W. Verbeke, L. Van-wezemael, M. D. De-barcellos, J. O. Kügler, J. Hocquette et al., European beef consumers' interest in a beef eating-quality guarantee, Appetite, vol.54, pp.289-296, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02665282

B. Picard, B. Lebret, I. Cassar-malek, L. Liaubet, C. Berri et al., Recent advances in genomics for meat quality management, Meat Sci, vol.109, pp.18-26, 2015.

B. Picard, Relationship between Muscle Fibers, Growth Efficiency and Beef Quality, Proceedings of the 8th SIMCORTE, 2012.

B. Picard, I. Cassar-malek, N. Guillemin, and M. Bonnet, Quest for novel muscle pathway biomarkers by proteomics in beef production, Comprehensive Biotechnology, pp.395-405, 2011.

A. Ouali, C. H. Herrera-mendez, G. Coulis, S. Becila, A. Boudjellal et al., Revisiting the conversion of muscle into meat and the underlying mechanisms, Meat Sci, vol.74, pp.44-58, 2006.

M. Kammoun, B. Picard, and J. Henry-berger, Cassar-Malek, I. A network-based approach for predicting Hsp27 knock-out targets in mouse skeletal muscles, Comput. Struct. Biotechnol. J, vol.6, pp.1-9, 2013.

I. Cassar-malek, M. Kammoun, T. Astruc, C. Chambon, C. Barboiron et al., An hspb1-null mouse to depict the contribution of Hsp27 in beef tenderness, In International Congress of Meat Science and Technology (ICoMST), vol.INRA, p.97, 2015.

W. Verbeke, L. Van-wezemael, M. D. De-barcellos, J. O. Kügler, J. Hocquette et al., European beef consumers' interest in a beef eating-quality guarantee, Appetite, vol.54, pp.289-296, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02665282

B. Picard, B. Lebret, I. Cassar-malek, L. Liaubet, C. Berri et al., Recent advances in genomics for meat quality management, Meat Sci, vol.109, pp.18-26, 2015.

B. Picard, Relationship between Muscle Fibers, Growth Efficiency and Beef Quality, Proceedings of the 8th SIMCORTE, 2012.

B. Picard, I. Cassar-malek, N. Guillemin, and M. Bonnet, Quest for novel muscle pathway biomarkers by proteomics in beef production, Comprehensive Biotechnology, pp.395-405, 2011.

A. Ouali, C. H. Herrera-mendez, G. Coulis, S. Becila, A. Boudjellal et al., Revisiting the conversion of muscle into meat and the underlying mechanisms, Meat Sci, vol.74, pp.44-58, 2006.

M. Kammoun, B. Picard, and J. Henry-berger, Cassar-Malek, I. A network-based approach for predicting Hsp27 knock-out targets in mouse skeletal muscles, Comput. Struct. Biotechnol. J, vol.6, pp.1-9, 2013.

I. Cassar-malek, M. Kammoun, T. Astruc, C. Chambon, C. Barboiron et al., An hspb1-null mouse to depict the contribution of Hsp27 in beef tenderness, Proceedings of the 61th International Congress of Meat Science and Technology (ICoMST), vol.INRA, p.97, 2015.

M. Kammoun, B. Picard, T. Astruc, V. Blanquet, and I. Cassar-malek, The invalidation of Hspb1 gene does not impair mouse development but alters the ultrastructural phenotype of muscles, PLoS ONE, 2016.

J. Bouley, C. Chambon, and B. Picard, Mapping of bovine skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry, Proteomics, vol.4, pp.1811-1824, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02681208

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem, vol.72, pp.248-254, 1976.

F. Chevalier, Standard dyes for total protein staining in gel-based proteomic analysis, Materials, vol.3, pp.4784-4792, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02502783

T. Chaze, B. Meunier, C. Chambon, C. Jurie, and B. Picard, In vivo proteome dynamics during early bovine myogenesis, Proteomics, vol.8, pp.4236-4248, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02663688

U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage t4, Nature, vol.227, pp.680-685, 1970.

C. Jurie, I. Ortigues-marty, B. Picard, D. Micol, and J. F. Hocquette, The separate effects of the nature of diet and grazing mobility on metabolic potential of muscles from charolais steers, Livest. Sci, vol.104, pp.182-192, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02659289

N. Kaspric, B. Picard, M. Reichstadt, J. Tournayre, and M. Bonnet, Proteinside to easily investigate proteomics data from ruminants: Application to mine proteome of adipose and muscle tissues in bovine foetuses, PLoS ONE, vol.10, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02635637

M. Gagaoua, E. M. Claudia-terlouw, A. Boudjellal, and B. Picard, Coherent correlation networks among protein biomarkers of beef tenderness: What they reveal, J. Proteom, vol.128, pp.365-374, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02641553

M. W. Berchtold, H. Brinkmeier, and M. Muntener, Calcium ion in skeletal muscle: Its crucial role for muscle function, plasticity, and disease, Physiol. Rev, vol.80, pp.1215-1265, 2000.

E. Leberer, B. G. Timms, K. P. Campbell, and D. H. Maclennan, Purification, calcium-binding properties, and ultrastructural-localization of the 53,000-dalton and 160,000 (sarcalumenin)-dalton glycoproteins of the sarcoplasmic-reticulum, J. Biol. Chem, vol.265, pp.10118-10124, 1990.

J. E. Mahaney, C. P. Weis, C. M. Grisham, and H. Kutchai, Antibodies against the 53 kDa glycoprotein inhibit the rotational dynamics of both the 53 kDa glycoprotein and the Ca 2+ -atpase in the sarcoplasmic reticulum membrane, Biochim. Biophys. Acta BBA Biomembr, vol.1064, pp.55-68, 1991.

N. Hadad, H. E. Meyer, M. Varsanyi, S. Fleischer, and V. Shoshan-barmatz, Cardiac sarcalumenin: Phosphorylation, comparison with the skeletal muscle sarcalumenin and modulation of ryanodine receptor, J. Membr. Biol, vol.170, pp.39-49, 1999.

N. A. Beard, D. R. Laver, and A. F. Dulhunty, Calsequestrin and the calcium release channel of skeletal and cardiac muscle, Prog. Biophys. Mol. Biol, vol.85, pp.33-69, 2004.

M. Ohkura, K. I. Furukawa, H. Fujimori, A. Kuruma, S. Kawano et al., Dual regulation of the skeletal muscle ryanodine receptor by triadin and calsequestrin, Biochemistry, vol.37, pp.12987-12993, 1998.

S. Gehlert, W. Bloch, and F. Suhr, Ca 2+ -dependent regulations and signaling in skeletal muscle: From electro-mechanical coupling to adaptation, Int. J. Mol. Sci, vol.16, pp.1066-1095, 2015.

M. Tomasi, M. Canato, C. Paolini, M. Dainese, C. Reggiani et al., Calsequestrin (CASQ1) rescues function and structure of calcium release units in skeletal muscles of CASQ1-null mice, Am. J. Physiol. Cell Physiol, vol.302, pp.575-586, 2012.

E. Carafoli, Calcium signaling: A tale for all seasons, Proc. Natl. Acad. Sci, vol.99, pp.1115-1122, 2002.

N. Demaurex, Cell biology: Apoptosis-The calcium connection, vol.300, pp.65-67, 2003.

A. Ouali, M. Gagaoua, Y. Boudida, S. Becila, A. Boudjellal et al., Biomarkers of meat tenderness: Present knowledge and perspectives in regards to our current understanding of the mechanisms involved, Meat Sci, vol.95, pp.854-870, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02652573

P. L. Mcneil and T. Kirchhausen, An emergency response team for membrane repair, Nat. Rev. Mol. Cell Biol, vol.6, pp.499-505, 2005.

C. Cai, H. Masumiya, N. Weisleder, N. Matsuda, M. Nishi et al., Mg53 nucleates assembly of cell membrane repair machinery, Nat. Cell Biol, vol.11, pp.56-64, 2009.

L. Contreras, I. Drago, E. Zampese, T. Pozzan, and . Mitochondria, The calcium connection, Biochim. Biophys. Acta BBA Bioenerg, vol.1797, pp.607-618, 2010.

T. Mitsui, I. Endo, T. Matsumoto, Y. Umaki, and M. Akaike, Apoptosis-related changes in skeletal muscles of patients with mitochondrial diseases, Acta Neuropathol, vol.103, pp.163-170, 2002.

A. M. Rossi, H. M. Eppenberger, P. Volpe, R. Cotrufo, and T. Wallimann, Muscle-type MM creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca 2+ uptake and regulate local ATP/ADP ratios, J. Biol. Chem, vol.265, pp.5258-5266, 1990.

J. M. Lawler, W. S. Barnes, G. Wu, W. Song, and S. Demaree, Direct antioxidant properties of creatine, Biochem. Biophys. Res. Commun, vol.290, pp.47-52, 2002.

E. A. Decker, S. A. Livisay, and S. Zhou, Mechanisms of endogenous skeletal muscle antioxidants: Chemical and physical aspects, Antioxidants in Muscle Foods: Nutritional Strategies to Improve Quality

E. A. Decker, C. Faustman, and C. J. Lopez-bote, , pp.25-60, 2000.

M. P. Mayer, Hsp70 chaperone dynamics and molecular mechanism, Trends Biochem. Sci, vol.38, pp.507-514, 2013.

N. Wiedemann, A. E. Frazier, and N. Pfanner, The protein import machinery of mitochondria, J. Biol. Chem, vol.279, pp.14473-14476, 2004.

M. Gagaoua, E. M. Terlouw, D. Micol, A. Boudjellal, J. Hocquette et al., Understanding early post-mortem biochemical processes underlying meat color and pH decline in the longissimus thoracis muscle of young blond d'aquitaine bulls using protein biomarkers, J. Agric. Food Chem, vol.63, pp.6799-6809, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01191442

S. C. Turner and C. Shieh, Medicinal chemistry of Ca 2+ -activated K + channel modulators, Triggle: Voltage-Gated Ion Channels as Drug Targets O-Bk, pp.310-334, 2006.

M. Sausbier, H. Hu, C. Arntz, S. Feil, S. Kamm et al., Cerebellar ataxia and purkinje cell dysfunction caused by Ca 2+ -activated K + channel deficiency, Proc. Natl. Acad. Sci, vol.101, pp.9474-9478, 2004.

D. Jin, M. S. Lyu, C. A. Kozak, and K. Jeang, Function of 14-3-3 proteins, Nature, vol.382, pp.308-308, 1996.

T. Ogihara, T. Isobe, T. Ichimura, M. Taoka, M. Funaki et al., 14-3-3 protein binds to insulin receptor substrate-1, one of the binding sites of which is in the phosphotyrosine binding domain, J. Biol. Chem, vol.272, pp.25267-25274, 1997.

A. Gohla and G. M. Bokoch, 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin, Curr. Biol, vol.12, pp.1704-1710, 2002.

N. N. Sluchanko and N. B. Gusev, 14-3-3 proteins and regulation of cytoskeleton, Biochem. Moscow, vol.75, pp.1528-1546, 2010.

I. S. Chernik, A. S. Seit-nebi, S. B. Marston, and N. B. Gusev, Small heat shock protein Hsp20 (Hspb6) as a partner of 14-3-3?, Mol. Cell. Biochem, vol.295, pp.9-17, 2006.

C. M. Dreiza, P. Komalavilas, E. J. Furnish, C. R. Flynn, M. R. Sheller et al., The small heat shock protein, hspb6, in muscle function and disease, Cell Stress Chaperones, vol.15, pp.1-11, 2009.

J. Satoh, H. Onoue, K. Arima, and T. Yamamura, The 14-3-3 protein forms a molecular complex with heat shock protein Hsp60 and cellular prion protein, J. Neuropathol. Exp. Neurol, vol.64, pp.858-868, 2005.

N. Guillemin, C. Jurie, I. Cassar-malek, J. Hocquette, G. Renand et al., Variations in the abundance of 24 proteins biomarkers of beef tenderness according to muscle and animal type, Animal, vol.6, pp.867-874, 2011.

A. Zoubeidi, A. Zardan, E. Beraldi, L. Fazli, R. Sowery et al., Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity, Cancer Res, vol.67, pp.10455-10465, 2007.

S. Hassan, M. H. Biswas, C. Zhang, C. Du, and K. C. Balaji, Heat shock protein 27 mediates repression of androgen receptor function by protein kinase d1 in prostate cancer cells, Oncogene, vol.28, pp.4386-4396, 2009.

X. D. Liu, D. D. Jayasena, Y. Jung, S. Jung, B. S. Kang et al., Differential proteome analysis of breast and thigh muscles between korean native chickens and commercial broilers, Asian Aust. J. Anim. Sci, vol.25, pp.895-902, 2012.

B. Picard, M. Gagaoua, D. Micol, I. Cassar-malek, J. Hocquette et al., Inverse relationships between biomarkers and beef tenderness according to contractile and metabolic properties of the muscle, J. Agric. Food Chem, vol.62, pp.9808-9818, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02636820

X. Jia, K. Hollung, M. Therkildsen, K. I. Hildrum, and E. Bendixen, Proteome analysis of early post-mortem changes in two bovine muscle types: M. longissimus dorsi and M. semitendinosus, Proteomics, vol.6, pp.936-944, 2006.

J. R. Bendall, Postmortem changes in muscle, The Structure and Function of Muscle, pp.243-309, 1973.

X. Vignon, J. Beaulaton, and A. Ouali, Ultrastructural localization of calcium in post-mortem bovine muscle: A cytochemical and X-ray microanalytical study, Histochem. J, vol.21, pp.403-411, 1989.

K. R. Sporer, H. R. Zhou, J. E. Linz, A. M. Booren, and G. M. Strasburg, Differential expression of calcium-regulating genes in heat-stressed turkey breast muscle is associated with meat quality, Poult. Sci, vol.91, pp.1418-1424, 2012.

R. L. Woelfel, C. M. Owens, E. M. Hirschler, R. Martinez-dawson, and A. R. Sams, The characterization and incidence of pale, soft, and exudative broiler meat in a commercial processing plant, Poult. Sci, vol.81, pp.579-584, 2002.

M. L. Greaser, R. G. Cassens, E. J. Briskey, and W. G. Hoekstra, Post-mortem changes in subcellular fractions from normal and pale, soft, exudative porcine muscle. 1. Calcium accumulation and adenosine triphosphatase activities, J. Food Sci, vol.34, pp.120-124, 1969.

J. Chai, Q. Xiong, P. P. Zhang, Y. Y. Shang, R. Zheng et al., Evidence for a new allele at the serca1 locus affecting pork meat quality in part through the imbalance of Ca 2+ homeostasis, Mol. Biol. Rep, vol.37, pp.613-619, 2009.

Y. Malila, R. J. Tempelman, K. R. Sporer, C. W. Ernst, S. G. Velleman et al., Differential gene expression between normal and pale, soft, and exudative turkey meat, Poult. Sci, vol.92, pp.1621-1633, 2013.

J. Cao, X. Yu, M. A. Khan, J. Shao, Y. Xiang et al., The effect of calcium chloride injection on shear force and caspase activities in bovine longissimus muscles during postmortem conditioning, Animal, vol.6, pp.1018-1022, 2011.

T. Chaze, J. Hocquette, B. Meunier, G. Renand, C. Jurie et al., Biological markers for meat tenderness of the three main french beef breeds using 2-DE and MS approach, Proteomics in Foods
URL : https://hal.archives-ouvertes.fr/hal-01193863

, Springer Science + Business Media: Berlin/Heidelberg, pp.127-146, 2012.

C. Krischek, R. Natter, R. Wigger, and M. Wicke, Adenine nucleotide concentrations and glycolytic enzyme activities in longissimus muscle samples of different pig genotypes collected before and after slaughter, Meat Sci, vol.89, pp.217-220, 2011.