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Abstract

Within the phylum Nematoda, plant-parasitism is hypothesized to have arisen independently on at least four occasions. The most

economically damaging plant-parasitic nematode species, and consequently the most widely studied, are those that feed as they

migrate destructively through host roots causing necrotic lesions (migratory endoparasites) and those that modify host root tissue to

create a nutrient sink from which they feed (sedentary endoparasites). The false root-knot nematode Nacobbus aberrans is the only

known species to have both migratory endoparasitic and sedentary endoparasitic stages within its life cycle. Moreover, its sedentary

stage appears to have characteristics of both the root-knot and the cyst nematodes. We present the first large-scale genetic resource

of any false-root knotnematode species.WeuseRNAseq todescribe relativeabundance changes inall expressedgenesacross the life

cycle to provide interesting insights into the biology of this nematode as it transitions between modes of parasitism. A multigene

phylogenetic analysis of N. aberrans with respect to plant-parasitic nematodes of all groups confirms its proximity to both cyst and

root-knot nematodes. We present a transcriptome-wide analysis of both lateral gene transfer events and the effector complement.

Comparing parasitism genes of typical root-knot and cyst nematodes to those of N. aberrans has revealed interesting similarities.

Importantly, genes that were believed to be either cyst nematode, or root-knot nematode, “specific” have both been identified in

N. aberrans. Our results provide insights into the characteristics of a common ancestor and the evolution of sedentary endoparasitism

of plants by nematodes.
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Introduction

Plant-parasitic nematodes (PPN) cause damage to almost all

crops grown and losses to global agriculture attributed to

PPNs are estimated at £75 billion per year (Nicol et al.

2011). The ability to parasitise plants is hypothesized to have

arisen independently on at least four occasions in the Phylum

Nematoda. Phylum-wide analysis of a single Small Subunit

ribosomal DNA (SSU rDNA) has produced the most extensive

phylogeny of nematodes to date. This phylogeny splits nem-

atodes into 12 Clades, with plant parasites present in four of

these Clades (van Megen et al. 2009). Clades 1 and 2 contain

migratory ectoparasitic nematodes that remain outside the

host for the duration of the life cycle. Clade 10, which is

composed mainly of fungivorous nematodes, includes

two plant-parasitic species of Bursaphelenchus (e.g.,

Bursaphelenchus xylophilus) and plant-parasitic (foliar)
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Aphelenchoides species (e.g., Aphelenchoides fragariae).

Clade 12 contains insect parasites, vertebrate parasites, and

the majority of the known plant-parasitic species, including

those that are the most economically important.

PPN that employ several different feeding strategies are

found within Clade 12. Migratory endoparasites cause con-

siderable damage as they migrate through and feed from

disrupted cells. These nematodes have no biotrophic stage.

In addition, Clade 12 includes two groups of biotrophic sed-

entary endoparasitic nematodes that are thought to have

evolved biotrophy independently. The best known examples

from these two groups are the cyst nematodes and the root-

knot nematodes, which are the most economically damaging

species (Jones et al. 2013). The “false root-knot nematode”

Nacobbus aberrans is highly unusual as it is the only known

nematode that has both a migratory endoparasitic stage and a

sedentary (biotrophic) stage within its life cycle.

The complete life cycle of N. aberrans on a potato host is

summarized in figure 1. Second-stage juveniles (J2s) hatch

from eggs in the soil and locate plant roots. The J2s use co-

ordinated movements of their needle-like stylet to puncture

cells and then migrate destructively through them (intracellu-

lar migration) (Manzanilla-López et al. 2002). J2s moult with-

out feeding, either in roots or in the soil, into the third-stage

juvenile (J3). This stage, and the subsequent J4, can enter or

leave roots, migrates destructively and also causes lesions and

necrosis. It is thought that the migratory J3 and J4 stages feed,

although mixed reports on this topic exist in the literature

(Manzanilla-López et al. 2002; Doncaster 2012). The J3 and

J4 are survival stages (equivalent to the Caenorhabditis elegans

dauer stage) and are able to tolerate adverse environmental

conditions such as low humidity (Anthoine et al. 2006). These

stages can remain viable in potato roots/tubers for many

months, causing very few visible symptoms, making them

easily traded and a concern for quarantine legislation. After

the final moult the vermiform females migrate to/into healthy

root tissue, where they establish a permanent plant-derived

multinucleate feeding site known as a syncytium, within a root

gall (Jones and Payne 1977; Vovlas et al. 2007). An unusual

feature of the complex life cycle of N. aberrans is that the

complete development from J2 to female can occur either

inside or outside the host root (Manzanilla-López et al.

2002). Females feed from the syncytium for several weeks

as their body swells and egg production occurs. Eggs are

deposited in a gelatinous matrix to form egg masses in the

soil. Reproduction in N. aberrans is probably sexual, although

there are some suggestions that parthenogenesis may occur

(Manzanilla-López et al. 2002).

Nacobbus aberrans is thought to originate in South

America, from where it has subsequently spread to the rest

of the Americas, Europe, and Asia (Manzanilla-López 2010;

Jones et al. 2013). It has a broad host range encompassing 84

known plant species across 18 families including crops such as

potato, tomato, beans and sugar beet, and many common

FIG. 1.—The life cycle of Nacobbus species on potato. Dashed arrows represent transitions through the life cycle, whereas solid arrows represent

movement of the nematode. J2s hatch from eggs in the soil and locate plant roots. J2s migrate destructively (i.e., intracellularly) through roots. J2s moult

without feeding, either in roots or in the soil, into the J3. This stage, and the subsequent J4, can enter or leave roots and also migrate destructively and in

addition cause lesions and necrosis. The J3 and J4 are the dauer (survival) stages and are able to tolerate adverse environmental conditions such as low

humidity. After the final moult the vermiform females migrate to healthy root tissue, where they establish a permanent plant-derived, multinucleate feeding

site known as a syncytium that is formed inside a root gall. Females feed from the syncytium for several weeks as their body swells and eggs are produced.

Eggs are deposited in a gelatinous matrix to form egg masses in the soil.
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weeds (Brodie et al. 1993; Manzanilla-López et al. 2002;

Manzanilla-López 2010). Nacobbus aberrans causes yield

losses that vary with temperature, but can be up to 61% on

potato (Franco 1994; Manzanilla-López et al. 2002). Due to a

combination of the wide distribution, broad host range, po-

tential yield losses, and peculiar dormant parasitic stage,

N. aberrans is recognized as an EPPO A1 rated quarantine

pest in Europe (Smith et al. 1992) and also has quarantine

status in the United States (Lehman 2004). These factors led

to N. aberrans being voted as one of the top ten nematodes in

molecular plant pathology in a recent survey and review (Jones

et al. 2013). Nacobbus spp, commonly referred to as false

root-knot nematodes, are thought to be more closely related

to the root-knot nematodes than the cyst nematodes

(Holterman et al. 2006, 2009; van Megen et al. 2009).

However, the syncytial feeding sites that they produce closely

resemble those induced by cyst nematodes and have little in

common with the giant cells induced by root-knot nematodes

(Jones and Payne 1977). The syncytium, which is the sole

source of nutrients for the adult female nematode over a

period of several weeks, is formed by modifying an initial

host cell to become more metabolically active. This initial cell

then undergoes local cell wall dissolution and its protoplast

fuses with those of the neighbouring cells which thus become

incorporated into the syncytium. This process of syncytial for-

mation is very similar to that seen in syncytia induced by cyst

nematodes. Conversely, the syncytium is formed inside a gall

that is phenotypically similar to that of the root-knot nema-

todes. In addition, the egg masses produced within/from this

gall resemble those of the reniform and root-knot nematodes.

As for other plant pathogens, the interactions of PPN with

their hosts are mediated by the activity of effectors. Effectors

can be defined as proteins (or other factors) secreted by a

parasite into a host in order to manipulate the host to the

advantage of the parasite. Effectors clearly play a key role in

several aspects of the biology of N. aberrans. Effectors that

suppress host defences are likely to be produced as it remains

undetected while feeding. As in other biotrophic PPN, effec-

tors need to be produced that induce and maintain the feed-

ing site. Various effectors from other nematode species have

been linked to suppression of host defences and induction of

the feeding site (Haegeman et al. 2012; Hewezi and Baum

2013). For example, a secreted SPRY domain-containing pro-

tein from the Clade 12 cyst nematode Globodera rostochiensis

is able to supress CC-NB-LRR-mediated disease resistance re-

sponses (Postma et al. 2012). In addition, PPN have evolved

short proteins/peptides that mimic endogenous plant peptide

hormones. The CLAVATA-like (CLE peptides) of the cyst nem-

atode Heterodera schachtii are apparently secreted into syn-

cytia and subsequently transported to the apoplasm by plant

mechanisms (Replogle et al. 2011). Although the precise role

of the nematode peptides in parasitism is unclear, they appear

to be functional in planta. A H. glycines CLE peptide can com-

plement an Arabidopsis thaliana CLE mutant (Wang et al.

2005) and the overexpression of a nematode-derived CLE

peptide in A. thaliana results in a “wuschel-like” phenotype

similar to that caused by over expression of endogenous CLE

peptides (Wang et al. 2011). A variety of genes encoding cell

wall degrading enzymes have been identified from several

PPN. These genes are highly similar to bacterial sequences,

and absent from most other animals and are therefore likely

to have been acquired by lateral gene transfer (LGT) (Danchin

et al. 2010; Haegeman, Jones, et al. 2011).

In spite of the economic importance and highly unusual life

cycle of N. aberrans, little is known about the molecular basis

of host-parasite interactions in this species, and no resources

for molecular studies are available. To address this, we have

generated a “reference” transcriptome using RNAseq from

three life stages of N. aberrans. We have subsequently ana-

lyzed changes in gene expression occurring across the life

cycle, as it transitions between modes of parasitism. This anal-

ysis, including comparisons with other nematode groups, has

allowed identification of putative effectors from N. aberrans.

The data generated provide an insight into both the phyloge-

netic position of N. aberrans relative to other PPN and the

evolution of sedentary endoparasitism by nematodes.

Materials and Methods

Biological Material

An isolate of N. aberrans was collected from Puno, Peru in

2001 and cultivated on tomato (Solanum lycopersicum var.

Ailsa Craig) grown in compost in a greenhouse at 25 �C

with a 16/8 h day/night cycle. Plants were not watered for

2–3 days before nematode extraction. Cleaned roots were

cut into 2-cm sections and macerated using a bench top

blender. Released eggs collected between 25- and 63-mm

sieves were subjected to sucrose (40%) centrifugation at

4,000�g for 4 min, washed using a 25-mm sieve, and

placed in a hatching jar on top of a 25-mm mesh. Hatched

nematodes were able to move through the mesh and were

collected daily and flash frozen in liquid nitrogen. Only J2

nematodes collected between 4 and 7 days after initiation

of hatching were used for RNA extraction. Mixed stage mi-

gratory nematodes (J3/J4/female), from this point onwards

referred to as Mig or migratory, were collected using a similar

blending procedure, but were present between 63- and

100-mm mesh sieves, sucrose centrifuged, individually sepa-

rated from root debris by pipetting, and flash frozen in liquid

nitrogen.

For collection of adult sedentary female nematodes, re-

ferred to as Sed, heavily infected cleaned root tissue was

cut into 2-cm sections, and nematodes gently separated

from galls by incubating with shaking (60 rpm) in 10 mg/ml

Macerozyme (Duchefa Biochemie) at 30 �C for 5 h. Macerated

tissue was sucrose centrifuged as above and females were

collected between 100- and 500-mm sieves, manually
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separated from remaining debris, and flash frozen in liquid

nitrogen. Three independent biological replicates were col-

lected for each life stage and stored at �80 �C before RNA

extraction.

RNA Extraction and Sequencing

RNA extractions were carried out using RNeasy Spin columns

(Qiagen) following the manufacturer’s instructions for animal

tissues using the optional on-column DNase I digestion

(Qiagen). RNA quality was assessed using a Nanodrop spectro-

photometer (NanoDrop products) and a Bioanalyser (Agilent

Technologies). RNA samples with RNA integrity number values

from 8 to 10, absorbance ratios of 260:280 nm greater than 2

and 260:230 nm between 2 and 2.2 were used for sequenc-

ing using the service provided by The Genome Analysis Centre

(TGAC, Norwich, UK). In brief, libraries were constructed using

the PerkinElmer Sciclone with the TruSeq RNA protocol

(Illumina). mRNA was separated from 1mg of total RNA by

poly-A pull down using biotin beads. mRNA was fragmented,

cDNA synthesized, and overhanging ends repaired to create

blunt ended DNA. 30-A overhangs were added using Taq DNA

polymerase, and ligated to corresponding 30-T overhangs pre-

sent on adapter sequences. Unligated adapters were removed

using size selection XP beads (Beckman Coulter). The nine

libraries, each prepared with different barcoded adapters,

were normalized and pooled, spiked with 1% PhiX control

v3, and sequenced on a single lane of Illumina HiSeq2000

using 100 cycles for each paired-end read.

Assembly, Quality Control, and Differential Expression

A two-step procedure was used to analyse the RNAseq data.

First, all data were pooled and used to generate a de novo

whole transcriptome assembly. RNAseq reads from each indi-

vidual life stage were subsequently mapped back to this

assembly for further gene expression analysis.

Raw reads were trimmed of overrepresented adapter se-

quences and low-quality bases using Trimmomatic (Bolger

et al. 2014). Two levels of trimming stringency were used;

minimum phred quality scores of 22 and 28 were used for

mapping and assembly, respectively. Overlapping pairs of

high-quality reads were assembled into transcripts using

Trinity (Grabherr et al. 2011) with default parameters.

Redundancy and misassembly among transcripts were

removed using the following pipeline. CD-HIT-EST (http://

weizhong-lab.ucsd.edu/cd-hit/, last accessed August 22,

2014) removed transcripts wholly contained within other tran-

scripts at 99% identity. Postassembly transchimera removal

was carried out by comparing all transcripts to a custom

BLAST (Boratyn et al. 2013) database of all Nembase (http://

www.nematodes.org/nembase4/, last accessed August 22,

2014) expressed sequence tag (EST) sequences. Transcripts

were cut if to two different ESTs mapped to the same tran-

script in opposite reading frames, using a custom python script

(Yang and Smith 2013). CD-HIT-EST at 99% was then re-

peated. All reads were mapped back to the transcriptome

assembly using Bowtie2 (Trapnell et al. 2013), and the highest

expressed isoform of each component was selected (Trinity-

pickH) (Grabherr et al. 2011). All overlapping isoforms were

“assembled” using Cap3 (�o 200 -p 99) (Huang and Madan

1999), and from the “nonassembled” transcripts all remain-

ing isoforms present in the pickH list were kept. CD-HIT-EST at

97% identity was repeated to create a set of reference tran-

scripts different enough to warrant independent analysis.

Postassembly contamination removal was carried out using

a BLAST-based approach as described in supplementary

section S1, Supplementary Material online.

Trimmed RNA reads from each sample were mapped back

to this reference transcriptome using Bowtie2. Trinity wrap-

per scripts for RSEM (Li and Dewey 2011) were used to gen-

erate read counts that were normalized by EdgeR (TMM)

(Robinson et al. 2010) and calculate differentially expressed

transcripts (P< 0.001, minimum fold change of 4).

Differentially expressed transcripts were clustered based on

their expression profile as 20% tree height, and then man-

ually assigned to ten super clusters.

Prediction of Proteins, Conserved Domains, and Gene
Ontology Annotation

Protein-coding sequences were predicted from the assembled

transcriptome using default parameters of TransDecoder

(Haas et al. 2013). Pfam-A domains (Bateman et al. 2004)

were identified from the predicted protein sets of N. aberrans,

the root-knot nematodes Meloidogyne incognita (Abad et al.

2008) and M. hapla (Opperman et al. 2008), the cyst nema-

tode G. pallida (Cotton et al. 2014), and the free-living nem-

atode C. elegans (Consortium 1998) using the Pfam-Scan perl

script based on HMMER (Eddy 2011). Only Pfam-A curated

domains were searched for comparisons between species.

Gene ontology (GO) terms were assigned to predicted pro-

teins using the BLAST2GO software (Conesa et al. 2005).

Detection of LGTs and Putative Contamination

To detect candidate LGTs, we calculated an Alien Index (AI)

analysis as described in (Gladyshev et al. 2008; Flot et al.

2013). Briefly, all the N. aberrans predicted proteins and pep-

tides were compared against the NCBI nonredundant library

using BLASTp with an e value threshold of 1e�3 and no SEG

filtering. BLAST hits were parsed to retrieve associated taxo-

nomic information. An AI was calculated for each N. aberrans

protein returning at least one hit in either a metazoan or

nonmetazoan species using the following formula:

AI ¼ logðbest metazoan e valueþe�200Þ

�logðbest non metazoan e valueþ e�200Þ

When no metazoan or nonmetazoan significant BLAST hit

was found, an e value of 1 was automatically assigned.
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BLAST hits to Tylenchida nematodes were ignored for the

calculation of AI to allow detection of LGT events in an ances-

tor of N. aberrans that are shared with other clade 12 PPN. No

AI value could be calculated for N. aberrans proteins returning

no significant hit at all in the nonredundant protein database.

An AI>0 indicates a better hit to a nonmetazoan species than

to a metazoan species. An AI>30 corresponds to a difference

of magnitude e10 between the best nonmetazoan and best

metazoan e values and is estimated to be indicative of a LGT

event (Flot et al. 2013). All N. aberrans proteins that returned

an AI>0 and that aligned with �70% identity to a nonmeta-

zoan protein were considered as possible contaminants and

were discarded from the analysis.

Multigene Phylogenetic Analysis of Sedentary PPN

CEGMA (Parra et al. 2007) was used to predict core eukaryotic

genes (CEGs) from the genomes of G. pallida, G. rostochiensis,

M. incognita, M. hapla, M. javanica, M. arenaria, B. xylophilus,

Pratylenchus coffeae, Radopholus similis, and C. elegans and

the transcriptomes of H. avenae, Longidorus elongatus,

Rotylenchulus reniformis, and N. aberrans using default pa-

rameters. A common set of 65 CEGs, previously defined as

putatively single copy, was identified between all species

tested. For each CEG, a protein alignment was carried out

between all species using MUSCLE (Edgar 2004). The corre-

sponding DNA sequence for each CEG in each species

was back aligned using a custom python script (https://

github.com/peterjc/pico_galaxy/tree/master/tools/align_back_

trans, last accessed August 22, 2014). For each species, back

alignments of CEGs or protein alignments were concatenated

in the same order to generate super alignments. The super

alignments were loaded into TOPALi (Milne et al. 2009) for

model selection and maximum-likelihood tree generation

using RaxML (WAG/GTR GAMMA) with 100 bootstraps. The

phylogenetic tree was rerooted using L. elongatus as a known

outgroup with FigTree v1.3.1 (http://tree.bio.ed.ac.uk/soft-

ware/figtree/, last accessed August 22, 2014).

Identification of Effectors

Nacobbus orthologues of “known effectors,” previously iden-

tified in other nematodes, were initially identified in the

N. aberrans transcriptome using BLASTn with a minimum e

value of 1e10�15 by default, followed by subsequent analysis

of reciprocal BLAST hit, temporal expression profile and secre-

tion signals. Signal peptides and transmembrane domains

were predicted using SignalP v4.1 and TMHMM v2.0, respec-

tively. Protein or DNA alignments were carried out using

MUSCLE v3.8.3.1 (Edgar 2004). 4D06-like sequences

were identified by BLAST as described above. Open reading

frames were identified manually. Protein alignments were car-

ried out as described above, and a phylogenetic analysis car-

ried out in TOPAli using RaxML (WAG,GAMMA), midpoint

rerooted, and formatted in Figtree v1.3.1. For identification

of novel putative-effectors, assumptions were made about

biologically relevant expression clusters, secreted proteins

were predicted from these as above and compared with

online databases using BLAST.

Identification of Putative Nematode-Derived Plant Peptide
Hormone Mimics

CLE-like or C-terminally encoded peptide-like (CEP) motifs

were identified from the N. aberrans transcriptome using a

pipeline similar to that previously described (Bobay et al.

2013). Protein-encoding regions of each transcript were pre-

dicted using Transdecoder with a minimum protein length of

50 amino acids. All peptides greater than 150 amino acids

were discarded and the remaining were subject to signal pep-

tide and transmembrane domain prediction as described

above. Those that had a predicted signal peptide and lacked

a transmembrane domain were queried for CLE-like or CEP-

like domains using the permissive regular expressions

[SjVjI]P[SjTjG]G[PjS][NjD]P and G[A-Z]S[A-Z]G[A-Z]GH, re-

spectively. Sequences were then manually confirmed, and

the relevant domains visualized using the MEME suite (Bailey

et al. 2009). Due to the short size of these signaling peptides

(12–13 amino acid), it was necessary to check that they were

not present by chance alone. Therefore, each protein in the

N. aberrans transcriptome was shuffled (thus maintaining

amino acid representation), and the analysis described above

was repeated.

Results

Transcriptome Assembly

In brief: 193 million reads across nine samples representing

biological triplicates of three life stages were assembled into a

single reference transcriptome containing 60,746 transcripts

different enough to warrant independent analysis. CEGMA

analysis showed that 96% of the CEGs were present as full

length transcripts, with a further 1% represented by partial

length transcripts. These data suggest that the majority of

transcripts present in the transcriptome are likely to be full

length. Postassembly contamination analysis identified 1,947

putative contaminants (primarily of fungal origin, supplemen-

tary fig. S1, Supplementary Material online) that were re-

moved from subsequent analyses. The sequence reads have

been submitted to SRA (accession numbers PRJEB6762).

Further metrics are included in supplementary results section

S1 and tables S1 and S2, Supplementary Material online.

Lateral Gene Transfers

A total of 570 N. aberrans proteins returned an AI >30 and

less than 70% identity to a nonmetazoan protein (supplemen-

tary table S3, Supplementary Material online). The corre-

sponding genes were considered as acquired via LGT and

unlikely to represent contamination (Gladyshev et al. 2008).
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Validating our approach, several previously reported and phy-

logenetically confirmed cases of LGT acquisitions in PPN were

retrieved in this set of proteins. For example, GH5 cellulases,

GH30 xylanases, GH28 polygalacturonases, GH32 candidate

invertases, PL3 pectate lyases, L-threonine aldolases, candi-

date phosphoribosyltransferases, GH43 candidate arabina-

nases, GH53 candidate arabinogalactanase, chorismate

mutases, expansin-like proteins, and Vitamin B5 pantothe-

nate, all previously reported in different Clade 12 PPN (de

Almeida Engler et al. 1999; Haegeman, Jones, et al. 2011)

were identified. Interestingly, classes of enzymes, such as

GH28 polygalacturonases, observed in root-knot nematodes

(Jaubert et al. 2002) and their close relatives in the family

Pratylenchidae (Haegeman, Joseph, et al. 2011; Bauters

et al. 2014), but not in cyst nematodes, were identified in

N. aberrans. Conversely, other classes of enzymes, such as

GH53 candidate arabinogalactanase, reported in cyst nema-

todes (Vanholme et al. 2009) and suggested to be present in

Pratylenchidae (Haegeman, Joseph, et al. 2011) but not in

root-knot nematodes, were also found in N. aberrans

(table 1). Transcripts encoding candidate glycoside hydrolase

(GH) enzymes putatively acquired by LGT that are N. aberrans

specific were also identified.

Whole Transcriptome Comparisons

A total of 3,262 different protein domains were found in

15,674 N. aberrans predicted proteins. This is within the

range of domain diversity observed for the other nematodes

(2,784 min–3,638 max) possibly indicative of a largely “com-

plete” transcriptome (supplementary fig. S2, Supplementary

Material online). Comparing N. aberrans to root-knot nema-

todes, cyst nematodes and C. elegans identified 2,444 con-

served protein domains present in all the nematodes analyzed

here. As many as 51 protein domains were specific to PPN. This

includes several of the candidate LGT genes (as described

above). We identified 40 protein domains shared between

N. aberrans and the root-knot nematodes but not present in

the cyst nematode G. pallida and conversely 31 protein do-

mains shared between N. aberrans and G. pallida but not pre-

sent in RKN genomes. In both cases root-knot nematode

“specific” and cyst nematode “specific” laterally acquired

genes were present in the N. aberrans transcriptome (as de-

scribed above). A total of 134 protein domains were specific to

N. aberrans with respect to cyst nematodes, root-knot nema-

todes, and C. elegans, 55 of which returned an AI greater than

30 and are therefore putative N. aberrans-specific LGT events.

Differentially Expressed Transcript Clusters

Comparing normalized expression values between samples

identified 7,731 transcripts that were differentially expressed

with a minimum fold-change of 4 (P<0.001). These could be

grouped into 21 clusters that were manually assigned to ten

super clusters (fig. 2). In general expression profiles of the dif-

ferentially expressed transcripts are consistent between each

of the three biological replicates (fig. 2). J2 specific (super clus-

ter 1) was the most numerically dominant with almost 3,000

transcripts. On average, the majority (66%) of differentially

expressed transcripts in all clusters had no assignable GO

terms (fig. 2). Of the characterizable transcripts present in

the J2 super cluster, a significant enrichment of GO terms as-

sociated with chemosensory behaviour, ion channel activity

and proteins located at the neuronal cell body was observed

using Fisher’s exact test (FDR 0.05). No significantly enriched

GO terms were identified in the sedentary cluster (super cluster

9) using false discovery rate (FDR 0.05). However, using a min-

imum P value of 0.05, transcripts involved in regulation of

vulval development and regulation of nematode larval devel-

opment were overrepresented. The “migratory and seden-

tary” super cluster contained only 40 transcripts, 14 of

which had associated GO terms. Two of these corresponded

to membrane transport of sugars and were significantly over

represented (FDR 0.05). Further analysis of super-clusters and

conserved domains therein are covered in supplementary sec-

tion S2 and table S4, Supplementary Material online.

Multigene Phylogenetic History of Sedentary PPN

We were able to identify 65 putatively single copy core eu-

karyotic genes (CEGs) from genome and transcriptome re-

sources available for 15 species representing ten genera of

the most economically important PPN related to N. aberrans.

Using all species, with either a concatenated protein align-

ment or a codon aware nucleotide alignment of all 65

genes, we constructed a robust phylogeny representing

the likely relationships between the major plant parasitic nem-

atode clades. The topology described is in agreement with

phylogenetic trees based on a single SSU rDNA sequence

Table 1

Between Species Comparison of Laterally Acquired Genes

Species Chorismate Mutase GH5 GH43 Expansin Pectate lyases GH32 GH28a GH30 Xylanasea GH53b

Meloidogyne incognita + + + + + + + + �

Nacobbus aberrans + + + + + + + + +

Globodera pallida + + + + + + � � +

aAbsent from cyst nematodes.
bAbsent from root-knot nematodes.

Highlighted classes of interest.
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(Holterman et al. 2006, 2009; van Megen et al. 2009). Both

our multigene phylogenetic analysis and SSU rDNA phyloge-

nies performed so far place N. aberrans at the closest out-

group position relative to the root-knot nematodes and the

Pratylenchus species (fig. 3). However, it is important to note

that despite this apparent congruence, the phylogenetic posi-

tion of N. aberrans fluctuates as a function of the set of species

included in the phylogeny. For instance, removal of P. coffeae

from the analysis causes N. aberrans to group with the cyst

nematode clade; however, the additional removal of R. similis

causes N. aberrans to group with the root-knot nematode

clade for protein alignment but with the cyst nematode

clade for back-threaded nucleotide alignment. With the pres-

ence/absence of the species described above, or with protein/

codon aware nucleotide alignment, the relative positions of all

other nematodes do not change in any case tested, only

N. aberrans has different positions at the base of either the

cyst nematode clade or the root-knot/pratylenchus nematode

clade. The uncertainty in the positioning of N. aberrans may

reflect its proximity to the bifurcation. Paradoxically, in any of

the scenarios above, the position of N. aberrans was sup-

ported by strong (>70) boot strap support values.

Comparing the N. aberrans Effector Complement to
Other PPN

Due to the unusual biology of N. aberrans with similarities

to both root-knot and cyst nematodes, the transcriptome

was analyzed for the presence of effectors previously charac-

terized from M. incognita (Huang et al. 2003) and G. pallida

(Cotton et al. 2014). With the exception of the cell wall

degrading and modifying proteins described above, very

little overlap of the M. incognita effector proteins was seen

with those of N. aberrans other than the few that were also

present in G. pallida. This included the small signaling peptides

discussed in detail below and a putatively secreted chorismate

mutase. By contrast, of the 36 families of G. pallida putative

effectors identified (Cotton et al. 2014), 16 were present in

the N. aberrans transcriptome, the majority of which (12) con-

tained at least one member with a predicted signal peptide. In

general, expression patterns were consistent between the G.

pallida effector families and the corresponding N. aberrans

sequences (supplementary section S3 and table S5,

Supplementary Material online). Taken together these results

suggest functional homology for cyst nematode and N. aber-

rans effectors.

Common Effectors between Root-Knot, Cyst and False
Root-Knot Nematodes: Plant Peptide Mimics

Both the root-knot and cyst nematodes secrete peptides into

their host plant that have high sequence similarity to endog-

enous plant peptide-hormones. These short genes are up reg-

ulated at feeding stages and encode a predicted secretion

signal, followed by a highly conserved 12–13 amino acid

domain. To date, two classes of peptides have been

FIG. 2.—Transcripts clustered by differential expression. For all expression clusters, mean centred log fold change of expression is plotted for each of the

three biological replicates for each life stage in the following order: J2, mixed J3/J4/female migratory (Mig), and sedentary female (Sed). A total of 7,731

differentially expressed transcripts clustered into 26 clusters based on expression profile. Clusters are manually grouped into ten super clusters with

summarized expression.
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characterized in nematodes, the CLE-like (or CLAVATA-like)

and CEP-like (Gao et al. 2003; Wang et al. 2005, 2011; Lu

et al. 2009; Bobay et al. 2013). Nine CLE-like sequences have

been identified in root-knot nematode genomes and three

were identifiable from the G. pallida genome (Cotton et al.

2014; Bobay et al. 2013). Three CLE-like peptides were also

identifiable in the N. aberrans transcriptome, two of which

contained putative signal peptides, and were significantly up

regulated during the sedentary biotrophic phase (fig. 4).

Conversely, CEP-like peptides have only been described

from the root-knot nematode and are absent from G. pallida.

No CEP-like peptides were identified in the N. aberrans

transcriptome. As a control, no CLE-like or CEP-like domains

were identified downstream of signal peptides in either a

randomized transcriptome or proteome of N. aberrans.

Common Effectors between Cyst Nematodes and False
Root-Knot Nematodes: Putative Effector 4D06

A family of effectors (4D06) was first identified from H. gly-

cines (Gao et al. 2003). A large family of similar sequences is

present in G. rostochiensis (Eves-van den Akker S,

Unpublished data), G. pallida (Qin et al. 2000; Cotton et al.

2014), R. reniformis (Eves-van den Akker S, Unpublished data)

and the limited information for H. glycines suggests that this

nematode too harbours a large family of related proteins.

Several 4D06-like sequences are present as a gene family in

N. aberrans. Neither the cyst nematode nor the N. aberrans

4D06 sequences identified any significant hits from the ge-

nomes of the root-knot nematodes M. incognita or M. hapla

by BLASTp (>30% identity across >40% of query length).

Both G. pallida and N. aberrans 4D06-like genes encode pu-

tatively secreted proteins that are up regulated during the

sedentary phase of the life cycle (fig. 5). These data further

support a proposed function in syncytia but are in contrast to

the proposed phylogenetic proximity of N. aberrans with root-

knot nematodes.

4D06-like sequences were present in N. aberrans and all

sedentary nematode species in the cyst nematode clade (in-

cluding R. reniformis—fig. 3). However, a conserved domain

present in most cyst nematode 4D06-like sequences was

absent from the N. aberrans sequences (fig. 6). If the proposed

FIG. 3.—Local phylogenetic history of sedentary PPN: Nuclear protein-coding multigene phylogeny. Concatenated multigene protein alignment of 65

CEGs present in all 15 species. Using Longidorus elongatus as a root: Nacobbus aberrans lies at the base of the root-knot nematodes. Node numbers

represent bootstrap support values for 100 iterations, and species are highlighted by their different life strategies.
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phylogeny of PPN is to be believed, 4D06-like sequences

appear to have been lost in Meloidogyne spp., the conserved

domain appears to originate after the split from N. aberrans,

and the expansion of sequences containing the conserved

domain appears after the split from R. reniformis.

Discussion

We present the first deep-sequencing whole transcriptome

resource available for any false root-knot nematode species.

We have generated a comprehensive database of genes ex-

pressed across three life stages, and have used robust statisti-

cal analyses to quantify changes in gene expression that occur

in the transition between modes of parasitism. This analysis

has revealed insights into the evolution, phylogenetic history,

and biology of biotrophic plant-nematode interactions.

Comparative Geno/Transcriptomics

Next generation sequencing, and in particular RNAseq, is an

extremely powerful technique but the tools developed for

analysis of the data that are generated are in their infancy.

Most analyses, including phylogenomics, become more chal-

lenging with large numbers of isoforms. A pipeline was used

to reduce redundancy while retaining as much “information”

as possible using the most recent accepted methodology from

a range of sources (Schliesky et al. 2012; Yang and

Smith 2013). All nonredundant, nonchimeric transcripts

were therefore treated independently, and the term gene is

FIG. 4.—Comparison of nematode-derived plant peptide mimics between genera. (a) A comparison between the CLE and CEP-like peptides in

Arabidopsis thaliana and PPN. No CEP-like sequences were identifiable in either N. aberrans or Globodera pallida. (b) Two of the three sequences containing

CLE-like motifs in the Nacobbus aberrans transcriptome contain putative signal peptides (2 and 3) and have expression peaks during the sedentary life stage

(2 and 3) compared with juvenile or migratory stages. Data for A. thaliana and M. hapla are modified from Bird et al. (Bird et al. 2014).

FIG. 5.—Expression comparison of 4D06-like gene families of Globodera pallida and Nacobbus aberrans. Each line contains expression data from a single

gene across the life cycle. G. pallida 4D06-like genes are characterized by highest expression in the earliest stages of sedentary endoparasitism. Nacobbus

aberrans 4D06-like sequences follow a similar expression pattern with peaks of expression during sedentary parasitic stages.
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used tentatively. The final transcriptome assembly contained

>60,000 transcripts less than 97% similar at the nucleotide

level. This is many more than expected or observed in other

PPN and is probably reflective of sequencing nematodes orig-

inally collected from a mixed soil sample and the presence of

several isoforms that could not be collapsed into single genes.

Similar numbers of common Pfam domains were identified

when comparing N. aberrans with the root-knot nematode

M. incognita and the cyst nematode G. pallida. In this analysis

N. aberrans was more similar to either M. incognita or

FIG. 6.—Putative effector 4D06: Multispecies protein alignment. Midpoint rooted protein phylogeny of 4D06-like sequences of Nacobbus aberrans

(gray), Rotylenchulus reniformis (red), Globodera pallida (green), and G. rostochiensis (blue) is divided into two groups. Group 1 is dominated by cyst

nematode sequences. Group 2 contains almost all of the N. aberrans sequences, 75% of R. reniformis sequences, 40% of G. rostochiensis sequences, and

3.4% of G. pallida sequences and is therefore presumably ancestral. MEME analysis has identified a highly conserved motif, termed “PCCP” that is present

with a conserved location in all sequences in group 1 and absent in group 2.
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G. pallida than they are to each other, supporting the position

at the base of the cyst nematode—root-knot nematode

bifurcation.

Lateral Gene Transfer

Hundreds of transcripts with alien indices indicative of laterally

acquired genes were identified in the N. aberrans transcrip-

tome. Several of these have been characterized in other nem-

atode species as virulence factors with functioning GH activity

on plant oligo- and polysaccharides (Jaubert et al. 2002;

Haegeman, Jones, et al. 2011). Interestingly, classes of GH

that are present in either root-knot nematodes or cyst nema-

todes are both present in N. aberrans. Of particular interest is

the N. aberrans orthologue of the M. incognita protein

Minc18543b. This has been identified as a functioning

GH28 polygalacturonase and is expressed in the subventral

gland cells (Jaubert et al. 2002). Until now GH28s were hy-

pothesized to be root-knot nematode specific and possibly

shared with their close Pratylenchidae relatives (Haegeman,

Joseph, et al. 2011). However, two similar transcripts with

high sequence identity to the M. incognita sequence have

been identified in N. aberrans. The N. aberrans sequences

are expressed during the J2, or both the J2 and sedentary

life stages, and both contain putative signal peptides suggest-

ing functional homology. Neither the N. aberrans nor the

M. incognita GH28s identify any similar sequences in G. ros-

tochiensis or G. pallida. A highly similar GH28 sequence was

also identified from R. reniformis. However, the R. reniformis

sequence appears to be nonfunctional as it lacks a signal pep-

tide and has low read coverage during either J2 or sedentary

phase (Eves-van den Akker S, unpublished data). Taken to-

gether these results may suggest that a common ancestor to

root-knot and cyst nematodes had acquired GH28 polygalac-

turonase via LGT, and that a gradual loss of function has

occurred during speciation in the cyst nematode clade.

Interestingly, N. aberrans-specific candidate GH enzymes

were also identified, although these remain to be confirmed

and functionally characterized.

Comparing Characterized Effector Complements
between PPN

Putative plant peptide-hormone mimics are some of the best

characterized effectors in PPN. CLE-like peptides have been

identified in both cyst and root-knot nematodes and, unsur-

prisingly, were identifiable in the N. aberrans transcriptome.

The CLE-like peptides identified were downstream of pre-

dicted secretion signals and were specifically expressed

during the biotrophic phase in N. aberrans. The function of

the CLE-like peptides in PPNs is not clear. CLEs are one of the

few features that are shared between both cyst and root-knot

nematodes leading to a suggestion that they play a funda-

mental role in the development of two morphologically di-

verse feeding sites. By contrast, CEP-like peptides have only

been identified in root-knot nematodes and vascular plants

(Bobay et al. 2013). CEP-like peptides were not identifiable in

the N. aberrans transcriptome. According to the phylogenetic

position of N. aberrans, this suggests that evolution/acquisition

occurred after the split from N. aberrans. Despite their pro-

posed function in root nodule formation (Imin et al. 2013),

and the phenotypic similarities between nodules and galls, this

suggests either a role unrelated to gall formation for these

peptides or that superficially morphologically similar galls are

produced by distinct means in different PPNs.

Of the 36 effector families identified in G. pallida, half were

represented by at least one member in the N. aberrans tran-

scriptome. The majority of these effectors are highly up regu-

lated at J2 and have unknown functions. It is assumed that

“effectors” expressed in the J2 stage of G. pallida play a role in

either migration, suppression of host defences or initiation of

the feeding site. Due to the unique biology of N. aberrans, by

comparing these orthologues we can support or reject some

of these hypotheses. It is reasonable to assume that genes

involved in initiation of the feeding site are expressed in

stages just prior to feeding site formation. In G. pallida this

would correspond to the J2. However, all J2 specific effectors

of G. pallida that have orthologues in N. aberrans are also J2

specific in that species. For N. aberrans the stage immediately

prior to feeding site initiation would be an immature female,

which is the developmental stage after the J3/4. This therefore

suggests none of the J2 specific effectors shared by G. pallida

and N. aberrans are involved in the initiation of the feeding

sites, and that the as yet unidentified genes in either spe-

cies, are strictly transcriptionally regulated. Those genes in

G. pallida that are J2 and male specific are hypothesized to

be involved in either migration or suppression of host de-

fences. The corresponding orthologues in N. aberrans are up

regulated at J2 and migratory stages. However, the migratory

stage of N. aberrans causes necrosis and lesions, suggesting

that these G. pallida genes are not involved in suppression of

host defences, and are probably involved in migration. Finally,

those genes where corresponding orthologues are expressed

during the feeding stages in both species may play a critical

and conserved role in maintenance of the feeding site or sup-

pression of host defences.

One such gene family, similar to the 4D06 effector of H.

glycines (Gao et al. 2003) was identified in cyst nematodes,

reniform nematodes, and in N. aberrans. This is again in con-

trast with the proposed phylogeny (as for the other effectors

shared by cyst nematodes and Nacobbus) and therefore sug-

gests that a common ancestor of cyst and root-knot nema-

todes would have contained the 4D06 gene family. In

addition, this gene family provides interesting insights into

the evolution of sedentary endoparasitism. This gene family

is present in at least three genera of PPN capable of infecting

both Monocotyledons and Dicotyledons, suggesting a funda-

mental role in plant parasitism. A protein alignment of all

4D06-like effectors identified to date allows the sequences
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to be divided into two groups (fig. 6). Group 2, presumably

the most “ancestral”, contains 100% of N. aberrans, 75% of

R. reniformis, 40% of G. rostochiensis, and just 3.4% of

G. pallida 4D06-like sequences. Protein alignments are often

more reflective of function than evolutionary history, but cou-

pled with the proposed phylogeny (fig. 3), this suggests that as

speciation events have occurred, a gradual change from

group 2 to group 1 4D06-like genes has taken place, and

that they have been lost in the root-knot nematodes. Cyst

nematodes, reniform nematodes, and N. aberrans are able

to infect Solanum tuberosum with varying degrees of success.

Both N. aberrans and R. reniformis have broad host ranges,

whereas the potato cyst nematodes G. pallida and G. rosto-

chiensis are specialists. However, 4D06-like genes have been

identified in other cyst nematodes that do not infect potato

(H. avenae ERP004648), suggesting that the switch to, and

expansion of, group 1 4D06-like genes does not reflect adap-

tation toward a particular host.

Significantly differentially expressed transcripts were

grouped into ten super clusters that described the changes

in gene expression across the N. aberrans life cycle. As well as

life stage specific clusters that have obvious biological rele-

vance, we have identified clusters that describe transitions

from juvenile to parasitic migratory endoparasite to parasitic

sedentary endoparasite. Interestingly, the sedentary-specific

super cluster 9 is the least well described with just 18% of

transcripts with BLAST2GO hits. Making the reasonable as-

sumption that genes specifically expressed at certain life

stages are crucial to those stages, this highlights how little is

known about this complex biotrophic interaction. Hundreds of

putative effectors have been identified that have specific ex-

pression profiles, presumably separating the different func-

tions required for successful parasitism of both migratory

parasitic and sedentary parasitic stages. Effectors specifically

up regulated during the J2 stage are predicted to be involved

in migration, whereas those in the sedentary stage are likely to

be involved in maintenance of the feeding site and suppres-

sion of host defences. Typical effector finding pipelines iden-

tify genes encoding secreted proteins specifically up regulated

during the biotrophic (or migratory) phase of the interaction.

This relatively crude analysis can identify a range of proteins

that are not effectors (e.g., digestive enzymes). However, in

the case of N. aberrans, the presence of a migratory stage that

reportedly feeds but does not form biotrophic feeding sites

gives more confidence in this type of analysis. Using a combi-

nation of known effector expression profiles and clustering of

N. aberrans transcripts based on expression profile we can

identify super clusters that contain putative effector sequences

for further study.

Evolution of Plant-Parasitism by Nematodes

Due to morphometric and physiological variability of

Nacobbus in response to host range and temperature, there

is very little agreement on the species taxonomy within the

N. aberrans complex (Lax et al. 2013). Using the wealth of

information generated here, a local phylogenetic history of the

false root-knot nematodes is proposed. We present the most

comprehensive and robust phylogeny of PPN, including rep-

resentatives from all major groups, based on multiple nuclear

protein-encoding genes. It is important to note that when

constructing the phylogeny the relative positions of all species,

except N. aberrans, remained constant with the addition of

more species. N. aberrans was always positioned with the

other Clade 12 nematodes, but was found in closer proximity

to the root-knot nematodes or the cyst nematodes depending

on the range of species included in the analysis. The 65 genes

used here are highly conserved, present in all eukaryotes, pre-

dicted to be single copy and therefore are expected to be

good indicators of evolutionary history. Despite the large

number of conserved genes used here, it is possible that N.

aberrans represents a rogue taxon and this may indicate in-

sufficient phylogenetic signal (Sanderson and Shaffer 2002).

The Pratylenchidae appear to be difficult to accurately position

in a phylogenetic tree based on SSU rDNA, as R. similis groups

with the cyst nematodes, whereas N. aberrans and the other

Pratylenchinae group with the root-knot nematodes. Similarly,

it has been noted that B. xylophilus, and indeed all

Parasitaphelenchidae, are difficult to position using SSU

rDNA due to unusual GC content (Holterman et al. 2006).

However, for the 65 genes used here, no major differences

were noted in GC content of the B. xylophilus nuclear genes

compared with the other nematode species.

Using all common CEGs between all species available the

proposed phylogenetic placement of N. aberrans is in agree-

ment with published phylogenies. The phylogenetic proximity

of N. aberrans to the root-knot nematodes correlates poorly

with the biology of this nematode. With the exception of the

galls, all other defining features of the biotrophic interaction

are more similar to those of cyst and reniform nematodes than

those of root-knot nematodes. For example, the juveniles of

cyst nematodes migrate destructively and intracellularly (Wyss

and Grundler 1992), whereas the juveniles of root-knot nem-

atodes migrate intercellularly (Wyss and Grundler 1992;

Atkinson et al. 1995). Like the cyst nematodes, the juveniles

of N. aberrans also migrate destructively and intracellularly

(Manzanilla-López et al. 2002). The syncytial feeding structure

of Nacobbus is similar in structure and ontogeny to that of cyst

nematodes, and in particular reniform nematodes (Jones and

Payne 1977; Vovlas et al. 2007), and does not resemble the

giant cells of root-knot nematodes. Females of root-knot nem-

atodes, reniform nematodes, and false root-knot nematodes

all produce eggs into a gelatinous matrix. In root-knot nema-

todes this matrix originates from rectal glands, whereas in

reniform nematodes it originates from vaginal glands

(Robinson et al. 1998). Although the origin of the N. aberrans

gelatinous matrix is not known (Geraert 1994; Manzanilla-

López et al. 2002), N. aberrans and all sedentary nematodes

Eves-van den Akker et al. GBE

2192 Genome Biol. Evol. 6(9):2181–2194. doi:10.1093/gbe/evu171 Advance Access publication August 13, 2014

s
10 
-
-
plant-parasitic nematodes
Radopholus 
to 
.&Unicode_x202F;
-
-
; Wyss and Grundler 1992
-


in the cyst/reniform nematode clade lack rectal glands.

Indeed, the biology of N. aberrans is remarkably similar to

that of R. reniformis; both moult from J2 to J3/4 female in

the soil, retaining their cuticle. The female is the infective stage

(i.e., able to induce syncytia) in both and, in sub optimal con-

ditions the J3/J4 is the survival stage.

These observations can be put in parallel with the LGT

analysis and the effector complement analysis. Classes of

GH enzyme present in either root-knot nematodes or cyst

nematodes are both present in the N. aberrans transcriptome.

In addition, cyst nematode specific effectors, absent from

root-knot nematodes, are also present in the N. aberrans tran-

scriptome. Similarly, the difficulties in positioning N. aberrans

with respect to cyst and root-knot nematode clades depend-

ing on the number of species, number of sequences, or the

type of alignment used (as discussed above) may indicate that

it is at the very base of this bifurcation. Varying reports exist in

the literature about the evolutionary origins of sedentary en-

doparasitism in the phylum Nematoda (Holterman et al. 2009;

van Megen et al. 2009; de Almeida Engler and Gheysen

2013). The position of R. similis and P. coffeae on each side

of the bifurcation presumably implies that migratory endopar-

asitism is a prerequisite to sedentary endoparasitism and that

the migratory parasitic stages of sedentary endoparasites have

been lost in cyst and root-knot nematodes and yet retained as

an important part of the life cycle in the “intermediate” genus

Nacobbus.

The wealth and quality of the information here has raised

interesting questions into the phylogeny of PPN and provides a

tremendous resource for further study into both sedentary

and migratory parasitism. As the only known nematode to

have both migratory and sedentary phases of the life cycle,

N. aberrans had provided valuable information, and may

become a useful model system, for both fields.

Supplementary Material

Supplementary sections S1–S5, tables S1–S5, and figures S1

and S2 are available at Genome Biology and Evolution online

(http://www.gbe.oxfordjournals.org/).
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