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Abstract

Follow-up is more and more used in medicine/doping control to identify abnormal
results in an individual. Currently, follow-ups are mostly carried out variable by vari-
able using “reference intervals" that contain the values observable in 100(1 — )% of
healthy /undoped individuals. Observations of the evolution of the variables over time
in a sample of N healthy /undoped individuals, allows these reference intervals to be in-
dividualized by taking into account the possible effect of covariables and some previous
observations of these variables obtained when the individual was healthy/undoped. For
each variable these individualized intervals should contain 100(1 — «)% of observable
values compatible with previous observed values in this individual. General methods to
build these intervals are available, but they allow only a variable by variable follow-up
whatever the possible correlations over time between them. In this article, we propose a
general method to jointly follow-up several correlated variables over time. This method-
ology relies on a multivariate linear mixed effects model. We first provide a method to
estimate the model’s parameters. In an asymptotic framework (N large enough), we
then derive a (1 — «) individualized prediction region. Sometimes, the sample size N is
not large enough for the asymptotic framework to give a reasonable prediction region.
It is for this reason we propose and compare three different prediction regions that
should behave better for small N. Finally, the whole methodology is illustrated by the
follow-up of kidney insufficiency in cats.

Keywords : Corrected coverage rate; Longitudinal follow-up; Multivariate mixed Gaussian
model; Plug-in estimator; Prediction region; Reference intervals.



1 Introduction

Longitudinal follow-up of biological variables is more and more used in preventive medicine.
It consists of monitoring the markers of important functions for the early detection of slowly
progressive diseases with a subclinical phase. For example, the prostate specific antigen
(PSA) is used to detect prostate cancer in men. The same kind of follow-up is systematically
done with teenagers using their weight and height to detect the beginning of obesity. In
sport, like cycling or athletics, anti-doping control authorities try to generalize the use of a
biological passport which consists of a longitudinal follow-up of some endogenous substances
of interest in order to detect abnormal variations in an individual (Sottas et al., 2007; Zorzoli
and Rossi, 2010).

A standard method of doing these follow-ups is to use the so-called reference intervals (CLSI,
2008). These intervals contain a fixed percentage (usually 95%) of measurements that can
be observed in healthy individuals. However, this method suffers from several flaws. First, it
does not use individual information i.e. a healthy individual can have extreme values, outside
the reference interval, while for some other individuals values inside the reference interval
are pathologic. Second, these intervals are built in an univariate framework (i.e. variable
by variable) without taking into account the possible correlations between them. Finally, it
does not account for their evolution over time within a given individual.

The individual reference intervals (or prediction intervals) mitigate this flaw by allowing the
construction of a reference individual based on the observed values in a healthy individual
and taking into account some covariables (such as sex, age). The literature on this subject
is plentiful and the usual methodology is to use linear/nonlinear mixed effects models (Chi
and Reinsel, 1989; Verbeke and Molenberghs, 2000; Davidian and Giltinan, 1995). In these
models the observations are usually assumed to be independent conditional to the individual
specific parameters (compound symmetry assumption). To our knowledge, the development
of reliable methods to detect abnormal variations of longitudinal variables has remained
limited. Sottas et al. (2007) proposed a Bayesian approach to combine population-derived
limits and individual-based thresholds. Nevertheless, this method is built in an univariate
framework whereas a follow-up is usually performed on several markers. By consequence,
the individual reference intervals are built on each marker independently. Intuition suggests
that building regions using simultaneous information on correlated variables could help to
better detect abnormal values. Recently, Wang and Fan (2010) proposed a method to build
prediction regions. They used a p order autoregressive process to model the autocorrelation of
a variable with time while the correlations between different variables is assumed to be fixed
over time. These regions are built using the asymptotic distribution of a statistic. In other
words, the distribution of the statistics is computed assuming that the model parameters are
known while estimates are used to compute it. While this plug-in method is easy to use, its
very nature does not guarantee an exact coverage rate for the prediction region because it
does not account for the imprecision of the parameter estimates. This can be a real problem
when the sample size is small (Barndorff-Nielsen and Cox, 1996). In this case, assuming that
the asymptotic framework holds could lead to considerable approximation errors. Therefore,
special attention has to be paid to this problem to control the real coverage rate of the built



prediction region.

In this article, we propose to build an individual prediction region from previous observations
of these variables carried out in the same individual and model parameter estimates. The
observations obtained in an individual are assumed to be correlated over time. The correlation
between a variable X; at time t; and a variable X, at time ¢, is not assumed to be equal
to the correlation between X at time t5 and X5 at time ¢;. This leads to highly structured
autocorrelations that cannot be directly estimated by conventional methods (the NLMIXED
procedure in SAS or the R nlme package). Therefore, we proposed a specific estimation
method.

The model used to build these prediction regions is detailed on Section 2 and the estimation
of these parameters is performed in Section 3. The prediction regions are then built in Section
4 using a plug-in approach. Three different corrections of the asymptotic confidence region
are proposed and compared in Section 5. These corrections aim at correcting the plug-in
estimation of the prediction region. The first two come from Hall et al. (1999); Ueki and
Fueda (2007); Vidoni (2009); Fonseca et al. (2012), while the third is inspired by the work of
Beran (1990) and Fonseca et al. (2014). A real dataset on kidney insufficiency follow-up in
cats is then treated in Section 6. Finally, a discussion is provided in Section 7.

2 The model

Let us denote X; = [X;; : -+ : X;,] the measurements performed in the i individual of a
sample of size N. The vector X;; contains the n; observations carried out over time for the gt
variable. More precisely, X;x is the value observed for the i*" individual for the j*™ variable
at time ¢;;,. Without loss of generality, we can assume that ¢;; <t < ... <{;,,. Note that
all the variables are supposed to be measured at the same time for an individual, but time
measures may differ from one individual to another. We assume that, up to a monotonic
transformation

X; =B+ T:®; +(; (1)
where B; and T; are known full-rank covariate matrices of dimensions n; x p and n; X ¢
respectively, 3 = [B; : -+ : B,] is a p X matrix of parameters used to describe the population
mean, ®; = [®;; ;- Py ]and , = [{;; : -+ : {;,] are respectively ¢ X r and n; X r matrices

of unobserved Gaussian random effects. The variance of the components of the random
matrix ¢, is assumed to be highly structured:
tik—t;n - b —tik -
cov (Gijis Gigiwr) = Ejjepyp it k> K and cov (G, Gijr) = Zjjepyl ™ it kb < K

where p;; € [0,1] and 3, = a;jy0;05. The numbers a;; = 1,V € {1,...,r}, o = u; €
[—1,1]Vj # k € {1,...,r} and pj, € [0,1]Vj,k € {1,...,r}, o; represents the standard
deviation of the j" variable at each measurement time. The correlation between Gijie and gy
is assumed to be pé.i]f“,_t““' for k > k' and p;i’;f_tik for k < k. This means that we do not assume
that the correlation between the j* variable in ¢, measured at time k and the ;' variable in



¢, measured at time &’ is the same as the correlation between the j** variable in ¢, measured
at time k' and the j"** variable in {; measured at time k. The major difference with the
paper of Wang and Fan (2010) is that they assume that the observation times ¢;; are equally
spaced integer numbers, and that for all j and j', cov (Gjk, Gjrw) = Xjj7pp—v| Where py_y is
the correlation of an auto-regressive process of order p.

The matrix of the covariance of the ¢, is a variance/covariance matrix because it is a symmet-
ric and positive-definite matrix as the Kronecker and Shur products of two positives matrices
(Bhatia, 2009). If this model writing is easy to understand, its multidimensional nature does
not facilitate the estimation of parameters and the distribution definition of ®; and ¢;. Thus,
we rewrite this model in a vectorial framework to facilitate further estimations. Let us define
1, = vec(®;) the vector obtained by stacking the columns of ®; columnwise. We assume that
P, ~ N(0,€). The variance matrix = [wj,];m is block-partitioned with ¢ x ¢ variance
matrices W, = cov(®j;, Pim ).

Similarly, the within subject error ¢, can be stored columnwise into a vector & =
vec(¢;) ~ N(0,A(p,X)). The matrix A;(p,X) can be written as D;'R;'D;" where
D;! = diag(oy,...,01,09,...,09,0,,...,0,) with each o, repeated n; times. Thus, it is
assumed to be constant over time. The matrix R;'(p) is block-partitioned with n; x n;
matrices w;;; with

[tig—tul
wijk(p) = (corr (Giji, Ginf ) peqymsy = QkPjr

and «;; = 1. The matrix w;;x(p) contains the correlation between the j% and k™ variable at
the different sampling times.

The €;’s are assumed mutually independent and independent of the 1),’s. Let us define
Y; =vec(X;), A; =1,® B, and Z;, = 1, ® T;. Using these notations, the model (1) can be
re-written as

Y, =A0+Z, +¢; (2)

where 8 = vec(83). This model may appear to be a standard linear mixed effect model whose
parameter £ = (6,Q, X, p) € = can be easily estimated using standard statistical software.
However, the covariance matrices of this model are highly structured and their estimation
needs careful development, which is done in Section 3.

Assume that n,, observations of the r variables are available at times (t1,...,¢,,) in a new
individual. Let us denote U € R™! the future values that will be observed at time t, > t,,
for the r variables in this new individual. We assume that

(WU =A0+Zp +¢e

where Z = (Z)Z!)', A = (A, A!))" are known matrices and & = (¢!, &’,)’. The random matrix
(W' U") is assumed to be independent of the Y;’s. We are looking for a region Rg(W) so
that P (U € R¢(W)|W) =1—a.

To build such a region, we need two things: a random sample of individuals (Yi)ie{le}
that enables the population parameters & to be estimated and some observations performed
in the individual of interest W. We proceed in three steps: first, we build a region Rg(W)
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by assuming that & is known, secondly, we plug-in the estimate E of § obtained using the

,,,,,

random variable, this plug-in estimator does not guarantee a coverage of 1 — «. This is the
reason why we propose and compare three different corrections for the estimated prediction
region using this plug-in estimator in the third step.

3 Estimation of parameters

Let us denote A; = A;(p, X)) = var (g;). Assume for a while that the parameter £ is known
and equal to &, = (0, o, X0, py)- Then we have

U, ’ N Z; Q,

so, by Shur lemma (Zhang, 2010), we obtain

1>

Ve, (W,Y)) = Qo — QZ, [ Z:02Z, + A Z:Qy.

mw

Vio

1>

To estimate the parameter & we propose to use the EM algorithm (Dempster et al.,
1977). At iteration k, &,_; is available. The EM algorithm alternates between two
steps: the E step computes Q(&,&,_,) = E [logL (Yi,....Y ;) |Y,...,Y,; 51%1} and
the M step solves &, = argsupe Q(§,§;_1). As the Y; are independent, Q(&§,§;_1) =
> iEe, , [log L(Y;, ¥;)|Y ] .

Reminding that

—2log L(Y 3, ¥;) = (Y; — Aif — Z,®,) A7 (Y, — A8 — Z;9,)+log | A [+ ¥;Q W;+log [,

we thus obtain

N
—2Q(&.&,1) = th(Ai_lZz'Vi,kAZ;) +(Y, — A6 — Zz'mi,kq)/Ai_l (Y, — A0 —Zm;y_1)
i—1

+ ot (Vi) +mi Q7 my g + log [Ay] + log €.

The minimization of —2Q(&,&,_,) with respect to Q and 6 leads respectively to

Q =

=]~
WE

[Vivk,l + mi,kflm;,k—l} )
i=1

N -1 N

i=1 =1

-
Il



Let us denote U; =Y, — A0 — Z;m,o and P, = Z,V,Z; + U,;U;,. We want to compute

argmln 2Q(A, Ay) = argmlntr <ZA 1P> + Zlog | A

Zp =1 =1

that is N
argmln 2Q(A, Ay) = argmmtr ZD R,D,P; | — QZlog | D;|.

7p i=1

Let us denote J;;, = 5 ,1 . We have

Q) > j L
-2 = 2 E tr(D; F?) — —
o L1 : ) Ujl]

J

where Fj P,J;;R;is an;rxn,;r block-partitioned matrix with n; xn; matrices (f )k P

Thus,
1 j i
SLED R ) ETMER)
k=1 i=1 J
and it remains to solve the system of equations <> 50—1 =0,7=1,...,r to get the maximum of
J
@ with respect to o7 ',..., 0L, Obviously, this system is not linear. However, we can note

that it writes as ' B = 1/x where

N

Nt J
T = (01_1,02_1,...,0_1),1/m:(01,02,...,07,) and B = (lel r[( Z)kk}> ,
‘ Jke{l,...,r}

r

which can be solved iteratively using the recursion formula ™ B = 1/x™"!.

As explained in Section 2, o and pji lies in [—1,1]Vj, k € {1,...,r}. Thus, we can easily
optimize numerically () on this interval to obtain the estimates of o, and pjj.

A good choice of starting values speeds up the convergence of this algorithm These starting
values can be easily derived from univariate analyses The analysis of the j¢ variablg using
model (1) gives ﬂ], and ®,; C for all i € {1,...,N}. The empirical variance of ®;; can

be used as starting value of €2, ﬁj can be used for ;. Starting values for intra-individual
variance components can be obtained as follows

NS Z Z Cl]kglj'k/ n; N = /Xy, ajy =55 /(0505).

=1 k=1

The starting values for p;;; were computed by maximizing the likelihood obtained by assuming
that ¢; were distributed according to a A (0, A;(p,¥)). During this maximization, & was
set to its initial value. The computer time needed for parameter estimation is less than one
second using an ordinary laptop.



4 Building prediction regions

Remind that we assume that observations W for the r variables are available in a new
individual. We are going to build a prediction region for the next observation U for this new
individual. From the model defined in (2), we have

U=A0+2Z,,+e¢,. (3)

According to Section 3, we assume in this section that all the model parameters are known.
We denote

Bectenen ~ (o (0% Mo )

where A, (p, X) and A,(p, X) are defined in the first section and M ., (p, ) is a r X (1)
matrix with

=1,...,Nw =1l,...,

M, (p, ) = cov (ey; €4) =

=1l,...

where £, is the ¢ term of ¢, and e]_,
individual W and

i tu—t tu—tny,
Cov (52;813:1 ..... nw) = <2’le0|1] 1‘,,Ewp‘lj |> .
Using these notations and Schur lemma, we obtain the following proposition.

Proposition 4.1 Let o be any real number in [0;1] and X%,l—a be the 1 — a quantile of a
chi-square distribution with r degrees of freedom. Lel us consider the vector m(&, W) and
the matriz V(&) defined by

mEW) = A0+ (Z,0Z, + M, (p, X)) (Z,0Z,+ Ay(p, X)) (W — A,0),
V() = (Z.2Z,+Ap, X))
— (Z0Z, + My (p, X)) (Z,RZ, + Au(p, X)) (Z,2Z!, + M ,u(p, 2)) .

A (1 — «) prediction region of U, conditionally to W, is the set
S={uecR;|V(E) " (u-mEW) [P <.} (4)
where V (&€)7Y2 is the inverse of the Cholesky transformation of V ().

When r > 1, the prediction region for U is thus an ellipsoid centered on m(&, W). This
ellipsoid degenerates to the interval [m(f, W) — Ta—a/2v/V(§);m(&, W) + T1—a/2) V({)]7

where 7(1_q/9) is the (1 —/2) quantile of the standard gaussian distribution, when one wants
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to predict the next value U of a single variable (i.e. r = 1).
In this case, if p = 0 and assuming that there is no covariable, the j** observation in the i
individual writes

Xij=Yij =0+ +ey

with ¢; ~ N (0,w?) and &;; ~ N (0,0?) . Using Schur complement, the 100(1—«)% prediction
interval for the future value when k — 1 observations are already available in an individual
has the following expression :

0 Vk-1) — 1+
1+~2(k—1) + 1520k = 1)VVk—1 — T(1-a/2) ma : (5)
4 Yk-1) — 1+,
1+~2(k —1) + 1+72(k_1>Wk—1+7'(1—a/2) ma ,

where v = w/o and Wiy is the average of the k — 1 available observations. Note that
measures the benefit of the individualization compared to the usual reference interval built
with a single value per individual (CLSI, 2008). When ~ is high, the prediction interval
is close to |[W + T(l_a/g)a] and the individualization is beneficial. When k = 1, i.e. when
no observation is available for the new individual, the interval degenerates to the usual
[0 + T(1—a/2)V0? + w?|. As this model does not include any correlation between observations
within each individual, the time interval between an observation and a future value does not
modify the width of the prediction interval.

The plug-in estimator of S is S obtained by replacing in Equation (4) the parameter & by its
estimate. The obtained prediction region fails to guarantee an exact coverage of (1 —a). This
occurs when the sample size n is low leading to some imprecise estimate for £&. To prevent
this problem, we propose different strategies to correct the coverage of our prediction region.

5 Plug-in corrections

Let us define Kw(&,€&) = [[VV2(&) U -m((EW))|]? where (UW) ~
N(m(&,, W),V (&,)). Tt is obvious that for all & Kw(& &) is a random variable
distributed conditionally to W according to a x? distribution. This is no longer the case for
Kw (€, &). Let € be a n consistent estimate of & with a known distribution £. As (W' U’
is assumed to be independent of the observations Y;, (W,U) and E are independent. We

want to estimate € EW such that P <KW (50,5) <z, gOZW‘W> = 1— a. We define

in the following sub-sections three different corrections which will be denoted by x*

a:&Ov%\vW’
2 3 . . . .
~and x .. Theoretical properties of these corrections are not discussed here
a7€07£7W a7€07£7W p p

and we refer the interested reader to the references (Beran, 1990; Hall et al., 1999; Ueki and
Fueda, 2007; Vidoni, 2009; Fonseca et al., 2012, 2014).



5.1 First method

A rough estimation z* .. of x zw can be obtained by assuming that the data are drawn

a,£,£ a)€O7£7
from a distribution with parameters £ instead of §,. As Kw (5,5) is distributed condi-
tionally to W according to a x? distribution, x* DEE = X72~,1—a the (1 — «)-quantile of this

distribution. Because E is the maximum-likelihood estimate of &, it achieves first order
accuracy (Ueki and Fueda, 2007; Vidoni, 2009; Fonseca et al., 2012) and we have

L= ot (€, W) = Py, (Kw (€0.8) <@l (W) =1-a+3 (€, W)/N+0(N2). (6)
It follows that

Pe, (KW (50,5> < wi*5(£o»w)/N’ng’W) =1—-a+0 (N—3/2) . (7)
We thus obtain third order accuracy by correcting o by 6(&,, W)/N. But we have

0(€g, W)/N = (1 —a™ (£, W)) — (1 —a) + O (N73/2).

As &, is unknown, this correcting term is also unknown. However, we can estimate it by

using a parametric bootstrap method leading to (1 - oﬁ(g, W)> So we have
SEW)/N = (1-a(EW)) —(1-a)+0 (N?) ®)

and as (&, W) — (&, W) = O (1 /\/N), we obtain §(€, W)/N = §(&, W)/N + O (N~3/2) |
So it remains to evaluate 1 — oﬁ(E, W). Remind that if & is a bootstrap sample of &,
we have asymptotically £ <E|£0> ~ £ (g*@) Here we have 2 options. First, we know

that € — & ~ N (O I'2(¢ )/N) (usual central limit theorem) and because (£ — E)]E ~

N(0,I™ 1/2( £)/N), we draw £* in a N(E I 1/2( &)/N) distribution. In the second option, we

simulate (Y7} )1<i<n using the distribution of (Y;)1<;<n with parameter E and we get £ by
estimating the parameter of the model (1) using (Y)i<;<n instead of (Y;)1<i<n-

Using Equations (7) and (8) and as Kw (E, €*> = | (V(&) 2 (U — m(&,W)) ||> where
U~N (m(lg, W); V(E)), if we have a set of (§},),,<y we can deduce that

1—at L XH:EZ]l
L [” ) (Ui—mgg W) P<at Az}

where H and L are respectively the bootstrap sample sizes of (£*) and U. We conclude that

1 o4 ~3/2
T, e iw = Tasewynge T O N7



5.2 Second method

Let Fe w(x) =P (KW<€07/£) < a:]W) We want wi,go,E,W

1 — o but F¢, w is unknown. As shown in (6), we have

2 _
such that Fe w <wa,§0£,w> =

(&, W) _
-0t W) = R (elgg) = 10+ 8T o v,

Consequently, we obtain

@’ ew = Fow(l—a) = Fgly {1 —a® (0, W) = 6(&, W)/N + O (N7*%)}

whose asymptotic expansion gives

— 5 5 7W _ _
waOvE’W - F5071W {1-a™(&. W)} - %[Fgo,lw]/ {1-a™(&, W)} +0(N 3/2) :
It leads us to

& Nfow(@ +0 (N7%7?) (9)

2 4 (&0, W)
: &

where fe w is the probability density function of Ky, (50,/5\). Of course f¢, w is unknown
but because the model is regular we have for all «, (fgo,W(iI?) - fg}w(m)) =0 (1/y/n). We

have seen in the previous section that Ky (E, E) is a random variable distributed according

to a x? distribution. Consequently, the probability density function of the y? distribution
can approximate fe w and be plugged into (9) to give

$2 m4AA— (507 ) +O N—3/2 )
a.€0.&,W a8 f&W( agg) ( )

It remains to estimate 6(&,, W) that can be obtained as with the previous method.

5.3 Third method

The first two methods can be read as delta-methods. The third method is an application of
a simple parametric bootstrap method. As explained in the first method, we have for all x

Fe,w(z) =P <KW (50, ) < :1;|W> P (KW (E,g*) < :L'|W> .
Therefore, using notations of previous subsections, F¢ w(x) can be estimated by
1 L1
Few(@) = ; Zl[l vien) " (Ur-migw)ll<e|

1 =1

10



Denoting F~!(y) = inf{x : F(x) > y}, we have

3 ~ -1
$a750727W ~ F£07W(1 — Oé)
As discussed in Fonseca et al. (2014), this building is in line with Proposition 3B of Beran
(1990) that shows that

-~

P (Kw(éo,é) < wi,go,ww) =1—a+O(N?).

6 Illustrations

6.1 The dataset

The data come from a prospective study aimed at evaluating variations over time of several
biochemical variables in healthy cats. This study was carried in the clinics of the Veterinary
College, which usually received sick animals or healthy animals for sterilization (obviously
only once). This is the reason why only N = 20 healthy cats could have been included in
this study. The main variables for renal follow-up are the urea X7, the creatinine X5 and the
protein X3 which are plotted in Figure 1 for the 20 healthy cats. There is no reason to think
that these variables are not stable over time in healthy cats (Reynolds et al., 2010; Lefebvre,
2011). Univariate analyses were performed and the effect of time was found not significant.
Every cat but three were measured five times: 0, 3, 6, 12 and 24 months after inclusion.
The remaining three were sampled only for the first four times. Note that the entire study
is performed on the log transformation of the variables as usual.

So, according to Section 2, we propose the following model

X, =B,8+T;®;+¢, (10)

where X, is a n; x 3 matrix with n; the number of observation for the i*® cat (4 or 5),
B, and T; are vectors of length n; such that B; = T, = (1,...,1), B8 = (51, 2, f3) and
&, = (Pi1, Piz, Pi3) and ¢, is a n; X 3 matrix. According to Section 2, in this application we
have n;, =4 or 5, r=3,p=1,¢=1and N =20. As we have no available covariable (age,
sex), the matrix B; does not incorporate any information but this kind of information can
easily be inserted in our model as in Sottas et al. (2007).

6.2 Estimation of the parameters

Using the method proposed in Section 3, we estimated the parameters and found the following
values : ;1 = 0.083, 03 = 0.062, 5 = 0.032, 6; = 2.054, 05 = 4.834, 05 = 4.368,

1 0.411 0.001 0.010 R 0.022
a = | 0.306 1 ,p=1{0.013 0.005 0.010 | and 2= [ 0.011  0.015
0.074 0.211 1 0.009 0.896 0.005 —0.001 —-0.001 0.003
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To illustrate the use of this estimates, here are estimates of correlations between variable 2
and 3 at times ¢ (in months) and ¢ > ¢ carried out in the same individual:

1 1
R DPas 1 0.005¢ 1
“n=1 3 Gosplt 1 = 0.211 0.211 * 0.896! 1
23 (23039 , . / . *U. /
Qo3Dys | Qag  pag ' 1 0.211 % 0.010" 0.211 0.005" 7 1

In this example, the correlation between two successive measurements carried out in the same
individual is rather low for practical use with ¢’ —¢ > 1 month. More surprisingly, it appears
that no variable is an earlier marker than the others to detect kidney insufficiency. In other
words, there is no major correlation between two different variables at two different times.
This result could not be anticipated. With this result, the benefit of the individualization
can be roughly measured by the ratio v = w/o (see (5)) which is equal to 1.8, 2.0 and 1.7
for urea, creatinine and protein respectively. As these ratios are greater than one, one can
expect the individualized region (4) to be narrower than the population counterpart.

6.3 Comparison of the three corrections

Because our first motivation is to propose a reference region for variables measuring kid-
ney insufficiency in cats, we compared the three proposal corrections in this context. To
compare the three different corrections obtained with the three proposed methods and
the standard x? threshold x*_. without correction, we carried out a simulation study.

Sy

The goal of the study was to compare P (KW <£0,§) < a:‘W) for each « in the set

4
{w;,soi,w’mi,go,EW’mizso,E,W’wa,E,E}' So we first need to know &, = (0, Qo, X¢, py) and

we take £, as the maximum likelihood estimate for £ in the cat’s dataset. Using &,, we

simulate 500 new datasets ((Yf)l._l 20) , where (Yf) is the vector of size rn; = 15
=120/ =1, 500

containing the values of the three variables at the five sampling times for the i*® cat of the k'!
dataset. The three corrections we want to compare depends on the past values observed in
the individual of interest W. Because we want to compare the average performances of these
corrections, we chose to explore the possible W values that could be observed in an individ-
ual. This is the reason why, for each dataset, we chose to predict for a single cat the values
U from W which contains the n,, = 4 measurements at 0, 3, 6 and 12 months for the three
variables. We simulated 5000 pairs (W, Uy) drawn from a N (A0, Z,Q0Z., + A(py, X0))
where U, contains the corresponding measurements at time ¢, = 24 months. For each dataset

((Yf)/._1 20) , we first computed the maximum likelihood estimate Ek We took H = 200
1=1,..., k
and L = 1 to compute the three corrections and, for each dataset k£, we compute each correc-

tion (CBl 5 ) and the classical value * . . that does not depend on W. Note
€0 Wk/ 1=1,2,3 o,€5,8

that we only performed one estimate of the corrections by bootstrap sample. Conditionally to
W, the prediction regions were then calculated and we checked whether or not U, belonged
to these regions.
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Finally, we estimated P (KW(€07gk) < w) by its empirical average version
1 5000
- 1 ~
B000 & [Kw(€o&)<a]

for each « in the set {wl _ x? . 3 . xt. . } The results of these
r mn O‘v&()vEIka’ o‘v&()vEIka’ o‘vg()vgkvwk’ oc,&k,ﬁk resu

corrections are shown in Table 1.

Table 1: Comparison of average coverage probabilities (standard deviations) for the three
corrections and the standard y? threshold for o = 0.95.
‘ Method ‘ 1% correction ‘ 274 correction ‘ 3™ correction ‘ Standard yx

|
| Coverage probability | 0.955 (0.003) | 0.956 (0.003) | 0.948 (0.003) [ 0.933 (0.004) |

2

We can note that the third correction gives the narrower prediction region. In the case of

mi ip the imprecision of the estimation is not taken into account in the computation of the

prediction region leading to a small prediction region. This is not the case for the first and
the second correction that give close results. Contrary to the results obtained by Vidoni
(2009), they both overestimate the coverage and lead to wide prediction regions. Note that
similar results were obtained for other confidence levels. Comparing the average coverage
probabilities is certainly desirable but it does not allow the size of the prediction regions
to be compared, which is why we represent the distributions of the corrections in Figure
2. For a given value of £, the size of the prediction region is governed by the different x'.
Indeed, a correction would not be necessary if &, were known and not estimated. Here, the

knowledge of &, enables the targeted 95% quantile to be calculated for each (Wk,/ék>, and,

consequently, the optimal size for the prediction region. Deconditioning on (W,/E\) gives
the distribution of the actual 95% quantile, in red in Figure 2. This distribution is estimated
empirically with 5000 values of (Wk, I3 k) As we can see, the distribution of x* has a lower

variance than the others that insures a small variation of the prediction region size from one
sample to another. Futhermore, its distribution is the closest to that of the actual quantile.
According to this simulation study, we will provide results in the next section using the third
correction mi CEW and it will be calculated as the average of 5000 bootstrap samples. Note
that the best performances of the third method are only established here for the used dataset

and could not be true in general. A possible explanation could be that the first correction is
based on a x? approximation for the distribution of Ky (50, E) and a bootstrap adjustment

for the targeted coverage. Furthermore the second one is a truncated asymptotic expansion of
the first one and consequently is less accurate. By its very construction, the third correction
was expected to be the best one because it does not a priori assume a x? distribution for

Kw (50, E) Its only approximation is to substitute the real distribution of E by its bootstrap
counterpart. As expected it achieves a coverage probability very close to the targeted one.
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6.4 Prediction region

We have a new cat for which we possess four measurements (at 0, 3, 6 and 12 months) for
each variable. Using the proposed method, we can build an individual reference region (an
ellipsoid) for future values for these variables. If its future measures lie outside this region,
this cat has a low probability of being healthy. The results on this new cat are plotted in
Figure 1. Because clinicians are not accustomed to matrix calculus, it is not easy to check
whether or not a new point on the given cat belongs to its prediction region. This is the

reason why we proposed to represent the projection of the ellipsoid Kw <£0, £) < :122 ¢ Ew
18098

for each variable. This gives an interval of prediction for each variable and each future time
of measurement. Note that these intervals are presented to give a graphical representation.
As they were obtained by projection they do not guarantee the right coverage contrarily to
the ellipsoids defined by Proposition 4.1. So, they can not be used separately to diagnose a
cat as the three variables are strongly related. As soon as a value of a variable is outside the
prediction region, the cat can be considered as probably not healthy.

We can remark that our prediction intervals are very different and narrower than the so-
called "reference intervals" and therefore lead to different clinical decisions. As an example,
a log(Creatinine) of 5.15 at fifteen months would be detected as suspicious for the new cat
using the standard reference intervals while the individualization does not trigger such a
false alarm. On the other hand, a log(Urea) value of 1.8 would be detected as abnormal
by our method but not by the usual reference intervals. The reduction of width for the
prediction region decreases the probability for each individual of being detected as a false-
negative. Despite the considerable difference between the x? threshold migg and mig e
the corresponding prediction regions are very close. In this case, this can be exblgiﬁed
by a small variance in a future value conditional on the observations. This cannot easily be
anticipated by a simple glance on the parameter estimations because this conditional variance
depends on a complicated function of all the variance parameters (see Proposition 4.1).

~

7 Discussion

In this paper, we introduce a new model to build prediction regions. This approach is new
because it is individualized and multidimensional. Indeed, every individual gets its own
prediction region which takes into account the possible correlations between all the variables
at all the different times. These advantages enable us to build narrower prediction regions
than the usual "reference intervals" method. Using our methodology, clinicians will be alerted
with more precision to a potential unhealthy animal or person.

Nevertheless, our model is based on a strong Gaussian assumption which can be false. An
alternative could be the use of a nonparametric framework but it would need more individuals
and, by consequence, it can not be applied to our practical problem. This assumption is also
a classical one at least up to a Box-Cox transformation (CLSI, 2008).

On the other hand, an assumption was also made on the exponential decrease of the cor-
relation over time that can appear restrictive. To the best of our knowledge, this kind of
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problem has already been modeled by an AR(p)-process (Wang and Fan, 2010): an assump-
tion difficult to check. In this respect, the model we propose can be seen in continuous time
as a first order approximation of such chains.

Our parametric framework allows us to use a plug-in approach for the model estimation,
but the plug-in approach adds errors in the estimation of the prediction region and fails
to guarantee an exact coverage rate. To circumvent this problem, we use three different
corrections and the method 3 seems to give better results on our dataset.

Recently, some robust extensions concerning the multivariate linear mixed model have been
proposed. These extensions are based on the multivariate ¢ and skew normal distributions
and provide approaches with a more general family of distributions (Wang and Fan, 2011,
2012; Wang, 2013; Lin and Wang, 2013). An interesting future work would be an extension
of our results for these models.
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Figure 1: The three variables of interest are plotted for the whole dataset and the new cat
in bold. The usual reference intervals (in dotted-dashed lines) are wider than the individual

ones (in dashed lines). The prediction region using the standard y? threshold scg o5 EE is close
3 18

to those obtained using T os5.e Ew This figure appears in color in the electronic version of
. 1SS0S
this article.
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Figure 2: Distributions of the targeted quantile and of the different corrections are represented

: . 1 : 1 _ 4 4
using a kernel estimate, ' standing for T 056, EW for I = 1,2,3 and x* for T o528 The

solid line distribution shows how the actual quantile changes with W. The distribution of

azg 05,6, E.W is the closest to the actual distribution. Overall, methods 1 and 2 overestimate
. S0°SH

the actual quantiles while method 4 underestimates them. This figure appears in color in the
electronic version of this article.
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