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Neuropsychiatric symptoms are frequent in obesity. In addition to their substantial eco-
nomic and health impact, these symptoms significantly interfere with the quality of life
and social function of obese individuals. While the pathophysiological mechanisms under-
lying obesity-related neuropsychiatric symptoms are still under investigation and remain to
be clearly identified, there is increasing evidence for a role of inflammatory processes. Obe-
sity is characterized by a chronic low-grade inflammatory state that is likely to influence
neuropsychiatric status given the well-known and highly documented effects of inflam-
mation on brain activity/function and behavior. This hypothesis is supported by recent
findings emanating from clinical investigations in obese subjects and from experimen-
tations conducted in animal models of obesity. These studies converge to show that
obesity-related inflammatory processes, originating either from the adipose tissue or gut
microbiota environment, spread to the brain where they lead to substantial changes in
neurocircuitry, neuroendocrine activity, neurotransmitter metabolism and activity, and neu-
rogenesis. Together, these alterations contribute to shape the propitious bases for the
development of obesity-related neuropsychiatric comorbidities.

Keywords: obesity, inflammation, neuroinflammation, cytokines, gut-brain axis, mood, cognition, neuropsychiatric
symptoms

INTRODUCTION
The pandemic of obesity represents a major public health concern,
as this disorder is associated with an increased risk of med-
ical comorbidities contributing to a significant rise in mortality.
Among those comorbidities related to obesity, neuropsychiatric
disorders are particularly preoccupying. Not only neuropsychi-
atric symptoms affect the quality of life of obese subjects and
contribute to their social impairment, but also they represent
potent risk factors for aggravation of obesity. Given the grow-
ing prevalence of both obesity and neuropsychiatric disorders
worldwide, the identification of the mechanisms underlying their
comorbid association is urgently needed.

While different mechanisms are likely to be involved in the
development of neuropsychiatric comorbidity in obesity, there is
increasing evidence for a role of inflammatory processes. Chronic
low-grade inflammation is an important characteristic of obe-
sity and inflammatory processes are notorious for modulating
brain functions and causing behavioral alterations. Recent clin-
ical findings indicate that the increased systemic expression of
inflammatory markers (e.g., cytokines) in obesity correlates with
neuropsychiatric status, notably as it relates to mood and cogni-
tive function. Moreover, studies in experimental animal models
of obesity contribute to show that obesity-related inflammation
manifests not only at the periphery but also within the brain
where it modulates neurocircuitry, neurochemistry, and behav-
ior. These findings that provide strong support to the notion
that obesity-related inflammation plays an important role in the

pathophysiology of neuropsychiatric symptoms will be presented
and discussed in the present review.

NEUROPSYCHIATRIC COMORBIDITY IN OBESITY
Neuropsychiatric comorbidity, including mood and anxiety disor-
ders, binge eating, and mild cognitive impairment, is frequent in
obesity and is associated with a significant reduction in the quality
of life and social functioning of obese individuals. Among those
disorders often seen in obese subjects, depressive symptoms are
particularly frequent with a prevalence rate significantly higher
(up to 30%) compared to the general age-matched population
(1–5). Similarly, reports of cognitive disturbances in obesity are
multiple. Those alterations concern primarily planning function,
problem solving, mental flexibility, and inhibitory processes, sug-
gestive of frontal lobe alterations (6–9). Impairment in memory,
regardless of age, has been also reported (10, 11). Associations
between obesity and cognitive impairment have been more often
reported in cross-sectional studies comparing performance from
overweight/obese subjects to performance from lean participants.
Nevertheless, a predictive longitudinal association of obesity with
the development of age-related cognitive deficit has also been
documented in several reports (12–14).

The directionality of the relationship between obesity and neu-
ropsychiatric symptoms is usually difficult to determine from
clinical studies. The significant improvement in mood and cog-
nitive function reported after weight loss induced by bariatric
surgery or diet restriction in obese subjects supports the hypothesis
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that obesity significantly impacts neuropsychiatric status and con-
tributes to the development of neuropsychiatric comorbidity (15–
22). Nevertheless, other reports indicate that preexisting mood
and cognitive alterations can promote and/or predict the devel-
opment of later obesity (23–26), attesting of the bidirectional link
between obesity and neuropsychiatric status. To further address
this issue, animal models of obesity represent certainly a use-
ful and unique opportunity. Several models of obesity resulting
either from genetic manipulations or diet modifications have
been developed over the last decades (27). Among those mod-
els, diet-induced obesity (DIO) is probably the closest to human
obesity with respect to etiological aspects. Moreover, because of
its longitudinal characteristic, DIO allows the investigation of the
mechanisms and pathophysiological changes preceding the devel-
opment of obesity-related comorbidities, including neuropsychi-
atric alterations. Genetic models of obesity, in particular severe
obesity, are also of great interest to explore the genetic–metabolic–
brain interactions associated with obesity-related comorbidities.
In that context, ob/ob (deficient for leptin) and db/db (defi-
cient for functional leptin receptor) mice are particularly relevant
as, in addition to metabolic disorders, these mice also display
brain alterations (28–30). Overall, behavioral changes reported in
experimental models of obesity include alterations in emotional
reactivity and impairment in learning and memory [for review,
see Ref. (31)]. Relevant to neural function, significant decreases
in hippocampal-dependent learning together with impaired hip-
pocampal neurogenesis and neuronal plasticity have been docu-
mented in animal models of DIO, notably in young mice (32–
35). Similar results were described in db/db mice (28–30), sup-
porting the notion that the hippocampus plays a major role in

mediating obesity-associated cognitive impairment. Interestingly,
db/db mice also display anxiety-like behavior (36). In contrast,
depressive-like behavior appears to be mostly unchanged in ani-
mal models of obesity (36, 37), except in challenging conditions
including stimulation of the immune system (38–40). Altogether,
these data comfort the notion that neuropsychiatric comorbidi-
ties in obesity rely on interactions involving multiple systems,
including metabolic characteristics, environmental influences, and
immune-related processes.

OBESITY AND INFLAMMATION
Basal systemic low-grade inflammation is a fundamental charac-
teristic of obesity, which is now considered not only as a metabolic
disorder but also as an inflammatory condition affecting both
the innate and acquired immune systems (41, 42). Obesity is
characterized by increased levels of circulating proinflammatory
cytokines [including interleukin (IL)-1β, tumor necrosis factor
(TNF)-α, and IL-6], accumulation of leukocytes within the adi-
pose tissue and other organs, activation of macrophages in the
liver and fat, and activation of proinflammatory signaling path-
ways in multiple organs (43, 44). Inflammatory markers in obesity
correlate more with measures of central adiposity, such as waist
circumference and waist-to-hip ratio, rather than with the gen-
eral measure of body mass index (BMI) (45–48). Interestingly,
significant improvement in inflammatory profile is obtained after
weight loss induced by low-caloric diet or bariatric surgery in
obese individuals (49–54).

Different mechanisms have been identified as playing a major
role in the instauration of the chronic low-grade inflammatory
state that characterizes obesity (Figure 1). One major player is

FIGURE 1 | Mechanisms underlying chronic low-grade inflammatory
state in obesity. The adipose tissue is an important contributor of chronic
low-grade inflammation in obesity (A). Weight gain is associated with
substantial changes in the function of adipocytes that increase their secretion
of adipokines, including inflammatory factors. Moreover, infiltration of
immune cells, i.e., macrophages and T cells, in the adipose tissue is also
responsible for the adipose secretion of inflammatory cytokines. Additional

mechanisms, including alterations in the gut microbiota, contribute also to the
instauration of obesity-related inflammation (B). Obesity is associated with
modifications in gut microbial population and with an increased permeability
of the intestinal wall that promotes the passage of LPS in the circulation,
leading thus to the development of chronic low-grade endotoxemia and the
increased production of inflammatory factors. IL-1β, interleukin-1β; IL-6,
interleukin-6; LPS, lipopolysaccharide; TNF-α, tumor necrosis factor-α.
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the adipose tissue that has the ability to secrete adipokines and in
which macrophages accumulate and potently secrete inflamma-
tory factors (55–59). Moreover, an additional role for T cells in
the development of adiposity-related inflammation is supported
by several recent studies (57, 60–63). Obesity-related inflamma-
tion can also be triggered by pathogens, as there is now evidence of
gut microbiota alterations associated with inflammatory processes
in obesity (64, 65). In obese animals, gut microbial population is
altered independently of diet characteristics (66), notably in the
form of decreased Bacteroidetes and Bifidobacterium populations
together with increases in the number of Firmicutes (64, 66, 67).
High-fat diet is also associated with alterations in gut permeability
leading to the instauration of a state of chronic low-grade endo-
toxemia (presence of lipopolysaccharide, LPS, in the blood) that is
believed to contribute to obesity-related inflammation by the acti-
vation of systemic macrophages through the binding of LPS on
TLR4 (68, 69). Similarly, recent clinical data in obese individuals
indicate significant associations between gut microbiota modifica-
tions, reflected by the reduction in Bacteroidetes/Firmicutes ratio,
and markers of local and systemic inflammation (67) and doc-
ument improvement in the intestinal microbiota profile and in
serum levels of an endotoxemia marker (LPS binding protein)
following weight loss (70–72).

It is now clear that systemic inflammation in obesity contributes
to both increased central inflammatory processes (notably in the
hippocampus and hypothalamus) and metabolic dysregulations,
including insulin-resistance. While these mechanisms are believed
to play a major role in the development and maintenance of obe-
sity (68, 73), their specific contribution to the development of the
disorder is still under investigation. With respect to central inflam-
mation, db/db mice that exhibit immune defects such as increased
systemic inflammation and reduced immune competence (64, 74,
75) also show increased hippocampus cytokine expression (36,
37), and these effects are associated. Moreover, there is mounting
evidence for enhanced cytokine expression and microglial activa-
tion in the hypothalamus in animal models of obesity (76–78).
Consistent with these experimental findings, clinical indication of
gliosis was recently reported in the mediobasal hypothalamus of
obese individuals (79). While it is likely that central inflammation
in obesity results from adiposity-related systemic inflammatory
processes, the increases in circulating levels of TLR4 ligands and
free saturated fatty acids following impaired gut permeability in
high-fat diet mice (68, 80) may alternatively contribute to cen-
tral inflammation, through activation of TLR4/MyD88 signaling
(81, 82). Further investigation is needed to determine whether
central activation of inflammatory processes occurs as a result of
peripheral inflammation or whether it represents an early event
promoting the development of obesity following a high-fat diet.

With regard to inflammation-related metabolic dysregulations,
the inflammatory cytokine, TNF-α, was found to play an impor-
tant role in the pathogenesis of insulin-resistance and type 2 dia-
betes (83–85). Inflammatory factors are also strong modulators of
energy balance mainly due to their effects on the brain, in particu-
lar the hypothalamus (76), a mechanism that may promote weight
gain through impairment of local peptidergic neuronal networks
involved in food intake (73, 86). Interestingly, obesity-associated
inflammation, notably as it relates to the visceral adipose tissue,

was found to impact obesity treatment outcomes, with increased
adipose expression of immune cells and inflammatory markers
being associated with lower BMI reduction after bariatric surgery
in severely obese patients (57).

CENTRAL EFFECTS OF INFLAMMATION: EVIDENCE AND
MECHANISMS
There is clear evidence for a role of proinflammatory cytokines
in the development of neuropsychiatric symptoms (87). Proin-
flammatory cytokines released locally by activated innate immune
cells have access to the brain, through different mechanisms that
have been reviewed elsewhere (87). These pathways, which include
humoral, neural, and cellular routes, ultimately lead to the produc-
tion of cytokines by activated glial cells, in particular microglia,
within the central nervous system (CNS). While microglia activa-
tion normally exerts a protective action on the CNS, its unregulated
and chronic activation may in contrast become deleterious. Within
the brain, proinflammatory cytokines activate the neuroendocrine
system, impair neurotransmitter metabolism and function, and
alter neural plasticity and brain circuitry (87). These biologi-
cal alterations are associated with a large number of behavioral
changes that have been referred to as sickness behavior (88).
Necessary for the recovery of the host to the infection, sickness
behavior usually resolves within few days. However, in cases of
chronic and unregulated activation of the immune system, sick-
ness behavior may evolve into clinically relevant neuropsychiatric
symptoms, including depression and cognitive symptoms (88). At
the clinical level, strong evidence for a role of cytokines in the
development of neuropsychiatric comorbidity emanates from the
model of cytokine therapy,based in particular on interferon (IFN)-
α administration. Using this model, we and others have shown
that IFN-α induces major depression in up to 45% of treated
patients (89, 90) and that this effect relates on inflammation-
induced alterations in the hypothalamic–pituitary–adrenal (HPA)
axis, neurotransmitter function, and enzymatic pathways involved
in the metabolism of monoamines (87, 91). Consistent with
this last point, inflammatory factors are able to induce the syn-
thesis of the enzymes indoleamine 2,3-dioxygenase (IDO) and
GTP-cyclohydrolase 1 (GTP-CH1) in monocytes/macrophages
and dendritic cells, which results in significant alterations in
the biosynthesis of key monoamines (e.g., serotonin, dopamine)
known to play a major role in mood regulation and cognitive
function. Moreover, IDO is the first and rate-limiting enzyme that
catabolizes tryptophan along the kynurenine pathway, a pathway
leading ultimately to the production of neuroactive metabolites
that have been associated with depressive symptoms in IFN-
α-treated patients (92). In particular, IDO activation results in
an increased production of the glutamatergic metabolites, 3-
hydroxykynurenine, and quinolinic acid, which are well-known to
induce neuronal death and to whom brain or cerebrospinal fluid
concentrations were found to be increased in several neuropsychi-
atric or neurodegenerative diseases (93–96). Consistent with these
data, inflammation-induced depressive- and anxiety-like behav-
iors in mice can be prevented by pharmacological or genetic inhibi-
tion of brain IDO activation (97–101). Moreover, NMDA receptor
blockade abrogates cytokine-induced depressive-like behavior in
mice (102). Interestingly, the hippocampus was found to play an
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important role in cytokine and IDO activation (103–106) and dys-
regulated activation of hippocampal microglia was associated with
sustained IDO activity and protracted depressive-like behavior
(104). Moreover, emotional alterations linked to inflammation-
induced hippocampus IDO activation in mice was associated
with reduced hippocampal expression of the brain-derived neu-
rotrophic factor (BDNF) (107) that contributes to mood regu-
lation and memory function. Altogether, these results point to a
pivotal role of IDO activation, particularly in the hippocampus, in
mediating cytokine-induced mood and cognitive alterations.

ROLE OF INFLAMMATORY PROCESSES IN OBESITY-RELATED
NEUROPSYCHIATRIC SYMPTOMS: CLINICAL AND
EXPERIMENTAL FINDINGS
Recent clinical findings support the hypothesis that inflammatory
processes contribute to neuropsychiatric comorbidity in obesity,
notably as it relates to mood status and cognitive function [see for
review, Ref. (108)]. In support of this notion, concentrations of the
inflammatory markers, C reactive protein (CRP) and IL-6, have
been associated with depressive symptoms in obese subjects or in
patients afflicted with the metabolic syndrome (109–111). Simi-
lar associations have been reported with leptin (112). Moreover, it
was recently shown that CRP levels explained approximately 20%
of the increase in depression scores over time in obese subjects
(113). Consistent with the role of adiposity in these associa-
tions, reductions in inflammatory markers following weight loss
induced by bariatric surgery were found to correlate with signifi-
cant improvement in the emotional status and depression scores of
severely obese individuals (114, 115). Given the bidirectional link
reported between obesity and depressive symptoms, it is highly
probable that depressive symptoms occurring in the context of
obesity-related inflammation may in turn contribute to obesity
maintenance, promoting thus the instauration of a vicious cir-
cle. Regarding cognitive function, a significant relationship was
reported between CRP levels and decreased performance on cog-
nitive tests targeting frontal lobe function in obese and overweight
women (116). Moreover, in patients with the metabolic syndrome,
higher levels of CRP and IL-6 were found to increase the risk
of age-related cognitive decline (117). While these data support
a role for obesity-related inflammation in the development of
neuropsychiatric symptoms, the literature is still sparse regarding
the causality of the events and the mechanisms that specifically
underlie these effects in the context of obesity. Result from ani-
mal models of obesity may help to start to address this issue.
In genetically or diet-induced obese rodents, increased cytokine
expression in the hippocampus and cortex is associated with
emotional and cognitive alterations (30, 31, 36, 37, 118). Inter-
estingly, hippocampal IL-1β expression in db/db mice is related
to adiposity and its blockade normalizes hippocampal dendritic
spine density and prevents synaptic dysfunction and cognitive
impairment (30). Associations have also been found between hip-
pocampal microgliosis and obesity-related elevation in plasma
glucocorticoids in the same mice (119). Consistent with the role
of inflammatory processes, a direct relationship has been recently
reported by our group between inflammation-related brain IDO
activation and the development of depressive-like behavior in
db/db mice (37). Similarly, we showed that DIO exacerbates

both hippocampal induction of cytokines and IDO in response
to an immune challenge and related behavioral changes (40).
Interestingly, exacerbated depressive-like behavior is also asso-
ciated in DIO mice with increased hypothalamic inflammation
(39, 40). Beyond its impact on energy homeostasis, hypothala-
mic inflammation might also influence obesity-related emotional
alterations. In addition to inflammatory processes, metabolic fac-
tors associated with obesity, including insulin or leptin, may also
be able to act within the brain and lead to behavioral alterations
(120). Nevertheless, several studies suggest that these factors per se
are not sufficient to explain neuropsychiatric symptoms occur-
ring in contexts of obesity. In support of this, increased emo-
tional behaviors and cognitive impairment have been reported
in animal models of obesity in the absence of any significant
hyperinsulinemia (32, 36, 40). Reciprocally, the normalization
of hyperglycemia in db/db mice was not effective in reversing
spatial cognitive impairment or anxiety-like behavior (28, 29).
Moreover, no difference in brain concentrations of glucose and
insulin was measured in both db/db and db/+ mice and these
concentrations remained the same when peripheral hyperinsu-
linemia was normalized (28). Altogether, these data point to brain
inflammation as a major player in the development of obesity-
related neuropsychiatric symptoms, although the pathways link-
ing inflammation to these symptoms still need to be thoroughly
studied.

INFLAMMATION-DRIVEN NEUROPSYCHIATRIC
COMORBIDITY IN OBESITY: POTENTIAL UNDERLYING
PATHWAYS
There are several pathways by which inflammation may promote
the development of neuropsychiatric comorbidity in the con-
text of obesity. Some of these mechanisms may be common to
various situations of chronic inflammation and some may be
more specific to the condition of obesity. Non-specific mecha-
nisms include diffusion of inflammatory markers from the adipose
tissue to the circulation and activation of relevant immune-to-
brain pathways including humoral, neural, and cellular routes
leading ultimately to the production de novo of inflammatory
cytokines within the CNS and subsequent alterations in CNS func-
tions (e.g., changes in neuroendocrine function, neurocircuitry,
enzymatic pathways, and neurotransmitter metabolism/function)
as described above. In particular, similar to other inflammatory
conditions, obesity has been often associated with alterations in
basal ganglia/reward circuitry and dopamine function (121, 122).
Accordingly, several studies have indicated that obesity is asso-
ciated with reduced striatal dopamine D2 receptor availability
together with alterations in the fronto-striatal network (123–125).
Moreover, investigations in rodents with DIO have shown sig-
nificant associations between alterations in striatal circuitry and
depressive-like behavior, suggesting a role for dopamine-related
disruptions in obesity-associated depressive symptoms (38). Rele-
vant to the contribution of inflammatory processes to these effects,
the basal ganglia and dopamine system are highly targeted by
inflammatory factors (126). In addition, inflammation-induced
neuropsychiatric symptoms, in particular fatigue, anhedonia, psy-
chomotor slowing, decreased motivation, and depressed mood,
have been found to relate to alterations in basal ganglia/dopamine
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function and striatal circuitry in subjects treated with immune
agents (127–129).

Alterations in neuroendocrine function – a mechanism highly
described in the neurobiology of mood disorders – represent
another common feature of inflammatory conditions, includ-
ing obesity. In particular, obese subjects have been shown to
exhibit an impaired feedback response to cortisol, similar to what
is observed in depression (130). The immune system and neu-
roendocrine system are in constant communication and immune
alterations are notorious for causing significant changes in neu-
roendocrine activity and vice versa. While the association between
low-grade inflammation and alterations in the neuroendocrine
system remains to be determined in obese subjects, it is highly pos-
sible that obesity-related neuroendocrine dysfunction contributes
to neuropsychiatric comorbidity in obese individuals.

Converging findings have highlighted the consequences of
deregulated hippocampal cytokines and neurotrophins expression
on mood, learning, and memory (88, 131, 132), and the negative
impact of cytokines on neurotrophins and synaptic plasticity (107,
133). Alterations in these mechanisms have been fully documented
in models of chronic stress exposure, a well-admitted contributor
of mood disorders (134, 135). Several clinical and experimental
data strongly suggest that these deregulations may similarly partic-
ipate to obesity-related neuropsychiatric alterations. Indeed, body
weight loss induced by lifestyle intervention program in young
obese patients normalizes plasma levels of BDNF (136). More-
over, cognitive impairment and emotional alterations reported in
DIO and genetic models of obesity are linked to increased inflam-
mation and reduced BDNF levels in the cortex (118) and the
hippocampus (36, 37). Reciprocally, anti-inflammatory interven-
tions in DIO mice reduce body weight, normalize hippocampal
levels of BDNF, and prevent hippocampus-mediated cognitive
impairments (137).

Alterations in the gut–brain axis represent one mechanism of
inflammatory-driven neuropsychiatric comorbidity that may be
more relevant to the condition of obesity. As already mentioned,
obesity is associated with alterations in the gut microbiota in
the form of modifications in microbiota populations, increased
gut permeability, and activated inflammatory processes. A rich
and complex communication network exists between the gut and
the brain that involves endocrine, immune, and neural pathways
(138), and there are now multiple evidences that impairment or
dysregulation in the gut–brain axis impacts on mood and cognitive
function (139). These data suggest that gut microbiota alterations
found in obesity may modulate gut-to-brain communication
pathways, leading thus to the development of neuropsychiatric
comorbidity.

Altogether, these data are in favor of the involvement of
inflammation-related complex non-exclusive pathophysiological
processes in the development of neuropsychiatric symptoms in
obesity. In that context, strategies to reduce inflammation either
by pharmacological or non-pharmacological interventions (e.g.,
diet, surgical weight reduction strategies, exercise) may help in the
prevention and management of obesity-related neuropsychiatric
comorbidity. In particular, nutritional factors with immunomod-
ulatory properties (i.e., omega-3 fatty acids, antioxidants) may
worth being considered.

CONCLUSION
Data presented in this review strongly support the notion that
inflammatory processes represent key players in the development
of neuropsychiatric comorbidities in obesity. In addition to clin-
ical investigations that clearly highlight the relationship between

FIGURE 2 | Pathophysiological mechanisms likely to underlie
neuropsychiatric comorbidities associated with obesity. The activation
of systemic inflammatory processes, originating from alterations in adipose
tissue and gut functions, can contribute to the development of
obesity-associated neuropsychiatric comorbidities. Proinflammatory
cytokines released at the periphery can access the brain via several
pathways (e.g., neural, humoral, and cellular routes) and induce the
activation of neuroinflammatory processes, primarily by activating
microglia. In the brain, proinflammatory cytokines impair neuroendocrine
activity, neurotransmitter function (e.g., 5HT, DA, glutamate), and
neurocircuitry, involving notably the hippocampus, the hypothalamus, the
basal ganglia, and the prefrontal cortex. Cytokines can also disturb
neurogenesis and induce neurotoxic effects through induction of
IDO-derived neuroactive/neurotoxic metabolites. Altogether, these brain
alterations lead ultimately to the development of
behavioral/neuropsychiatric symptoms. Deregulations of the gut–brain axis,
originating from changes in gut microbiota and permeability, may also
contribute to mood and cognitive symptoms. These
behavioral/neuropsychiatric symptoms can in turn promote the
development or maintenance of obesity through risky or unadjusted eating
behaviors. 5HT, serotonin; BG, basal ganglia; CNS, central nervous system;
DA, dopamine; IDO, indoleamine 2,3-dioxygenase; HC, hippocampus; HPA,
hypothalamic–pituitary–adrenal axis; LPS, lipopolysaccharide; PFC,
prefrontal cortex; neurogen, neurogenesis; neurotox, neurotoxicity.
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adiposity-related inflammation and neuropsychiatric symptoms
in obese individuals, animal studies provide strong evidence of
the direct effects of obesity-related neuroinflammatory processes
on brain function and neurocircuitry and on the development
of behavioral symptoms. The mechanisms and pathways leading
to neuropsychiatric comorbidities in obesity are also discussed,
starting from a general aspect to a viewpoint more specific to the
condition of obesity. The effects rely on complex communication
networks including the immune system, the gut, the neuroen-
docrine system, and key brain areas, including the hypothalamus,
the hippocampus, and the basal ganglia (Figure 2). Alterations in
monoamine metabolism and function, impaired neurotransmit-
ter activity together with the occurrence of neurotoxic effects likely
to promote neuronal death and decreased neurogenesis appear to
represent major pathophysiological pathways to neuropsychiatric
morbidity in obese individuals.
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