the toxin-related group was more highly rep-
resented in terms of spectral counts (SC) and NSAF, and thus
abundant whatever the condition. Toxin-related group repre-
sented the largest ratio of the MS/MS-detected peptides, with a
range from 26 to 33%. Like the toxin-related group, the motil-
ity and stress/chaperone-related groups contain a low number
of proteins. However, these two groups represent a lower abun-
dance fraction of the exoproteome than the toxin-related group
in the three conditions. Flagella components, usually anchored
to the membrane, are the main contributors to the motility group
(Table S3 in Supplementary Material). Their presence in the exo-
proteome could be explained by their fragility. When shaking
the culture or removing cells by filtration or centrifugation, they
can be easily broken into small pieces. Like the flagella compo-
nents, the proteins belonging to the group comprising stress-

FIGURE 4 | Principal component analysis of the B. cereus
exoproteome. (A) Fractions of the variances borne by axes 1–8. (B)
Growth phase contributions to the first two principal components (PC1
and PC2), under low-ORP anaerobiosis, high-ORP anaerobiosis, and
aerobiosis. Protein clusters assigned to growth phases were indicated by
(i) the same capital letter (A) when they did not show abundance level

change in these growth phases, or (ii) different capital letters (A,B) when
the proteins showed negative correlation with abundance level changes.
(C) Relative number of proteins assigned to toxins, degradation/adhesion,
motility, metabolism, stress/chaperone, and “others” functional groups in
protein clusters determined by PCA. Each functional group is represented
by a color.
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and chaperone-related proteins (such as catalases, superoxide
dismutase, GroEL, Dnak, etc.) did not comprise any typical pep-
tide signal. However, they are known as typical components of
the exoproteome of pathogens (Armengaud et al., 2012). Adhe-
sion and degradative proteins belong to an abundant fraction of
the B. cereus exoproteome in the three conditions. The num-
ber of proteins dedicated to adhesion functions was lower than
those assigned to degradation and the adhesion-related group
was also less detected in terms of SC (Table S3 in Supplementary
Material). The metabolism group comprises proteins related to
central, amino acid, lipid, and fatty acid metabolism. The former
subgroup is the most abundant and the latter the least abun-
dant in terms of spectral counts (Table S3 in Supplementary
Material). Specifically, Figure 3 shows that the percentages of
proteins belonging to the stress/chaperone-related and motility-
related groups were higher under aerobiosis than under anaero-
biosis, especially under high-ORP anaerobiosis. In contrast, the
percentages of toxin-, degradative- and adhesion-related pro-
teins were higher under anaerobiosis than under aerobiosis.
The genes/operons involved in flagellum biosynthesis, enzymatic
defenses against stress, and virulence factors are known to be
tightly regulated in response to the presence or absence of dioxy-
gen (Evans et al., 2011). This may contribute to the changes
observed in the exoproteome.

Principal Component Analysis of B. cereus
Exoproteome Dynamics
PCA was carried out to simplify the exoproteome time-course
data of B. cereus (Ivosev et al., 2008; Jayapal et al., 2008), follow-
ing a previous procedure (Clair et al., 2013). We chose to exclude

from the original datasets (259 proteins, Table S2 in Supplemen-
tary Material) the proteins found in less than two out of the three
replicates for each growth phase sample in each condition. Con-
sidering the three growth phase–related observations (EE, LE,
and S) and the three biological replicates for each observation,
datasets for PCA comprised 9 readouts for 88 proteins under low-
ORP anaerobiosis, 106 proteins under high-ORP anaerobiosis,
and 114 proteins under aerobiosis. These datasets and analytical
details are given in Table S4 in Supplementary Material.

Overview of Exoproteome Dynamics
PCAs extracted two principal components (PC1 and PC2), which
explained ∼60% of the total variance in the three conditions
(Figure 4A). Scores and loadings of PC1 and PC2 are differ-
ent in the three growth conditions (Figure 4B). This indicates
that PCA extracted two time-course clusters (represented by PC1
and PC2) that did not contribute equally to the dynamics of
the exoproteome in each condition. Figure 4B shows that, under
low-ORP anaerobiosis, PC1 represented the tendency of some
proteins (co-clustered in CL1A) to be similarly abundant in the
EE and S growth phases. PC2 negatively correlates the abun-
dance level decrease of some proteins (CL2A) between the EE
and S growth phases with the abundance level increase of other
proteins (CL2B). Under high-ORP anaerobiosis PC1 showed the
same features as PC2 under low-ORP anaerobiosis and identified
two protein clusters, named CL1A and CL1B. PC2 negatively cor-
relates the absence of abundance level change of some proteins
(CL2A) between the EE and S growth phases with the abun-
dance level decrease of some proteins (CL2A) between the EE
and LE growth phases. Under aerobiosis, PC1 represented the

TABLE 2 | Clustering of toxin-related proteins during B. cereus growth under low- and high-ORP anaerobiosis and aerobiosis.

Clustering of toxin-related proteinsa

Gene Protein name Low-ORP anaerobiosis High-ORP anaerobiosis Aerobiosis

CL1Ab CL2A CL2B CL1A CL1B CL2A CL2B CL1A CL1B CL2A CL2B

BC1110 CytK

BC5239 EntA

BC2952 EntB

BC0813 EntC

BC3716 EntD

BC1953 EntFM

BC3101 HblB’

BC3102 HblB

BC3103 Hbl1

BC3104 Hbl2

BC5101 HlyI

BC3523 HlyII

BC1809 NheA

BC1810 NheB

BC1811 NheC

aBackground colors identify proteins that are co-clustered.
bClusters extracted from PCA and contributing to PC1 and PC2 were indicated as CL1 and CL2. The capital letters indicate sub-clusters of CL1 and CL2.
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same features as PC1 and PC2 under high- and low-ORP anaer-
obiosis, respectively and identified two clusters of proteins CL1A
and CL1B. PC2 negatively correlates the decrease in abundance
level of some proteins (CL2A) with the increase in abundance
level of other proteins (CL2B) between the EE and S growth
phases.

Distribution of Functional Groups inside Kinetic
Clusters of Proteins
All proteins contributing to the CL clusters extracted from PC1
and PC2 were assigned to one of the six functionally distin-
guished groups established in Figure 3. Figure 4C shows that,
under low-ORP anaerobiosis, stress/chaperone- and metabolism-
related proteins preferentially contributed to CL1A and toxin-
and motility-related proteins to CL2A. Under both high-ORP
anaerobiosis and aerobiosis, toxin-, motility-, metabolism-, and
stress/chaperone-related proteins preferentially contributed to
CL1A. However, CL1A co-clustered a higher number of toxin-
related proteins under high-ORP anaerobiosis while it clus-
tered a higher number of motility-, metabolism-, and stress-
related proteins under aerobiosis. Taken together, the results
show that toxin-related proteins displayed the highest functional-
group homogeneity compared to other functionally related pro-
teins in the three growth conditions. Specifically, PCA revealed
that the decrease in abundance level of the majority of toxin-
related proteins between EE and S growth phases was (i) uncor-
related with the change in abundance level of the majority of
metabolism- and stress-related proteins under low-ORP anaer-
obiosis, (ii) negatively correlated with the increase in abun-
dance level of less than ∼30% of metabolism-related proteins
under high-ORP anaerobiosis, and (iii) negatively correlated with
the increase in abundance level of more than 40 and 30% of
metabolism- and stress-related proteins, respectively, under aer-
obiosis. Studies of metabolic network structures have shown that
connected functional groups of proteins may contribute to a
common cellular process (Ravasz et al., 2002). Our data raise
the question of the role of toxins in B. cereus active growth,
i.e., in primary metabolism and possibly in cellular protection
against metabolism-related oxidative stress in respiring aerobic
cells.

Focus on the Dynamics of Toxin-Related Proteins
Table 2 lists the toxin-related proteins that contributed to CL2A
under low-ORP anaerobiosis and CL1A under high-ORP anaer-
obiosis and aerobiosis. The data show that the three hemolysin
BL (Hbl) components (HblL1, HblL2, and HblB) co-clustered
with HblB’, which is encoded by the hblB gene located down-
stream of the hblCDA operon (Clair et al., 2010), in the three
conditions. Co-clustering was also observed for the three non-
hemolytic enterotoxin (Nhe) components, which are encoded by
the nheABC operon (Lindback et al., 2004). Hbl and Nhe com-
ponents also co-clustered with (i) hemolysin II (HlyII) under
aerobiosis, (ii) EntB under both aerobiosis and low-ORP anaer-
obiosis, (iii) EntA and EntC under high-ORP anaerobiosis, and
(iv) cytotoxin K (CytK) and Hly I under both high- and low-ORP
anaerobiosis. In conclusion, Hbl and Nhe components may con-
stitute the core of the toxin-related clusters and the other proteins

constitute the growth condition variance with (i) HlyII represen-
tative of aerobic respiratory condition, (ii) CytK and HlyI rep-
resentatives of the anaerobic fermentative conditions, (iii) EntA
and EntC representatives of classical anoxic conditions (high-
ORP anaerobiosis), and (iv) EntB representative of both aero-
bic respiration and low-ORP anaerobic fermentation. These two
latter conditions generate endogenous oxidative stress, which is
counteracted by antioxidant systems. Among these, OhrRA was
found to regulate EntB (Clair et al., 2012). Consequently, EntB
could be a marker of oxidative stress–generating conditions.

Dynamics of the Met(O) Content of the B. cereus
Exoproteome
In all Gram-positive bacteria, the majority of extracellular pro-
teins need to remain unfolded to be translocated across the
plasma membrane, the plasma membrane being known to sup-
port the highest level of ROS production in the cell (Fisher,
2009; Schneewind and Missiakas, 2014). On the other hand, Met
residues in polypeptidic chains are more sensitive to oxidation
than Met residues in mature proteins, as Met residues are usu-
ally located in the hydrophobic core of proteins (Fliss et al.,

FIGURE 5 | Dynamics of exoproteome Met(O) content under low-ORP
anaerobiosis, high-ORP anaerobiosis, and aerobiosis. (A) The Met(O)
content was calculated as the percentage of the number of all detected Met(O)
peptides vs. the total number of MS/MS spectra. (B) Only the peptides
assigned to proteins that co-clustered in CLM1 (Table S6) were considered.
Data are the means of triplicate measures obtained from three independent
cultures in each growth condition at the EE, LE, and S growth phases.
Significant differences (p < 0.05 in Student’s t-test) between two growth
phases are indicated with asterisks.
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FIGURE 6 | Characteristics of the protein cluster CLM1
determined by PCA. Number of proteins assigned to toxins,
degradation/adhesion, motility, metabolism, stress/chaperone, and
“others” functional groups that co-clustered in CLM1 under

low-ORP anaerobiosis, high-ORP anaerobiosis, and aerobiosis. The
number of proteins with correlated (c) and uncorrelated (nc)
abundance levels and Met(O) content changes is indicated for
each growth condition.

TABLE 3 | Co-clustering of toxin-related proteins in CLM1 under low-ORP
anaerobiosis, high-ORP anaerobiosis, and aerobiosis.

Gene Protein name Clustering of toxin-related proteinsa

Anaerobiosis Aerobiosis

Low-ORP High-ORP

BC1110 CytK

BC5239 EntA cb nc

BC2952 EntB nc nc c

BC0813 EntC c nc

BC1953 EntFM nc

BC3102 HblB nc nc nc

BC3103 HblL1 c c

BC3104 HblL2 c c c

BC3101 HblB’ nc nc nc

BC5101 HlyI

BC1809 NheA c c nc

BC1810 NheB c c c

BC1811 NheC

aBackground colors identify proteins that are co-clustered.
bThe symbols c and nc indicate that the Met(O) peptide content change of a protein is
correlated or uncorrelated, respectively, with its abundance level change during growth.

1983; Drazic and Winter, 2014). For these reasons, intracellu-
lar ROS may cause significant oxidation of exoproteins prior to
their translocation. Insofar as Met(O) residues are not reduced
back to Met, and there is no ROS source in the extracellular
medium, the Met(O) content of the exoproteome might directly
reflect endogenous ROS oxidation. To test this hypothesis, we
used nanoLC-MS/MS to assess Met(O) content in all the proteins

identified in the exoproteome. We analyzed their time-course
dynamics in aerobically grown cells and in anaerobically grown
cells for this specific parameter.

Overview of Methionine Oxidation
A total of 4532 peptides containing oxidized Met residue(s)
(Met(O) peptides) were identified along the 27 nanoLC-MS/MS
runs (Table S1 in Supplementary Material). A total of 211 dif-
ferent Met(O) peptides were listed (Table S5 in Supplemen-
tary Material), a significant number of them being detected
reproducibly. The Met(O) peptide content of the B. cereus exo-
proteome was estimated as a percentage of the total number
of peptides identified in each of the three biological samples
obtained for each growth phase sample under low- and high-ORP
anaerobiosis and aerobiosis. Figure 5A shows that the Met(O)
peptide content of the B. cereus exoproteome decreased signif-
icantly during growth under low-ORP anaerobiosis and aero-
biosis, to reach its minimum in the stationary phase. However,
aerobiosis sustains a higher decrease along this kinetic com-
pared to low-ORP anaerobiosis. Strikingly, no significant change
was observed under high-ORP anaerobiosis. Similar results were
obtained by comparing the number of Met(O) to the total num-
ber of Met (Figure S1 in Supplementary Material). The level of
Met oxidation as assessed here is a complex result of the balance
between endogenous ROS generation on the one hand and the
ability of the cell to repair Met on the other. Oxidized Met can
be repaired by antioxidant systems (Drazic and Winter, 2014).
Under aerobiosis, the high Met(O) peptide content of the EE exo-
proteome compared to the S exoproteome could reflect either a
surplus of ROS generated by the activity of the respiratory chain
(Seaver and Imlay, 2001) or a higher activity of the antioxidant
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systems in S growth phase (Alamuri and Maier, 2006; Vekaria
and Chivukula, 2010). Under anaerobiosis, and in the absence
of final electron acceptors for respiratory electron processes, B.
cereus cells ferment glucose (Zigha et al., 2007). Fermentative
pathways do not produce ROS as typical metabolic by-products
under classical anaerobic conditions (Landolfo et al., 2008). This
may explain why there is no change in the Met(O) peptide con-
tent of the B. cereus exoproteome during growth under high-ORP
anaerobiosis. We reported previously that reductive stress, such
as is encountered under low-ORP anaerobiosis, caused intracel-
lular redox imbalance at the EE growth phase, and generated a
secondary oxidative stress response (Mols and Abee, 2011; Clair
et al., 2013). This could increase the ability of anaerobic cells to
repair oxidized Met and explain why S growth phase sustains a
lower Met(O) content under low-ORP anaerobiosis than under
high-ORP anaerobiosis.

Identification of Proteins with Differential Abundance
Levels and Met(O)-Content Dynamics
To identify proteins exhibiting differences in abundance level
and Met(O)-content dynamics, we conducted a second PCA
using both abundance (in terms of total number of peptides)
and Met(O) peptide content (number of Met(O)-containing

peptides) to define proteins in each growth condition. For a
robust analysis of the variability in terms of Met(O) peptide con-
tent, we considered the proteins containing at least one Met(O)
peptide identified in at least two biological replicates. A total of
43 proteins were confidently listed as being oxidized with this
criterion (Table S6 in Supplementary Material). Among these, 13
proteins are toxin-related proteins. Remarkably, EntD and HlyII
are the only components from the list of detected toxins reported
in Table 2 that are not post-translationally modified. The other
oxidized proteins are degradative enzymes and adhesins (10),
and to a lesser extent, flagella (6), stress-related proteins (4),
metabolism-related proteins (7), and uncharacterized proteins
(3). PCA extracted 3 Met(O)-related groups (CLM1-3) under
low-ORP anaerobiosis, high-ORP anaerobiosis, and aerobiosis
(Table S6 in Supplementary Material). Figure 5B shows that
CLM1 is representative of the variability of the Met(O) pep-
tide content of the B. cereus exoproteome during growth in the
three conditions tested. When analyzing the correlation between
Met(O) peptide content and abundance level, proteins with dif-
ferential abundance levels and Met(O)-content dynamics were
highlighted. These represent 27, 40, and 53% of proteins co-
clustered in CLM1 under low- and high-ORP anaerobiosis, and
aerobiosis, respectively (Figure 6). This suggests that oxidation of

FIGURE 7 | Amino acid sequence of NheA. Peptides detected by LC-MS/MS are shown in red and are underlined. Met residues are shown in bold.

TABLE 4 | List of NheA peptides containing oxidized and non-oxidized Met residues.

LC-MS/MS identification

Peptides detected by LC-MS/MS Meta Met oxidation

Anaerobiosis Aerobiosis

Low-ORP High-ORP

MLGSQSPLIQAYGLIILQQPDIK M53 M53(O) M53(O) ndb

M111(O) M111(O) nd

LIDLNQEMMR M111 M111(O) M112(O) M111(O) M112(O) M111(O)M112(O)

M112 M112(O) M112(O) M112(O)

ADFMSAYGK M143 nd Nd nd

LQLQVQSIQESMEQDLLELNR M160 nd Nd nd

VLNNNMIQIQTNVEEGTYTDSSLLQK M337 nd Nd nd

VSDEMNKQTNQFEDYVTNVEVH M369 nd Nd nd

aMethionine residues (Met) and oxidized Met residues Met(O) were identified by their position in the protein sequence (Figure 7).
bNd indicates that no oxidized Met residue was detected.
Methionine residues are indicated in bold in peptides detected by LC-MS/MS.
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TABLE 5 | Oxidation of Met residues in toxin-related proteins under
low-ORP anaerobiosis, high-ORP anaerobiosis, and aerobiosis.

Gene Protein Number of Number of Met(O)

name Met residues residues

Totala Detectedb Low-ORP High-ORP Aerobiosis

anaerobiosis anaerobiosis

BC1110 CytK 5 5 1 2 0

BC5239 EntA 3 2 2 2 2

BC2952 EntB 4 2 1 1 1

BC0813 EntC 2 2 2 2 2

BC1953 EntFM 1 1 0 1 0

BC3101 HblB’ 13 1 1 1 1

BC3102 HblB 7 6 6 5 4

BC3103 HblL1 7 4 4 4 3

BC3104 HblL2 7 6 6 5 4

BC5101 HlyI 5 2 0 0 2

BC1809 NheA 8 7 3 3 2

BC1810 NheB 4 3 2 2 2

BC1811 NheC 10 2 0 1 0

aThe number of Met residues was calculated from the sequence of the mature form of
the protein (without peptide signal).
bThe numbers reported in this column are the numbers of Met residues detected in our
study by LC-MS/MS.

Met residues may be more specific under aerobiosis than under
anaerobiosis. Figure 6 shows that CLM1 comprises a significant
subset of Met(O) toxin–related proteins whatever the conditions
(7, 9, and 9 under low- and high-ORP anaerobiosis, and aero-
biosis, respectively). Table 3 lists the toxin-related proteins that
contributed to CML1 and differentiates proteins with similar
abundance levels and Met(O)-content dynamics from proteins
with differential abundance levels and Met(O)-content dynam-
ics. The data show that HblB, HblL2, HblB’, NheA, NheB, and
EntB may constitute the core of the toxin-related sub clusters
and HblL1, EntA, EntC, and EntFM constitute the growth condi-
tion variance with EntFM representative of high-ORP aerobiosis.
Table 3 also shows that aerobiosis may sustain higher specific
oxidation of Met residues in NheA compared to anaerobiosis.
To further strengthen this latter observation, we analyzed the
peptides specifically assigned to NheA (Figure 7). Among the 7
Met residues detected in the 6 NheA-assigned peptides reported
in Figure 7, four were never detected as oxidized (Table 4 and
Supplementary Table S6). This indicates that all NheA-bound
methionines are not equally susceptible to oxidation. This may
be due to their neighboring amino acids (Ghesquiere et al.,
2011). Secondly, NheA contains one Met residue (M53) that is
oxidized under anaerobiosis but not under aerobiosis. In addi-
tion, NheA contains two adjacent Met residues at positions 111
and 112, which are differentially oxidized under aerobiosis com-
pared to anaerobiosis: oxidation of the first Met residue (M111)
occurred only when the second (M112) was oxidized under aer-
obiosis, while oxidation of M111 did not depend on M112 oxida-
tion under anaerobiosis. Therefore, NheA contains Met residues
that respond differently to oxidation under anaerobiosis and

aerobiosis. This is also the case for CytK, EntFM, HblB, HblL1,
HblL2, and NheC, which all contain one Met residue oxidized
under anaerobiosis but not under aerobiosis (Table 5). Thus,
anaerobiosis increases the oxidation susceptibility of methionine
in toxin-related proteins. This may due to the presence of a dif-
ferent pattern of oxidants in fermentative cells (Mahawar et al.,
2012). Taken together, our data indicate that toxin-related pro-
teins contain Met residues that are not equally susceptible to oxi-
dation and Met residue selectivity is a factor that may contribute
to Met oxidation under aerobiosis.

Conclusion

We used nanoLC-MS/MS data to analyze global changes in
the B. cereus exoproteome during growth in glucose-containing
medium under controlled conditions of pH and pO2. We have
shown that PCA can identify groups of exoproteins that are coor-
dinately controlled at the growth phase level. The results indi-
cated that proteins belonging to the toxin-related group define
characteristic kinetic profiles correlated with the physiological
state of the culture in respiring, as in fermenting, cells. The major-
ity of toxin-related proteins accumulated during the exponential
growth phase, whatever the conditions. However, their dynamics
differ significantly under aerobiosis and anaerobiosis if we con-
sider how their patterns in terms of metabolism, oxidative stress–
related proteins and the time dynamics of their Met(O) content
are interconnected. Several studies have reported that Met
residues of proteins may act as ROS scavengers (Luo and Levine,
2009). It is thus possible that Met residues in toxin-related pro-
teins may act as endogenous antioxidants before being secreted
into the extracellular medium. High-level secretion of toxins dur-
ing the exponential phase may thus contribute to the protection
of B. cereus cells against cellular oxidation and maintain redox
homeostasis by keeping endogenous ROS at bay, especially under
aerobiosis. Evidently further studies should be now conducted
to confirm these hypotheses. The consequences of methionine
oxidation on proteins may vary from structural alterations lead-
ing to altered activity and/or altered signal events to protein
degradation (Levine et al., 2000). This raises questions about the
role of Met oxidation in B. cereus virulence, and especially in
B. cereus cytotoxicity. Indeed, our study demonstrated that the
major cytotoxins of the B. cereus exoproteome, such as Nhe and
Hbl (Sastalla et al., 2013), contain oxidizable methionines, and
the effect of oxidation on their biological activity is worthy of
documentation.
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