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Abstract

Purpose—Previous work has evaluated the quality of different analytic methods for extracting

relaxation times from magnitude imaging data exhibiting Rician noise. However, biexponential

analysis of relaxation in tissue, including cartilage, and materials, is of increasing interest. We

therefore analyzed biexponential transverse relaxation decay in the presence of Rician noise and

assessed the accuracy and precision of several approaches to determining component fractions and

apparent transverse relaxation times.

Methods—Comparisons of four different voxel-by-voxel fitting methods were performed using

Monte Carlo simulations, and phantom and ex-vivo bovine nasal cartilage (BNC) experiments. In

each case, preclinical and clinical imaging field strengths of 7T and 3T, respectively, and

parameters, were investigated across a range of signal-to-noise ratios (SNR). Results were

compared to Cramér-Rao lower bound calculations.

Results—As expected, at high SNR, all methods performed well. At lower SNR, fits explicitly

incorporating the analytic form of the Rician noise maintained performance. The much more

efficient correction scheme of Gudbjartsson and Patz performed almost as well in many cases. Ex-

vivo experiments on phantoms and BNC were consistent with simulation results.

Conclusion—Explicit incorporation of Rician noise greatly improves accuracy and precision in

the analysis of biexponential transverse decay data.
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Introduction

Transverse relaxation time, T2, obtained through monoexponential analysis of transverse

magnetization decay, has been used extensively as a correlate to cartilage status (1). To

improve the sensitivity and specificity of such studies, multiexponential analysis of decay

has also been undertaken (2-8). Spectroscopic acquisition can detect relatively rapidly

relaxing signal components, with T2 ~0.5-4 ms, generally attributed to collagen-bound

water, along with intermediate relaxing components (T2 ~10-20 ms) likely associated with

proteoglycan (PG) and more slowly relaxing components (T2 ~50-120 ms) attributed to

relatively unbound bulk water (6,9). The principal drawback of the spectroscopic approach

is the lack of signal localization. To address this, multiexponential analysis has been

extended to imaging studies, permitting the creation of component maps (10). This is

particularly important for heterogeneous tissues such as articular cartilage, which exhibits

depth-dependent structural and compositional variation.

The noise in spectroscopic acquisitions can accurately be modeled as Gaussian. However,

the noise distribution in conventional magnitude MR images is Rician. This approaches the

Gaussian distribution only for high signal-to-noise ratio (SNR) (11-12), so that the

distinction is especially important in settings of limited SNR, including long echo-time

images (13). Substantial improvements in T1, T2 and diffusion mapping have been reported

when the proper noise model is used, to an extent that depends upon which of several

analysis methods is implemented (13-18). However, a systematic analysis examining

improvements using Rician noise modeling in the more complicated case of

multiexponential relaxation has not been undertaken. Thus, our principle aim is to evaluate

the performance of different methods for incorporating Rician noise into the analysis of

multiexponential decay; we have restricted our analysis to the biexponential case.

The use of a spin-echo imaging sequence results in minimum echo times, TEmin, of several

milliseconds (19-20), rendering quantification of rapidly relaxing signal components

problematic. Alternatively, much shorter echo times may be achieved using a gradient echo

sequence thereby observing  rather than T2 decay. The relatively rapid  signal loss

limits the duration of the relaxation signal available for sampling, but this is compensated by

shorter echo times and decreased echo spacing. Attempts to describe multicomponent 

decay in cartilage have recently been undertaken (21-22). Work on human cadaveric patellae

(23) using an ultrashort echo time (UTE) MRI-sequence with TEmin = 8 μs, suggests that the

short  water fraction may serve as a biomarker of cartilage degeneration. Further analyses

of several human connective tissues using UTE imaging has also been reported (24-25).

Assuming biexponential decay, a short  component, ~0.5-3 ms, has been identified and

attributed to water molecules trapped within collagen and PG. A long  component, ~20-30

ms, was attributed to bulk water.

The UTE sequence used in these two-component relaxation studies requires specialized

hardware and software. Relaxation time components in the range of  can also be

detected with a conventional multi-gradient echo (MGE) sequence (TEmin ~1-2 ms).

Therefore, our secondary goal is to investigate the use of the MGE sequence to map
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biexponential  components in cartilage. We use bovine nasal cartilage (BNC) as a model

cartilage system; BNC exhibits macromolecular structure and composition comparable to

that of articular cartilage, but without the complexity of its layered structure.

A two-component relaxation model represents a reasonable implementation of multi-

component analysis in cartilage given what is known from previous literature. Further,

although much more informative than conventional monoexponential analysis, biexponential

analysis required only modest SNR and so may be relatively practical for clinical

applications.

We first review the theory of Rician noise. We then apply Cramér-Rao lower bound (CRLB)

theory to establish a standard for comparison for our estimates of compartment fractions and

transverse relaxation times. Next, we describe four different voxel-by-voxel fitting methods

and related Monte Carlo (MC) simulations to evaluate the accuracy and precision of derived

parameters. After extensive simulation results, we present data obtained from a two-

component phantom and from cartilage explants, using both the pre-clinical field strength of

7T and the clinical field strength of 3T.

Theory

Signal distribution function

Given Gaussian-distributed noise of equal variance in the real and imaginary channels of

complex-valued MRI data, the probability distribution of magnitude image data is given by

the Rician probability density function (PDF) (11):

[1]

where A(TE, θ) is the magnitude of the underlying noise-free signal as a function of

parameters θ and TE, SM is the amplitude of the measured magnitude signal, I0 is the

modified zero-order Bessel function of the first kind, and σ2 is the variance of the noise in

each of the two channels. The expectation value of SM is given by (14-15, 26-27)

[2]

where α = (A(TE, θ)/2σ)2 and I1 is the modified first-order Bessel function of the first kind.

For A(TE, θ) ≫ σ, the PDF of the Rician distribution approximates a Gaussian distribution,

PGauss, with mean value A(TE, θ) and standard deviation σ (12, 16)

[3]

See Fig. 1a. The expectation value of SM for the Gaussian distribution is
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[4]

Noise estimation

In a background region of an image, A(TE, θ) = 0 so that Eq. 1 reduces to the Rayleigh

distribution (12, 28-29):

[5]

From this, the expectation value of the magnitude noise is (16)

[6]

Eq. 6 permits accurate estimation of noise by measurement of average signal intensity

within a background region of interest (30).

Cramér-Rao lower bound

The CRLB provides an explicit theoretical limit to the precision with which a parameter can

be determined using an unbiased estimator (31-36). Calculation of the CRLB requires

inversion of the Fisher matrix, F, (37). For data obtained at time points tn and fit to a

parameterized curve An (TE, θ), defined by a vector θ of M parameters, and with the

assumption of equal standard deviations σ at each data point, the elements of the Fisher

matrix for the Rician distribution, Eq. 1, are given by (14, 38)

[7]

where

[8]

Because the integral in Eq. 8 cannot be solved analytically, R can be calculated by numerical

integration for different values of An (TE, θ)/σ (38). For A(TE, θ) ≫ σ, the value of R

approaches 1 (Fig.1b), in which case the Fisher matrix for the Rician distribution becomes

identical to that of the Gaussian distribution:

[9]
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We can now define a vector . Then the maximum precision

of an unbiased parameter estimate θî of the parameter θi is given by

[10]

Methods

Methods comparison

We consider a model A(TE, θ) describing biexponential relaxation as a function of echo

time, TE, and parameter set 

[11]

where proton density, PD, represents signal amplitude at TE = 0 and incorporates T1

weighting, proton density, coil sensitivity and other machine factors. Fs is the fraction of the

short  component and  and  are short and long apparent spin-spin relaxation times,

respectively.

To obtain a robust method for voxel-by-voxel estimation of all parameters of the vector θ,

four different methods were compared, using both simulations and phantom measurements,

as a function of SNR. The first method, MR, makes full use of the expectation value of the

Rician distribution given by Eq. 2 and involves nonlinear least-squares (NLLS)

minimization of SM − ERice[A(TE, θ), σ]. The second, traditional approach, MT, uses the

Gaussian estimator in Eq. 4, and consists of NLLS minimization of SM − EGauss [SM], that

is, SM − A(TE, θ), where A(TE, θ) is given by Eq. 11. The third method, MMc, based on the

McGibney correction scheme (18, 39), consists of NLLS minimization of ,

where . The last method, MG, based on the Gudbjartsson

correction scheme (16), consists of the NLLS minimization of .

Note that in all cases, PD was fit along with the other parameters.

The standard deviation of the noise, σ, was determined using Eq. 6 from the mean signal of

background regions of all images acquired at each TE, after manual segmentation. This

eliminates one degree of freedom in the NLLS analysis. Analytic first derivatives of ERice

[SM],  and EGauss [SM] with respect to each parameter of the vector θ (see

Appendix) were used in the minimization for fast and robust convergence. In the phantom

and ex-vivo studies, initial voxel-wise estimates of  and  were calculated from

an NLLS fit of the entire echo train to a monoexponential decay function. Modified data,

SM,s, representing an estimate of the signal attributed to the short relaxation time component,

were created according to
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[12]

Initial estimates T̂2,s,init and  were likewise obtained from an NLLS fit of SM,s to a

monoexponential decay. Finally, initial estimates for  and F̂s,init were given by

 and , respectively. This procedure

ensured relatively accurate initial parameter estimates and therefore rapid convergence of

the NLLS algorithm. All NLLS fits were performed with the Levenberg-Marquardt

algorithm (40-41) using Matlab (MathWorks, Natick, MA, USA).

Monte Carlo simulations

Simulations were performed using computer generated images (70 × 70 = 4900 voxels)

exhibiting biexponential relaxation according to Eq. 11. Input simulation parameters were

chosen to reflect either pre-clinical imaging conditions (PCI) at 7T, or clinical imaging

conditions (CI) at 3T. These parameter choices closely matched values obtained from

studies performed on our phantoms (see Phantom study section) which were constructed to

exhibit  values close to those reported for cartilage in the literature (21-25).

PCI simulations consisted of a shorter component with  and fraction Fs = 0.5,

and a longer component with  and Fl = 1 − Fs = 0.5. A total of 32 images were

generated with TEn increasing uniformly from 0.97 to 54.6 ms in increments of 1.73 ms. CI

simulations consisted of a shorter component with  and fraction Fs = 0.5, and a

longer component with  and Fl = 0.5. A total of 32 images were generated with

TEn increasing uniformly from 2.6 to 77 ms in increments of 2.4 ms. Additional simulations

for different choices of fractions and relaxation times, as shown in table 2, were performed

to further illustrate our results and to investigate the effect of Fs and the ratio  on

both the accuracy and precision of parameters estimation.

For all simulations, Rician noise was added to produce images with SNR ranging from 15 to

100 in increments of 5. Specifically, the noisy images, SM, at each TE were obtained by

adding Gaussian noise in both the real, Ir(TE) = A(TE, θ) + Nr, and the imaginary, Ii(TE) =

Ni, parts of the complex images, where Nr and Ni were random numbers generated from a

Gaussian distribution with zero mean, and with standard deviation σ. Magnitude images, SM,

were then created using the following expression

[13]

PD was kept constant and σ was varied to obtain the desired SNR.
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MRI hardware and MGE sequence description

Experiments were performed on both a 7T small animal MRI scanner (Bruker Biospin

GmbH, Rheinstetten, Germany) using a linearly polarized birdcage coil and a 3T MRI whole

body system (Achieva, Philips Medical Systems) equipped with a quadrature transmit/

receive head coil. -weighted images were acquired using 3D MGE sequences. Only

images with the same polarity of read-out gradient direction were acquired to prevent

alternation in the direction of chemical shift artifacts and to avoid image misregistration due

to the static magnetic field gradients (43-44). To correct geometric distortion introduced by

spatial variations of the magnetic field B0 (45), MGE images were registered (46-47).

Phantom study

Two similar rectangular tubes (8 × 4 cm) filled with deionized water were doped with

different concentrations of CuSO4. The resulting  values as given below were obtained by

acquiring high SNR images from each tube independently and fitting them to a

monoexponential function (13). The tubes were then placed together in the MRI system and

images were acquired through the center of each tube. Complex images were added together

with consistent phases to obtain a composite image representing a biexponential phantom.

The resulting magnitude images were fitted according to the biexponential models described

above. To be more explicit, -weighted images were obtained from each tube as described

above. The phase shift between each voxel of the image from the first tube and each voxel

of the image from the second tube was calculated from the complex data. A phase correction

was then applied to complex data from the second image so that the two images had the

same phase. This procedure accurately produced a two-component dataset, while

minimizing artifacts associated with the susceptibility difference between the tube walls and

each solution.

For PCI conditions at 7T, the first and second compartments respectively exhibited

parameters Fs = 50%, , Fl = 50% and . Biexponential

analysis was performed on data consisting of 32 -weighted images with TEn increasing

linearly from 0.97 to 54.6 ms in steps of 1.73 ms. Other image parameters included TR =

200 ms, field of view (FOV) = 50 × 50 × 16 mm3, matrix = 100 × 100 × 16 and spectral

bandwidth (SBW) = 200 kHz. The acquisition time for one signal average was ~5 min.

For CI at 3T, the first compartment exhibited Fs = 50% and  while the

second one had Fl = 50% and . 32 -weighted images were acquired with

TEn increasing linearly from 2.6 to 77 ms in steps of 2.4 ms. Other image parameters

included TR = 200 ms, FOV = 80 × 80 × 15 mm3, matrix = 88 × 176 × 15 and SBW = 96

kHz. The acquisition time for one signal average was ~9 min. Linear combinations of the

data from the two phantoms were created to obtain Rician-distributed magnitude image

datasets with different compartment fractions. The results of the biexponential fits of these

datasets are shown in Table 3 and illustrate the effect of Fs on the accuracy and precision of

parameter estimation with more disparate compartment sizes.
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For both PCI and CI, the number of signal averages was varied from 1 to 32 to produce

images with different SNR.

Ex-vivo study

The central part of the nasal septum cartilage of a young cow (Green Village Packing, Green

Village, NJ) was removed and moistened with Dulbecco’s phosphate buffered saline

(DPBS) and stored at 4 °C until imaged. During scanning, the sample was immersed in

Fluorinert FC-77 (Sigma-Aldrich, St. Louis, MO) to maintain sample hydration and to avoid

artifacts due to susceptibility differences between the sample and surrounding air. All

imaging was performed at room temperature.

PCI ex-vivo image acquisitions consisted of three scans of 32 -weighted images with

different first echo times, TE1 = 0.86 ms, 1.6 ms and 2.6 ms; these datasets were interleaved

to ensure adequate sampling of the signal decay, particularly for the fast-relaxing

component. Other image parameters included ΔTE = 3.1 ms, TR = 400 ms, FOV = 70 × 50

× 15 mm3, SBW = 152 kHz and matrix = 140 × 100 × 20, resulting in a voxel size of 0.5 ×

0.5 × 0.75 mm3. The acquisition time for one signal average per scan was ~10 min.

CI ex-vivo image acquisitions consisted of two scans of 32 -weighted images with

different first echo times, TE1 = 2 ms and 3 ms, which were again interleaved. Other

imaging parameters included ΔTE = 2.4 ms, TR = 1000 ms, FOV = 40 × 75 × 8 mm3, matrix

= 77 × 167 × 10, voxel size = 0.52 × 0.45 × 0.8 mm3 and SBW = 99 kHz. The acquisition

time for one signal average per scan was ~28 min.

For both PCI and CI, the number of signal averages was varied from 1 to 16 to produce

images with different SNR.

Bias, dispersion and mean-squared-error calculations

The performance of each method was evaluated by calculating the relative bias, dispersion,

and mean-squared-error in each fitted parameter. The relative bias, a measure of accuracy,

was defined as the difference between the true value, θi, and the mean of the estimated value

over multiple noise realizations, θ̂i, normalized by the true value, given by .

In simulations, the true values were known but in the phantom study they were obtained

from a monoexponential fit of high SNR data acquired from each phantom compartment

separately. The values obtained were used in the MC simulations described above. The

relative dispersion was defined as the relative standard deviation, 100 * SD(θî)/θi, and was

compared to the minimal relative dispersion given by 100 * CRLBi/θi. The mean-squared-

error (MSE) a measure including both precision and accuracy was defined as the sum of the

square of the bias of the estimator and its variance by the expression 

(30).

Relative bias, relative dispersion and MSE were calculated as a function of SNR for Fs, 

and . SNR was defined as  (18), where TE1 is the shortest echo time

at which data were acquired. In simulations, S̄(TE1) was known but in phantom and ex-vivo
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studies it was calculated as the mean signal from a large region covering almost the entire

sample.

Voxels with extreme outliers (VEO) were removed for each method using Tukey’s method

(42). A VEO was defined as a voxel whose value was less than Q1(θî) − 3QI(θ̂i) or greater

than Q3(θ̂i) + 3QI(θ̂i), where Q1(θ̂i), Q3(θ̂i) and QI(θ̂i) represent the first quartile, the third

quartile and the interquartile interval of estimated parameter, θ̂i, respectively.

In contrast to the simulations and the phantom studies, the true parameter values (i.e. Fs, 

and ) for the BNC sample were unknown. Therefore, the bias and dispersion cannot be

directly evaluated. Instead, we assessed the accuracy and precision of each fitting method

for the estimation of Fs,  and  as a function of SNR by considering the maps obtained

at high SNR using MR as the reference maps. Note that the maps obtained at high SNR with

all four methods were similar. For each estimated parameter, the maps obtained at lower

SNRs were compared to the reference maps. Because of the heterogeneities of the

parametric maps, absolute instead of relative bias and dispersion were considered. The

absolute bias was defined using the difference between the mean estimated value, , over

voxels exhibiting biexponential behavior in the parametric map and its equivalent in the

reference map, , through . The absolute dispersion is a measure of the

standard deviation and was defined as , where M is the number

of voxels exhibiting biexponential behavior. These voxels were defined as those for which

AICc,mono/AICc,bi ≥ 1 and 0 < Fs < 0.2, where AICc,mono and AICc,bi are corrected Akaike

Information Criteria (48) obtained from high SNR data using the MR method and assuming

monoexponential and biexponential fit functions, respectively. The AICc in our case is given

by

[14]

where N is the number of measurements defining the experimental curve, P is the number of

fitted parameters and RSS is the residual sum of squares of the fit. Note that the additional

criterion of 0 < Fs < 0.2 was used to avoid attributing biexponential character to voxels

displaying nonexponential decay that were numerically well-fit to biexponentials, but that

provided clearly aberrant values of Fs. This latter criterion was based on our previous

spectroscopic work establishing approximate bounds on Fs.

Measures of goodness-of-fit summarize the discrepancy between a measured quantity Q,

and the expected value E[Q], of a given model. The most commonly used goodness of fit

test is the chi-square, χ2, given by

[15]

Bouhrara et al. Page 9

Magn Reson Med. Author manuscript; available in PMC 2015 August 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



where Q = SM for MG, MR and MT and  for MMc. At each SNR level, χ2 was

calculated voxel-by-voxel using each of the four investigated methods. The goodness-of-fit

of each method was then evaluated using the mean chi-square, , over voxels exhibiting

biexponential behavior.

Results

Monte Carlo simulations

Table 1 shows the mean and the maximum of the number of VEO removed for each of the

four methods evaluated over the range 15 ≤ SNR ≤ 40. Values are given in percent relative

to the total number of 4900 voxels. The mean number of VEO was almost identical for all

four methods. At low SNR, the number of VEO removed was slightly lower with MG, and

MR as compared to the traditional MT and MMc, methods, representing a modest

improvement in performance. Also, the mean and the maximum number of VEO in the PCI

analysis were smaller than in the CI analysis. For SNR > 40, the mean number of VEO was

less than 1% in all cases.

Figs. 2 shows the relative bias, relative dispersion and MSE for the estimates of Fs,  and

 as a function of SNR for PCI (Fig. 2a) and CI (Fig. 2b). For SNR > 30 in PCI and SNR

> 40 in CI, all four methods showed a small bias (< 2%) in the estimation of each of the

three parameters (first row of Figs. 2a-2b). However, the bias increased rapidly with

decreasing SNR, particularly for MT. The MMc showed somewhat smaller bias compared to

MT. Although the bias remained substantial at low SNR, both MR and MG allowed

considerable reduction of this bias compared to MMc and MT. The relative accuracies of MR

and MG were very similar for each estimated parameter and for both PCI and CI over the

entire range of SNR.

The second rows of Figs 2a and 2b show that the relative dispersion obtained with MG and

MR was comparable to the dispersion given by CRLB, representing an optimum, for PCI and

CI over the entire range of SNR. The relative precision obtained with MT and MMc in the

estimation of Fs and  was comparable with the CRLB only for SNR > 40, and estimation

of  only for SNR > 60. To attain relative dispersion less than 10%, PCI required SNR >

25 for Fs and  for MT, MG or MR. Using MMc, SNR > 30 and SNR > 45 were needed for

Fs and  respectively. For , SNR > 60 was necessary using MT, MG or MR and SNR >

75 for MMc. To achieve relative dispersion less than 10% in CI, SNR > 35 was necessary for

Fs using any of the four methods. For  and , SNR > 20 and SNR > 80 were needed

using MT, MG or MR, and SNR > 30 and SNR > 105 using MMc, respectively.

The MSE for all investigated methods was almost identical for all fitting methods for SNR >

50 (third rows of Figs. 2a and 2b). However, for low and moderate SNR, MT and MMc

resulted in a greater MSE as compared to MG and MR. MG and MR showed virtually

identical MSE over the entire range of SNR for each estimated parameter for both PCI and

CI.
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We investigated five other representative combinations of Fs,  and  using in all cases

SNR = 15 and 100, TE1 = 2 ms, ΔTE = 2 ms and 32 echoes. Table 2 shows the relative

accuracy and precision obtained in the estimation of Fs,  and  using the four methods

investigated. In general, both bias and dispersion were found to increase with a decreasing

ratio . In addition, bias and dispersion increase with a greater disparity between

component sizes.

For SNR = 35, the parameter mean computation times using a 4 GHz desktop computer over

several noise realizations for MT, MMc, MG and MR were ~15 ms, ~19 ms, ~15 ms and ~170

ms, respectively.

Phantom study

Fig. 3 shows representative Fs,  and  maps obtained using MT, MMc, MG and MR from

phantom measurements obtained at 7T and 3T. For SNR > 90, all four methods yielded

virtually indistinguishable maps. However, for low SNR, the parametric maps were

substantially more heterogeneous using MT and MMc compared to MG and MR. Figs 4 shows

there relative bias, relative dispersion and MSE determined from the phantom measurements

of Fs,  and  as a function of SNR for PCI (Fig. 4a) and CI (Fig. 4b), respectively. The

relative bias, relative dispersion and MSE were substantially lower for MG and MR as

compared to MT and MMc, especially for low SNR. For moderate-to-high SNR, all methods

were similar. Unlike MT and MMc, the relative dispersion of MG and MR was close to the

CRLB limit for all estimated parameters. Note that the curves in Figs 4 were obtained after

VEO removal.

We investigated the effect of Fs for three values of SNR, and CI experimental parameters.

Datasets were created as described in Methods. Table 3 shows the relative accuracy and

precision obtained in the estimation of Fs,  and  using the four methods. In general,

both bias and dispersion increased with a greater disparity between component sizes.

Ex-vivo study

Fig 5 shows representative -weighted images of BNC obtained at 7T and 3T, and

corresponding parametric maps of Fs,  and  obtained at high SNR using MR. The -

weighted images show susceptibility-induced rapid signal decay in the vicinity of blood

vessels. Biexponential decay was seen in ~20% and ~26% of voxels at PCI and CI

respectively, with the others displaying monoexponential decay, or, in the case of voxels

near vessels, nonexponential decay. Our quantitative results were based on analysis of the

voxels exhibiting biexponential decay. In those samples, short fractions of ~0.08 and ~0.07

under PCI and CI conditions, respectively, were observed.  and  were very

heterogeneous exhibiting mean values of about ~3.9 ms and ~60 ms, respectively, for PCI

and ~4.6 ms and ~67 ms for CI.

Fig 6 shows the  calculated over voxels exhibiting biexponential behavior for each level

of SNR and for each investigated method; these voxels were identified in parametric maps
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obtained at high SNR using the MR. As expected,  decreases rapidly with increasing SNR.

At low SNR, MR is clearly superior to the other methods of analysis, while at moderate and

high SNR, all methods produced similar values of . These results validate our use of the

parametric maps obtained at high SNR with MR as reference maps for calculating the

accuracy and precision of Fs,  and  for BNC.

Figs 7 presents the absolute bias and dispersion of the estimates for the three parameters for

BNC as a function of SNR at 7T (Fig. 7a) and 3T (Fig. 7b). The curves indicate monotonic,

roughly linear trend in bias and dispersion for all estimated parameters as a function of SNR.

All methods performed similarly at high SNR, while MR was superior for low-to-moderate

SNR.

Discussion

Fitting methods

The analyses of Karlsen et al. (14) and Raya et al. (13) evaluate estimates of T1 and T2 from

monoexponential data with explicit incorporation of the underlying Rician noise

distribution. In this conventional formulation, only a single relaxation time, and no

component fraction, is available from the data. Our treatment extends this work to the

biexponential case and considers the accuracy and precision with which the component

fraction ratio and the two relaxation times can be estimated. Our data set was generated

using a MGE sequence, so that the relaxation times under consideration were  rather than

T2; the underlying analysis is of course generalizable to any biexponential data curve.

Our analysis includes three of the methods examined by Raya et al. These methods were

denoted EXP, SQEXP and NCEXP in that work, and correspond to MT, MMc and MR in our

study, respectively. Raya et al. found NCEXP, which explicitly incorporates the correct

noise model, to yield the most reliable results. The reduced accuracy of the other methods

was most notable in the low-to-modest SNR regime. Improvements were observed with

SQEXP compared to EXP. Our results for the biexponential model were on the whole

consistent with these results. Most notably, MR produced the best parameter estimates, in

spite of the more complex analytic expectation value of the Rician distribution, Eq. 2, for the

biexponential model. In particular, the expression for the noise-free signal, A(TE, θ),

contains 4 free parameters, Eq. 11, rather than the 2 free parameters required for the

monoexponential model. We found that in spite of this additional model complexity, the

performance of the NLLS minimization was not degraded for MR.

Simulation (Fig. 2) and phantom (Fig. 4) studies indicated that MG performed almost as well

as MR over a large range of SNR. This is consistent with the results of Karlsen et al. (14) in

their study of monoexponential decay showing that the absolute bias of the MG method was

comparable with the absolute bias of the MR method. In addition, the analysis of

Gudbjartsson and Patz (16) indicates that their correction to image amplitude yields a PDF

for the corrected image, , given by, for SNR ≥ σ,

, and for SNR < σ,
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, which approximates the Rician

PDF. This comparability of performance between MR and MG may also result partially from

the decreased complexity of these expressions as compared to the full biexponential signal

model incorporating Rician noise, as noted above.

MMc, showed relatively large dispersion and minimal bias improvement over MT. This is

also consistent with the monoexponential analyses of Karlsen et al. (14) and the probability

distribution analyses of Gudbjartsson and Patz (16) who attribute this to the fact that the

distribution of the noise for the corrected power images, , given by

approximates neither the Rician nor the Gaussian distribution at low SNR. To improve the

precision of MMc, Raya et al. (13) suggested use of a criterion based on the maximum

likelihood function rather than least squares minimization.

MGE MRI sequence

We used a MGE sequence for data collection due to its relatively short TE, permitting both

the detection of rapidly-decaying signal components and good digitization of the transverse

decay. We were motivated by the potential applicability of this sequence to measurement of

component fractions and  values within cartilage. Our simulations and phantom

measurements indicated that analysis of MGE data using MR or MG permits estimation of

these parameters from magnitude MR images obtained under clinical conditions and with

only moderate SNR.

Recent preliminary studies applied the UTE sequence to the problem of obtaining multi-

component  data (21-25). However, UTE sequences remain specialized and are not

available routinely. Further, current implementations of UTE do not permit acquisition of

echo trains in a single shot, but rather require a separate acquisition for each TE. This leads

to either longer acquisition times or to a limitation on the frequency or duration of decay

sampling. Finally, the Cartesian sampling of the MGE sequence is often preferred over the

radial sampling of the UTE sequence because the former is less prone to off-resonance

effects. Nevertheless, the main purpose of this paper, to demonstrate the role of Rician noise

in the analysis of biexponential data, is independent of the specific pulse sequence used.

It is well-known that  exhibits contributions from both microscopic magnetic field

fluctuations leading to irreversible signal dephasing, characterized by T2, and from fixed

magnetic field gradients corresponding to mesoscopic or macroscopic field inhomogeneities,

characterized by  (49), where γ is the gyromagnetic ratio and ΔB0 is the

inhomogeneity of the magnetic field B0. Given  and

,  is expected to be largely dominated by T2,s, while  is likely
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more heavily influenced by . This complicates the interpretation of  in terms of T2,l.

The complications arising from  effects can be minimized through use of localized higher

order shimming (50-51) and small voxels.

Simulations, phantom and ex-vivo studies

Simulations show that in the limit of high SNR, all four methods yielded accurate and

precise results. At lower SNR, we found that although MR shows the lowest fit errors, MG

provides comparable accuracy and precision in many cases. For example, the fraction of the

rapidly decaying component Fs, and  were estimated with accuracy and precision of at

least 2% and 10%, respectively. Somewhat larger SNR (SNR > 60), still readily achievable

clinically, was required to quantify . In addition, the computation time using MG was

substantially lower than that required for MR. This may be especially important for

reconstruction of 3D parameter maps. These qualitative comparisons between methods were

observed for both PCI and CI, and over a wide range of relaxation times and component

fractions.

As seen from Tables 2 and 3, there is a more stringent SNR requirement for accurately and

precisely characterizing the smaller, more rapidly relaxing, as compared to the slowly

relaxing component. This is in contrast to the case for bone, in which the rapidly relaxing

component is the larger one (52). Indeed, in the latter case, mapping of the smaller, slowly

relaxing fraction, requires larger SNR than for the long component. In all cases, acquisition

parameters such TE1, ΔTE and the number of echoes directly affect bias and dispersion.

There was good overall agreement between our simulation results and phantom

measurements. In particular, both MG and MR were found to be the most effective methods,

especially in the setting of limited SNR. The bias and dispersion of all estimated parameters

for a given SNR were lower in the simulations (Figs. 2 and 4, Tables 2 and 3). Several

factors may account for this. First, the spatial variation of the B1 and B0 fields would be

expected to produce local variation of SNR and , respectively. In addition, the initial

estimates for the nonlinear fits, θî,init, were known for the simulations while in the case of

phantoms, incorrect initial estimates may have produced local, rather than global, minima in

the least squares routine. It is important to emphasize that for the phantom and ex-vivo tissue

studies, the reference measurements themselves are affected by noise, which then propagates

into the final results.

All investigations showed sensitivity of all fitting methods to initial estimates. This

highlighted the necessity for establishing a reproducible algorithm for selection of these

estimates, especially in the low SNR regime. In contrast, at high SNR, convergence was

attained even for relatively poor initial estimates. In all cases, we used the curve peeling

algorithm described above to select the estimates.

Ex-vivo measurements showed nonexponential and monoexponential behavior in several

voxels of the investigated samples. The nonexponential behavior, more pronounced at 7T,

was restricted to the periphery of the samples and adjacent to blood vessels. This is

consistent with the large susceptibility gradients in those regions (53). The same phenomena
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were also observed by Qian (21-22) at 3T. Monoexponential behavior is attributable to

several factors including the requisite SNR for detecting the short fraction and the sensitivity

of the NNLS fit to noise. In addition, the possibility that the sample exhibits a single

relaxation pool, or pools in rapid exchange, in those regions cannot be excluded. Finally, Fig

7 shows that MR provides the most accurate and precise analysis, especially in the low-to-

moderate SNR regime. At high SNR, our investigations indicate that any of the four

methods evaluated here could be used to achieve high accuracy and precision.

The parameter maps in Fig 5 showed heterogeneity of voxel values. Given the voxel-by-

voxel fit and the difficulty of the inversion in the presence of noise, there is the potential for

numerical instability, resulting in apparently discontinuous voxel values. In addition, there is

well-known micro-heterogeneity in the tissue itself. For high SNR ~135-145, there was

minimal variation in the parametric maps (Fig. 3), consistent with the relatively

homogeneous nature of the phantoms. Accordingly, the bulk of the heterogeneity seen in the

BNC images in Fig 5, which were obtained at SNR ~140, were likely due to actual tissue

micro-heterogeneities.

Our simulations, phantom and explant studies indicate that the SNR requirement for robust

estimation of short and long  components is clinically achievable. Recent work (54)

demonstrates the practicability of the SPGR sequence, which is similar to the MGE

sequence, to map bicomponent  in human menisci. This study shows only few voxels

exhibiting biexponential behavior using the MT fitting method, possibly indicating the

requirement for either a more sophisticated fitting approach or the need for increased SNR.

Therefore, combining the MGE sequence for rapid data acquisition with the MR method for

data fitting may represent a promising approach to bicomponent mapping in human articular

cartilage.

In the case of multiple receive coils, as implemented conventionally to increase speed and

SNR, the signal model in the resulting magnitude images depends on the number of

channels and other coil characteristics. If uncorrelated but equal noise amplitude among

channels is assumed, the data distribution would be approximated by a generalized Rician

distribution, that is, the non-central χ-distribution (29, 55).
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Appendix

Explicit calculation of the first derivatives of EGauss[SM],  and ERice[SM] with

respect to each model parameter improves the speed and the robustness of the NLLS fits.

Gaussian noise distribution

The following first derivatives were provided to the NLLS fit of MT and MG and CRLB

calculations as well.
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[A. 1]

so that

[A. 2]

McGibney noise distribution

[A. 3]

so that

[A.

4]

Rician noise distribution

The derivative of the modified nth order Bessel function is given by (56)

[A. 5]
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Using Eq. 2 and Eq. A.5,

[A6]

with

[A. 7]

where α = (A(TE, θ)/2σ)2. ∂A(TE, θ)/∂θi was calculated for each estimated parameter, θi,

according to Eq. A.1.
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Fig. 1.
(a) Histograms of Rician simulated data, given by Eq. 13, for two signal amplitudes (A = 1

and 6, σ = 1) and their corresponding Rician PDF given by Eq. 1. The Rician distribution

approaches a Gaussian when SNR ≥ 6. (b) The factor R as a function of SNR given by Eq.

8. R represents the correction factor for the Fisher matrix for Rician data. R approaches 1

when SNR ≥ 6.
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Fig. 2.
Simulation results showing relative bias (uppermost row), relative dispersion (middle row)

and mean-squared-error (lowermost row) for Fs,  and  as a function of SNR using the

fitting methods MT, MMc, MG and MR for (a) PCI and (b) CI acquisition conditions.
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Fig. 3.

Representative Fs,  and  maps from the two-component doped water phantom

obtained using the fitting methods MT, MMc, MG and MR at 7T (upper panel) for SNR = 42,

90, 145 and at 3T (lower panel) for SNR = 34, 95, 135.
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Fig. 4.
Phantom imaging results showing relative bias (uppermost row), relative dispersion (middle

row) and mean-squared-error (lowermost row) of Fs,  and  as a function of SNR

using MT, MMc, MG and MR obtained at (a) 7T and (b) 3T.
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Fig. 5.
Magnitude MR images of BNC obtained at the indicated echo times at 7T (top two rows)

and 3T (bottom two rows). Red squares indicate the region of the samples where the

parametric maps of Fs,  and  were obtained. The parametric maps presented here

were obtained at high SNR using the Rician method, MR. Red arrows indicates region of

blood vessels.
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Fig. 6.

Mean chi-square, , for biexponential fitting of BNC images using MT, MMc, MG and MR

as a function of SNR at a) 7T and b) 3T.
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Fig. 7.
Ex-vivo BNC imaging results showing absolute bias (upper row) and absolute dispersion

(lower row) for Fs,  and  as a function of SNR using MT, MMc, MG and MR (a) for

PCI acquisition conditions at 7T and (b) for CI acquisition conditions at 3T. Parametric

maps obtained with MR at high SNR were considered to be reference maps. The values of

the voxels exhibiting monoexponential or nonexponential behavior were set to zero.
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