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Abstract

Vaccination is one of the most efficient ways to control the spread of infectious diseases. Simulations are now widely used
to assess how vaccination can limit disease spread as well as mitigate morbidity or mortality in susceptible populations.
However, field studies investigating how much vaccines decrease the velocity of epizootic wave-fronts during outbreaks are
rare. This study aimed at investigating the effect of vaccination on the propagation of bluetongue, a vector-borne disease of
ruminants. We used data from the 2008 bluetongue virus serotype 1 (BTV-1) epizootic of southwest France. As the virus was
newly introduced in this area, natural immunity of livestock was absent. This allowed determination of the role of
vaccination in changing the velocity of bluetongue spread while accounting for environmental factors that possibly
influenced it. The average estimated velocity across the country despite restriction on animal movements was 5.4 km/day,
which is very similar to the velocity of spread of the bluetongue virus serotype 8 epizootic in France also estimated in a
context of restrictions on animal movements. Vaccination significantly reduced the propagation velocity of BTV-1. In
comparison to municipalities with no vaccine coverage, the velocity of BTV-1 spread decreased by 1.7 km/day in
municipalities with immunized animals. For the first time, the effect of vaccination has been quantified using data from a
real epizootic whilst accounting for environmental factors known to modify the velocity of bluetongue spread. Our findings
emphasize the importance of vaccination in limiting disease spread across natural landscape. Finally, environmental factors,
specifically those related to vector abundance and activity, were found to be good predictors of the velocity of BTV-1
spread, indicating that these variables need to be adequately accounted for when evaluating the role of vaccination on
bluetongue spread.

Citation: Pioz M, Guis H, Pleydell D, Gay E, Calavas D, et al. (2014) Did Vaccination Slow the Spread of Bluetongue in France? PLoS ONE 9(1): e85444. doi:10.1371/
journal.pone.0085444

Editor: Simon Gubbins, The Pirbright Institute, United Kingdom

Received April 25, 2013; Accepted November 28, 2013; Published January 21, 2014

Copyright: � 2014 Pioz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by EU grant FP7-261504 EDENext and is catalogued by the EDENext Steering Committee as EDENext122 (http://www.edenext.
eu). The contents of this publication are the sole responsibility of the authors and don’t necessarily reflect the views of the European Commission. HG and RL are
partially funded by the Direction Générale de l’Alimentation (DGAL) of the French Ministry of Agriculture. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: maryline.pioz@hotmail.fr

Introduction

Bluetongue (BT) is a vector-borne disease of ruminants caused

by the bluetongue virus (BTV) and transmitted by Culicoides biting

midges [1]. BT has emerged in Europe since 1998 [2,3]. Recently,

northwest Europe suffered major economic losses during two BT

epizootics: the large-scale BTV serotype 8 (BTV-8) epizootic in

2006–2008 [4,5] and the more restricted BTV-1 epizootic in

2007–2008 [2]. BTV-1 was first detected in southern Spain in the

summer 2007. It subsequently spread northward and the two first

French clinical cases were reported in November 2007 in

southwest France close to the Spanish border. To stop the further

spread of the disease in France a massive vaccination campaign

was initiated in March 2008. Moreover, restrictions on farm

animal movements were implemented in 2007. However, because

of limited availability of vaccine doses, vaccination was prioritized

in the four departments neighboring the 2007 cases (Pyrénées-

Atlantiques, Hautes-Pyrénées, Gers and Landes) and was imple-

mented later in other areas (Fig. S1). Consequently, the level of

vaccination coverage during the 2008 vector activity period varied

greatly among the different regions and finally more than 4,200

clinical cases were reported. Vaccination ultimately contributed to

stop further disease propagation: 83 BTV-1 outbreaks were

reported in continental France in 2009, one in June 2010, and

none since. However, disease re-emergence can occur, as shown

very recently in Corsica where several BTV-1 clinical cases have

been reported in September 2013 [6], probably linked with the

2012 BTV-1 epizootic in Sardinia [7].
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Numerous studies have been conducted on BT vaccination,

essentially experimental, simulation, and observational studies.

Experimental studies, for example vaccine challenge studies, in

which animals are vaccinated and subsequently challenged with

the corresponding pathogenic virus, are of particular interest to

assess vaccine efficacy [8–12]. Simulation studies have used

vaccine efficacy data to estimate disease spread and economic

impact under competing vaccination scenarios [13–18]. Finally,

observational studies have reported metrics such as the number of

cases in relation to vaccination coverage [19–22]. These studies

have shown that vaccination can play an important role in

controlling BT spread, reducing both the number of outbreaks and

the morbidity and mortality rates in livestock. However, to date no

study has investigated the effect of vaccination on the velocity of

spread of real BTV epizootics. Two mechanisms are known to

influence BT spread: local propagation and long range (.100 km)

dissemination. While active flights of infected Culicoides and short-

range movements of infected farm animals are responsible for local

propagation of the infection, BT long range dissemination can

occur through the passive flight of infected Culicoides carried by

winds as well as long distance movements of infected farm animals.

Furthermore, mechanisms of BT diffusion in wildlife pass

unnoticed. In this study we are interested in the influence of

vaccination on local BT propagation: how much could vaccination

slow down the progression of BT epizootics in a real agricultural

landscape in the presence of restrictions placed on animal

movements? Quantitative answers to this question are currently

unavailable despite their great potential importance concerning

vaccination campaign optimization in the event of another BT

epizootic. Since livestock in southwest France had never been in

contact with BTV prior to 2007, natural immunity was absent.

This allowed us to quantify the importance of vaccination in

changing the velocity of spread of the BTV-1 epizootic while

accounting for other factors known to influence velocity [23]. We

used a similar approach to a previous study of the French BTV-8

epizootic to estimate the velocity of BTV-1 spread [24] and

determine which environmental factors influenced velocities [23].

The aim of this study was to quantify the effect of vaccination on

the velocity of BTV-1 spread, while accounting for environmental

factors known to influence it.

Materials and Methods

We used 2008 BTV-1 clinical case records from the French

Official Veterinary Services to assess the velocity of BTV-1 spread

during the 2008 BTV-1 epizootic in France. A case was defined as

a bovine herd or an ovine or goat flock in which BT was clinically

suspected and BTV-1 infection later confirmed by serological or

virological analyses. Our analysis was performed on a municipality

basis (the smallest administrative unit in France). Overall 4,195

BTV-1 clinical cases were reported in 1,649 municipalities. Due to

clinical cases with missing date of report we discarded 54

municipalities leaving 1,595 municipalities belonging to 16

departments. Data on French BT cases are available on request

to the French Official Veterinary Services (Direction générale de

l’alimentation, bureau de la santé animale, email: bsa.sdspa.dgal@

agriculture.gouv.fr).

1 Velocity of BTV-1 spread estimation
To estimate the velocity of BTV-1 spread we used the method

described in details in Pioz et al. 2011 [24]: a Trend Surface

Analysis (TSA) model combined with a spatial error form of

Simultaneous Autoregressive model (SARerr). Briefly, TSA uses

least squares regression to fit polynomial surfaces to geo-referenced

event-time data and is used to study diffusion processes in space

and time [25]. It has previously been used to identify the pattern of

disease diffusion and assess the velocity of spread of rabies [26–28],

plague [29] and BTV-8 [24]. This method aims to capture the

general direction(s) and speed(s) of disease progression. Here, a

polynomial surface was fitted to the set of spatially distributed

times of first BTV-1 clinical case detection across the 1,595

municipalities. The geographical coordinates (X, Y) of municipal-

ity centroids were translated into (X, Y) coordinates with the origin

adjusted to the French area of BTV-1 introduction, i.e., the first

municipality which reported a BTV-1 case on November 10th

2007. We combined the TSA model with a spatial error form of a

Simultaneous Autoregressive (SARerr) model to account for the

residual spatial autocorrelation. Velocity was estimated by fitting

this model to the dates of the first reported clinical case in each

municipality. Centroid coordinates for each municipality were

used as covariates for the TSA and for generating neighbourhood

lists for the SARerr model. We used a model averaging procedure

based on AICc to account for model selection uncertainty and

obtain robust estimates of model parameters [30] (see details in

Material S1).

2 Effect of vaccination on velocity of BTV-1 spread
Quantifying the effects of vaccination on the velocity of BTV-1

spread required the most accurate estimates of velocity. We

assumed that the estimated velocity was close to the true velocity if

the date of the first case predicted by the TSA-SARerr model was

close to the observed one. Consequently, following what had been

done in the BTV-8 study [23], we restricted the dataset to the

municipalities for which the absolute difference between the

observed and TSA-SARerr predicted date of the first clinical case

was less than 16 days. We used this threshold as a trade-off

between discarding strong outliers whilst keeping most of the

variability present in the dataset. We checked that the range and

characteristics of the environmental factors (minimum, maximum,

1st and 3rd quartiles, median and mean) in the restricted dataset

remained close to those of the full dataset (Material S2).

2.1 Ecological variables. Our previous study of BTV-8

spread in France indicated that the velocity of BT spread could

be influenced by environmental factors [23]. Thus, to measure

the effect of vaccination on the velocity of BTV-1 spread, we

needed to consider the variables that may influence the velocity

of BT spread and consequently, tested the same covariates as in

the BTV-8 study [23]. These covariates are related to host

availability and immunity, vector abundance and activity, and

vector-host contact. Hence, sixteen covariates defining five

thematic groups of related variables were tested (Table 1). Host

availability, vaccination, elevation and landscape-related variables

were obtained at the municipality level. Meteorological-related

variables were obtained on an 868 km square grid through the

SAFRAN database supplied by Météo-France [31]. Detailed

information on the covariates is provided in Material S3, and we

detail here only the vaccination covariate. In order to quantify

velocity of spread, we focused on the spread of BTV-1 over

newly-contaminated areas and assumed that the movements of

infected farm animals had only negligible effects on the velocity

of BTV-1 spread due to imposed restrictions on animal

movements (see [24] for a discussion). Restrictions on farm

animal movements were implemented through the European

Commission Regulation No 1266/2007, which defined a

restricted zone for BT as a 70-km radius around contaminated

farms. Regulations on animal transport prevented any move-

ments from restricted zones to non-restricted zones.
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Figure 1. Dates of first BTV-1 clinical cases in 1,595 French municipalities, 2008. The colour corresponds to the month in which the first
clinical case was reported in each municipality. One municipality had its first clinical case on 5th January 2009 and is included in the December 2008
class.
doi:10.1371/journal.pone.0085444.g001
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2.2 Vaccination. A compulsory BTV-1 vaccination scheme

was implemented in France from late March to December 2008.

Early vaccination, i.e., before the springtime onset of vector

activity, was prioritized in areas surrounding the 2007 cases

(Fig. S1). Vaccination began later in other areas. The inactivated

vaccines ZULVACH1 Bovis and ZULVACH1 Ovis were used for

cattle and small ruminants, respectively. After the second vaccine

dose, time to full protection is 15 days in cattle and 24 days in

small ruminants. Vaccine efficacy was assumed to be 100%.

Expenses for livestock vaccination were covered by the French

Ministry of Agriculture and data on BTV-1 vaccination were

provided by FranceAgriMer, which is the organisation that paid

the veterinarians who performed vaccination. Vaccine coverage in

a municipality was calculated as the proportion of small ruminants

and cattle immunized at the date of the first BTV-1 clinical case in

the municipality, i.e., the ratio of the number of small ruminants

and cattle that reached full protection at the date of the first BTV-

1 clinical case, to the sum of the number of small ruminants

reported on January 2008 and the number of cattle over 2 months

old reported on September 2008. We expected lower velocities in

areas with high vaccine coverage. Indeed, the higher the vaccine

coverage, the lower the proportion of susceptible hosts, and the

lower the proportion of infectious hosts. Thus, vaccination

decreased the proportion of infectious vectors and the probability

of an infectious midge bite.

2.3 Statistical analysis. To prevent statistical issues associ-

ated with multi-collinearity we verified that covariates were not

highly correlated. For this purpose, we computed correlations

among all the covariates (Table S1). Since covariates were not

normally distributed, nor necessarily correlated in a linear fashion,

we used the Spearman’s rank correlation r. This statistic is the

most commonly used non-parametric test for correlation [32]. All

of the |r| were lower than 0.80: the covariates were not highly

correlated and could be included simultaneously in a model [33].

Moreover, to determine whether the covariates should be

considered as continuous or categorical, we examined the linearity

of the association between each continuous covariate and the

response variable (see Material S3). We finally obtained 4

continuous and 12 categorical candidate variables (Table 1). Only

plausible two-way interactions were considered, i.e., the interaction

between temperature and rainfall at equivalent temporal lags, and

the interaction between small ruminant density and dairy or beef

cattle densities. Overall, 16 candidate covariates along with 4

plausible biological interactions between candidate variables were

Figure 2. Velocity vectors for the 1,314 municipalities used to construct the RAC model. The length and direction of each arrow indicate
the speed and direction of BTV-1 spread from each municipality centroid. The middle of the arrow is anchored at the municipality centroid.
Administrative areas are mapped at the level of French departments. The initial area of BTV-1 introduction in France is indicated by a red arrow. The
departments with an early vaccination scheme are displayed in red.
doi:10.1371/journal.pone.0085444.g002

Figure 3. Vaccine coverage of the 1,314 municipalities used to study the velocity of BTV-1 spread. The percentage of immunized
animals (cattle, sheep and goat), at the date of the first clinical case, is presented through colours.
doi:10.1371/journal.pone.0085444.g003
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tested. The dataset was split randomly into ‘‘training’’ and

‘‘testing’’ subsets (75% and 25% of the data, respectively). We

initially fitted a linear regression model to the training dataset

using ordinary least squares (OLS). However, spatial autocorre-

lation in the residuals indicated that the assumption of indepen-

dent errors was violated. We consequently extended the model to

account for residual spatial structure by using a residuals

autocovariate model (RAC) [34], which included, in addition to

the environmental covariates, an autocovariate calculated from

the residuals of the OLS fitted model (see Material S4). Statistical

analyses were performed using the R v2.13.1 software [35]. Linear

models were compared using the package MuMIn [36] and RAC

models were fitted using the packages raster [37] and geoR [38].

We selected the best model by using backward model selection

based on AICc [23]. As recommended by Burnham and Anderson

[39], we considered that two nested models differing by less than 2

AICc points received identical support from the data. In such a

situation, the model with fewer parameters was preferred. Once

the best model was identified, we characterized its performance by

using two statistics: the coefficient of determination and the Root

Mean Squared Error (RMSE). The coefficient of determination,

i.e., the squared Pearson correlation r between predicted and

observed values [40,41] is a measure of the overall goodness of fit.

We also calculated the Root Mean Squared Error (RMSE) [42] of

values fitted to the training dataset since it is a good measure of

prediction accuracy, lower values of RMSE indicating a better fit.

Moreover, to evaluate the predictive power of the model we used

the municipalities of the testing dataset. As for the training dataset,

we calculated the squared Pearson correlation and the RMSE.

Finally, we used likelihood ratio tests for nested models [43,44] to

assess the relative importance of environmental variables in the

RAC model:

D~{2 1red{1fullð Þ

where D is the log-likelihood ratio test statistic, and lred and lfull are

the log-likelihoods of the reduced and full models, respectively.

The full model is the RAC model and the reduced model

contained all but one of the variables of the full model. The

contribution of the omitted variable is thus evaluated, larger D

values indicating a greater contribution to model fit.

Results

Two BTV-1 clinical cases occurred in November 2007 in

France. As in the BTV-8 study, we did not include these two

first cases because they could induce bias in the estimation of

the velocity of BTV-1 spread. These two cases occurred at the

end of the vector activity period and were followed by the

vector-free period during which BTV transmission was effec-

tively inactive. In 2008, 4,195 BTV-1 clinical cases were

reported. From this, we identified the date of the first clinical

Table 2. Estimated coefficients, 95% confidence interval (CI) and p-values of the RAC model for the subset of 986 French
municipalities.

covariates class coefficient 95%CI p-value

intercept 3.45 1.990; 4.915 ,0.001

elevation b 1.10 0.396; 1.800 ,0.01

c 2.62 1.721; 3.513 ,0.001

d 1.87 0.820; 2.923 ,0.001

DensBeef_Cattle b 0.74 0.066; 1.406 ,0.05

c 1.33 0.647; 2.019 ,0.001

d 2.50 1.778; 3.223 ,0.001

DensSmall_Ruminants b 0.54 20.139; 1.226 0.12

c 20.37 21.075; 0.335 0.30

d 21.56 22.296; 20.833 ,0.001

VaccinCoverage b 21.66 22.346; 20.975 ,0.001

Tmax_lag1 b 1.99 1.263; 2.712 ,0.001

c 0.05 20.742; 0.847 0.90

d 20.03 20.852; 0.787 0.94

Rain_lag2 b 0.12 20.561; 0.806 0.72

c 1.69 0.972; 2.406 ,0.001

d 4.08 3.209; 4.951 ,0.001

Tmax_lag2 b 22.23 22.993; 21.461 ,0.001

c 24.40 25.382; 23.421 ,0.001

d 24.72 25.829; 23.614 ,0.001

arable-forest b 2.70 2.013; 3.377 ,0.001

c 2.54 1.808; 3.268 ,0.001

d 1.61 0.856; 2.357 ,0.001

autocovariate 1.09 1.049; 1.129 ,0.001

See Table 1 for description of covariates. RAC model: Residuals Autocovariate model.
doi:10.1371/journal.pone.0085444.t002
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case in 1,595 municipalities (Fig. 1). These dates ranged from

July 11th 2008 to January 5th 2009.

1 Velocity of BTV-1 spread estimation
We selected the smallest subset of fourth-order TSA-SARerr

models for which the sum of the AICc weights was $0.9. The

resulting subset contained 66 models (Table S2). Model-averaged

parameters obtained from these 66 models were used to estimate a

velocity for each of the 1,595 municipalities. These velocity

estimates ranged from 0.98 to 126.34 km/day with a mean value

of 5.35 km/day (median value = 2.64 km/day). However, 90%

(1,439) of the municipalities had velocity #10 km/day, indicating

that BTV-1 spread was mostly local. High values for the velocity of

BTV-1 spread were marginal, potentially linked with farm animal

movements. Model residuals, i.e., the difference between the fitted

and observed date of first clinical case, had a mean non-

significantly different from zero (0.2, 95% Confidence Interval

(CI): 20.4320.93) and a bell-shaped distribution. No spatial

structure was detected in these residuals. The difference between

the fitted and observed date of first clinical case was less than

16 days for 1,337 municipalities (84%) and environmental

covariates were available for 1,314 of these municipalities (82%).

For this sub-dataset of 1,314 municipalities the minimum and

maximum velocities were identical to those of the full dataset, and

the mean and median values of the velocity of BTV-1 spread were

5.72 and 2.74 km/day, respectively. The estimated velocities at

these 1,314 municipalities were subsequently included in the

analysis of the effect of vaccination (see section 3.2). Velocity

vectors of the 1,314 municipalities are presented in Figure 2: from

the initial introduction zone (indicated by a red arrow on the map),

the virus spread rapidly from west to east along the Pyrenees

Mountains, then, from this initial incursion, the virus spread

sideways to the south and north. The departments with few

infected municipalities, in red on the map, were departments with

an early vaccination scheme.

2 Effect of vaccination on velocity of BTV-1 spread
Figure 3 displays vaccine coverage for the 1,314 municipalities

used to analyse the effect of vaccination. Of these municipalities,

78% (1,028) had no vaccine coverage at the date of first clinical

case. For the 286 municipalities with vaccine coverage, the

percentage of immunized animals ranged from 0.4% to 100%

(n = 15 municipalities) with a median value of 55%. The 1,314

municipality data subset was split randomly into ‘‘training’’ (986

municipalities) and ‘‘testing’’ subsets (328 municipalities). The first

was used to fit linear regression models via OLS (Table S3). The

best OLS model included elevation, edge density between arable

land and forest, temperature at one and two month lags, rainfall at

a two month lag, small ruminant and beef cattle densities, and

vaccination coverage. This OLS model performed poorly in

predicting the velocity of BTV-1 spread from environmental

covariates (squared Pearson’s r = 0.27, RMSE = 7.33 km/day) in

the training dataset and spatial autocorrelation at short distance

was detected in the residuals (Fig. S2A). We thus fitted a RAC

model to account for spatial autocorrelation. The RAC model

contained the environmental covariates from the above OLS

model plus an autocovariate that represented spatial autocorrela-

tion in the residuals of the OLS model at a neighborhood size of

3.6 km. The fit of the RAC model was satisfactory (squared

Pearson’s r = 0.81, RMSE = 3.69 km/day). In contrast to the

OLS model, analysis of the residuals showed no spatial autocor-

relation (Fig. S2). Parameter estimates of the RAC model are

presented in Table 2. The RAC model was tested on the 328

municipality testing dataset and predictive performance was good

(squared Pearson’s r = 0.86, RMSE = 3.14 km/day).

Estimated coefficients and p-values of environmental covariates

are reported in Table 2. The intercept indicates an average

velocity of BTV-1 spread of approximately 3.5 km/day (Table 2).

As expected, vaccination was negatively associated with velocity of

BTV-1 spread, which was, on average, 1.7 km/day lower in

municipalities with immunized animals at the date of first clinical

case, than in municipalities with no immunized animals.

Meteorological variables, landscape factors and host availabil-

ity were also correlated to velocity of BTV-1 spread. The

contribution of covariates to model fit was assessed via D-values

of each covariate (Fig. S3). Weather at a two-month lag had the

greatest effect on the velocity of BTV-1 spread, followed by edge

density between arable land and forest, temperature at one-

month lag and density of beef cattle. Weather at a two-month lag

greatly influenced velocity, the latter being negatively correlated

to the monthly average of maximum daily temperature such that

a 4 km/day decrease in velocity was observed when monthly

average of maximum daily temperature was higher than 25uC.

Velocity was also positively associated with rainfall: heavy rainfall

(.70 mm per month) increased the velocity by 4 km/day.

Considering the effect of weather at a one-month lag, a monthly

average of maximum daily temperature around 24uC was

associated with a velocity increase of 1.9 km/day. Overall, the

effect of weather on the velocity of BTV-1 spread was greater at

a two-month lag than at a one-month lag. Regarding landscape-

related variables, elevation and edge density between arable land

and forest were positively correlated with velocity. Finally,

velocity of BTV-1 spread was associated with beef cattle and

small ruminant densities in different ways, while the density of

dairy cattle had negligible effect. Velocity was positively

associated with beef cattle density. On the other hand, the

Figure 4. Estimated range of velocity variation as a function of
covariates. Horizontal bars represent the range of velocities obtained
when a single covariate is varied between its maximal and minimal
observed value whilst all other covariates are held constant (see
Table 2). The average velocity of 3.4 km/day is represented by the small
vertical stroke crossing the horizontal bar. The velocities are estimated
through the selected RAC model (n = 986 municipalities).
doi:10.1371/journal.pone.0085444.g004
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highest small ruminant densities (.20 small ruminants/km2)

were negatively correlated with velocity.

Finally, the range of velocities obtained by varying a single

covariate across its observed range whilst holding all other

covariates constant at their observed mean is presented in

Figure 4. The graph provides a visual indication of the independent

effect-size of each covariate on the average value of 3.5 km/day.

Discussion

Several studies have modeled the effect of vaccination on BT

spread and simulations have demonstrated that vaccination can be

a highly effective means to control BT epizootics when a high level

(.80%) of vaccine coverage is achieved [14,15,17,18]. However,

field studies investigating the effect of vaccination against BTV are

rare. To our knowledge, our study is the first to have quantified

vaccine induced reductions in the velocity of BTV spread using

data from a real epidemic. After accounting for environmental

factors known to influence the velocity of BT spread, vaccination

divided by a factor 2 the mean velocity at which BTV-1 spread

across the study area. Vaccination thus helped to slow down

disease progression by decreasing the number of infectious hosts

and vectors, and consequently the probability that infected vectors

bite susceptible hosts in a non-contaminated area. Despite

regulations on farm animal movements, BT has rapidly spread

in Europe during the 2006–2008 BTV-1 and BTV-8 epizootics.

Vaccination was the only efficient method that could stop BTV-8

and BTV-1 spread, and decrease the number of BT foci until

apparent full eradication of BT among European livestock.

Since previous studies have estimated the velocity of BTV-8

spread in France and the effects of environmental covariates

[23,24], a comparison of BTV-1 and BTV-8 epizootics is

possible. In both cases, restrictions were imposed on animal

movements. Regarding the velocity of BT spread, the mean

value of velocity of spread was similar for both serotypes (5.4

and 5.6 km/day for BTV-1 and BTV-8, respectively). The first

and ninth deciles of the estimated velocities were 1.9 and

10.4 km/day for BTV-1 and 3.7 and 7.8 km/day for BTV-8,

thus the distribution of estimated velocities appeared narrower

for BTV-8 than for BTV-1. Moreover, the lower values of

velocities that were observed for BTV-1 than for BTV-8 may

be related to the effect of vaccination. Indeed, contrary to what

was observed for BTV-1, there was no large area with high

vaccine coverage for BTV-8. Regarding the influence of

environmental factors, variables related to the ecology of

Culicoides vectors (weather and elevation) were the main factors

influencing the velocity of BT spread for both serotypes.

Weather at a two month-lag plausibly could affect Culicoides

abundance through direct effects on demographic life cycle

parameters e.g. larvae and pupae require moist habitats, adults

are prone to desiccation [3], and temperature is known to

influence survival and duration of all stages of life cycle [45].

Weather at a one-month lag is most likely to influence Culicoides

activity [46,47]. The strong negative effect of temperature and

the positive effect of rainfall, both at a two-month lag, suggest

that in late summer (most clinical cases occurred in August and

September) Culicoides dynamics in south-western France become

damped when high temperatures exacerbate low level of

moisture availability, a combination of factor which is known

to induce low survival rates [48,49]. However, at a one-month

lag, monthly averages of maximum daily temperature around

24uC were associated with slightly increased velocities. These

apparently contrasting results could reflect that incidence rates

were greatest following several months of more or less

exponential growth in both vector and virus populations and

immediately prior to a desiccation induced crash in vector

abundance effectively damping the velocity of further spread.

Velocity of BTV-1 spread was also influenced by elevation, the

highest velocity being observed for an elevation range between

280 and 454 m. The influence of elevation on velocity of BT

spread, which was also observed for BTV-8 [23], was probably

related to abundance, species composition and vector compe-

tence of the Culicoides vector populations. Indeed, Culicoides

populations from the Obsoletus Complex have been found in

Europe along a broad altitudinal cline [50], but their

abundance changed with elevation. Moreover, Carpenter et al.

[51] observed in the United Kingdom a variation of Culicoides

susceptibility to BTV infection according to geographic areas

within and between species and populations. Similar variation of

Culicoides susceptibility and competence may partly explain the

effect of elevation on velocity of BT spread. The positive effect

of beef cattle density on BTV-1 spread contrasted with the

negative effect of dairy cattle density on the BTV-8 spread. This

might be related with differences in cattle management

practices. Indeed, dairy cattle are kept close to farms, thus

creating localized clusters of hosts and a relatively discontinuous

pattern of host availability, which might be less favorable to BT

spread. By contrast, beef cattle herds tend to be scattered

throughout the landscape, a spatial arrangement that facilitates

BTV progression [23]. High densities of small ruminants were

negatively associated with the velocity of BTV-1 spread, a result

that was also observed for BTV-8. With 1.3 million reproduc-

tive animals in 2008, dairy sheep farming was more important

than meat sheep farming (926,000 reproductive animals) or goat

farming (145,000 reproductive animals) in south-western France.

Furthermore, according to our 2008 small ruminant count data,

dairy sheep flocks are larger than meat sheep flocks, with a

mean value of 153 versus 49 animals. Consequently, the negative

association between high small ruminant densities and velocity

may be due to dairy sheep management practices, which are

similar to the dairy cattle management practices mentioned

above. Another hypothesis would be that small ruminants were

less competent hosts for BTV-1 than cattle, which may cause a

dilution effect, and ultimately a negative association between

high density of small ruminants and velocity of BTV-1 spread.

One landscape-related covariate was significantly linked with

velocity: the edge density between arable land and forests. This

finding is consistent with previous results as edge density

between arable land and forests was identified as a BTV-8

seropositivity risk factor for cattle in France [4]. It was also

related to velocity of BTV-8 spread [23]. Arable land may serve

as feeding areas for wildlife and forests provide breeding [52]

and resting sites [50] for Obsoletus Complex midges. Edges

between these habitats may facilitate contacts between BT

vectors and wild hosts, then influencing BT dynamics.

Finally, two potential weaknesses of our study need to be

considered. First, we used clinical cases to describe BT spread,

and they may suffer from biases because of asymptomatic

animals and, to a lesser degree, under-reporting of diseased

animals. Consequently, the 1,595 municipalities included in the

study might not represent an exhaustive sample of contaminated

municipalities. Regarding asymptomatic animals, the severity of

BT infection is influenced by various factors including host

species, breed, age, individual susceptibility, environmental

factors and BTV serotype [53]. Little information is available

on BTV-1 clinical signs: the most common clinical signs

observed in small ruminants are fever, depression, lethargy,

facial edema and salivation [54]. However, a recent exper-
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imental study showed that BTV-1 infection induced more

marked clinical signs in sheep than BTV-8 infection [55].

Moreover, as farmers received monetary compensation for BT

diseased animals, under-reporting was probably rare. We could

thus expect limited biases of BTV-1 clinical cases. Furthermore,

even if the real BT clinical incidence was underestimated, it did

not preclude an unbiased estimate of the spatial trend [56]. A

second weakness of our study is that we did not account for

wind-mediated vector movements on BT spread [57,58]. However,

our main purposes were to assess the effect of vaccination on BTV-

1 spread velocity, and to compare the effect of environmental

features on this velocity with previous results obtained for BTV-8.

The effect of wind was beyond our scope.

Conclusion

In this study we examined the effect of vaccination on the

propagation velocity of BTV-1. For the first time, the effect of

vaccination has been quantified using data obtained from a real

BTV epizootic and after accounting for environmental factors

known to modify the velocity of BT spread. Our findings

emphasized the importance of vaccination in limiting disease

spread across real agricultural landscapes. Finally, environmental

factors should be accounted for when evaluating the role of

vaccination on BT spread as they had a major influence.
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