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 ABSTRACT 

 Computing the inverse of the genomic relationship 
matrix using recursion was investigated. A traditional 
algorithm to invert the numerator relationship matrix 
is based on the observation that the conditional ex-
pectation for an additive effect of 1 animal given the 
effects of all other animals depends on the effects of its 
sire and dam only, each with a coefficient of 0.5. With 
genomic relationships, such an expectation depends 
on all other genotyped animals, and the coefficients 
do not have any set value. For each animal, the coef-
ficients plus the conditional variance can be called a 
genomic recursion. If such recursions are known, the 
mixed model equations can be solved without explicitly 
creating the inverse of the genomic relationship matrix. 
Several algorithms were developed to create genomic 
recursions. In an algorithm with sequential updates, 
genomic recursions are created animal by animal. That 
algorithm can also be used to update a known inverse 
of a genomic relationship matrix for additional geno-
types. In an algorithm with forward updates, a newly 
computed recursion is immediately applied to update 
recursions for remaining animals. The computing costs 
for both algorithms depend on the sparsity pattern of 
the genomic recursions, but are lower or equal than for 
regular inversion. An algorithm for proven and young 
animals assumes that the genomic recursions for young 
animals contain coefficients only for proven animals. 
Such an algorithm generates exact genomic EBV in 
genomic BLUP and is an approximation in single-step 
genomic BLUP. That algorithm has a cubic cost for 
the number of proven animals and a linear cost for the 
number of young animals. The genomic recursions can 
provide new insight into genomic evaluation and pos-
sibly reduce costs of genetic predictions with extremely 
large numbers of genotypes. 

 Key words:   genomic relationship matrix , recursion , 
genomic selection , single-step BLUP , preconditioned 
conjugate gradient (PCG) algorithm 

 INTRODUCTION 

 When only a fraction of animals are genotyped, a 
genomic relationship matrix G can be combined with 
a numerator relationship matrix A into a genomic-
pedigree relationship matrix H (Legarra et al., 2009). 
Such a matrix is complicated, but has a simple inverse 
(Aguilar et al., 2010; Christensen and Lund, 2010). 
When the inverse of H is used with BLUP, the method 
is called single-step genomic BLUP (ssGBLUP). 
Advantages of ssGBLUP include simplicity of use (yet 
another BLUP), relatively high accuracy (Chen et 
al., 2011; Christensen et al., 2012; Gray et al., 2012), 
known and explicit control of biases because of different 
base populations in A and G as opposed to unknown 
properties of multistep methods (Tsuruta et al., 2011; 
Vitezica et al., 2011), and possible accounting for selec-
tion bias for genotyped animals (Patry and Ducrocq, 
2011; VanRaden, 2012). Accuracy of ssGBLUP can be 
further improved by using a weighted G (Wang et al., 
2012), which mimics Bayesian regressions. 

 The most expensive operation with ssGBLUP, as 
proposed by Aguilar et al. (2010) and Christensen and 
Lund (2010), is creating and then inverting G. Both 
operations have an approximately cubic cost with the 
number of genotypes. With efficient computing algo-
rithms, both operations are feasible for up to 100,000 
genotypes (Aguilar et al., 2011; Masuda and Suzuki, 
2013). However, the US dairy industry has already 
collected over 400,000 Holstein genotypes; over 80% of 
genotypes are for animals without a BLUP evaluation, 
with a very slow increase in the number of genotypes 
for proven bulls (Council on Dairy Cattle Breeding, 
2013). 

 Several approaches that do not require the inverse 
of G (G−1) have been proposed for ssGBLUP. Misztal 
et al. (2009) presented unsymmetric equations where 
only H was required. However, creating H directly is 
complicated. Legarra and Ducrocq (2012) presented 
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different unsymmetric equations where inverses that 
were difficult to obtain were not required. Unsymmetric 
equations exhibited declining convergence with a larger 
number of genotypes (Aguilar et al., 2013), although 
they may be useful when a suitable preconditioner is 
found. Fernando et al. (2013) proposed a method where 
genotypes of nongenotyped animals were imputed and 
the final set of equations included SNP effects for all 
animals plus extra polygenic terms. However, the im-
putation is expensive; the volume of the imputed data 
are extremely large for big populations (up to dozens 
of millions of individuals for dairy cattle), and existing 
software is not applicable.

The cost of creating A by a tabular method (Emik 
and Terrill, 1949) is quadratic, and the cost to invert it 
directly is cubic. However, Henderson (1976) developed 
an algorithm based on recursion to obtain the inverse of 
A (A−1) directly at linear cost. Subsequently, A−1 can 
be computed for millions of animals in seconds. Faux 
et al. (2012) used Henderson’s ideas and conditioned 
animals on a small number of relatives. However, the 
cost of their algorithm was higher than that by regular 
inversion. The purpose of our study was to determine 
whether recursion is useful in obtaining G−1 at a rea-
sonable cost for a large number of genotypes.

MATERIALS AND METHODS

The method of Henderson (1976) to create A−1 di-
rectly depends on the recursion

 u u us d ii ii = 0.5 +  + ,( ) ϕ  

ui = 0.5(usi + udi) + φi, 

where ui is the animal effect for animal i; si and di refer 
to the sire and dam of animal i, respectively; φi is Men-
delian sampling; and founders of the pedigree are as-
sumed to be unrelated. In matrix notation and with a 
genetic variance of σa

2 of 1 to simplify notation,

u = Pu + Φ, var(Φ) = M, 

and

A−1 = (I − P) M−1(I − P) = T M−1T,

where P relates animals to parents; T is a triangular 
matrix if animals are ordered from oldest to youngest; 
and M is a diagonal matrix. Subsequently, A−1 can be 
created as a sum of outer products

 A t t− = ∑1
1 1( ' / ),, : , :i n i n i

i
m  

where ti,1:n contains no more than 3 nonzero elements. 
Ignoring inbreeding, the value of mi is (4 − number of 
known parents)/4. Henderson’s rules are simple: when 
u A~ ( , ),N a0 2σ  animals are ordered from the oldest to 
the youngest, and all animals (including base animals) 
are included in the pedigree,
u u u u u u u u ui i i n i s di i1 2 -1 +1, ,…, , ,…, = , , or the conditional 
for an animal includes only its parents but not the rest 
of individuals in the pedigree. For instance, when only 
animals with records are included in A or older animals 
are conditioned on the younger animals, the conditional 
of ui may involve more than 2 animals.

With genomic relationships, u G~ ( , ).N a0 2σ  The joint 
distribution of u1,…,un can be written as

p(u1,…,un) = p(u1)p(u2|u1)p(u3|u2,u1)… 

p(un|u1,u2,…,un−1). 

This decomposition is general and does not involve any 
particular ordering of individuals. Each of the condi-
tional distributions can be written as

 
p u u u u N

g

i i

i i i i i i i i

| , , , ~

( ) ,, : : , : : ,

1 2 1

1 1 1 1 1 1
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1 1
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with gi,1:i−1 part of the ith row of G, and with the fol-
lowing recursion equation:

 u u u p ui i ij j i
j

i
| ... ,1 1

1

1

−
=

−

= +∑ ε  

and

pi,1:i−1 = gi,1:i−1(G1:i−1:i−1)
−1, Mi,i = mi = var(εi) =  

 gi,i − pi,1:i−1g i,1:i−1.  [1]

Mimicking the developments of Henderson (1976) and 
Quaas (1988),

G−1 = (I − P) M−1(I − P) = T M−1T, 

where T is a triangular matrix as a result of the recur-
sions of ui on individuals u1…ui−1. Then G−1 can be 
created as a sum of outer products as
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 G t t− = ∑1
1 1( ' / )., : , :i n i n

i
im  

The term {i, mi, p1:i−1,i} defines the genomic recursion 
for animal i, where mi is the genomic Mendelian sam-
pling and p1:i−1,i are the genomic coefficients. Similarly 
to rules for A−1, G−1 can be constructed as a sum of 
contributions for each animal. However, p can have up 
to n − 1 nonzero elements, and the elements of p gener-
ally are no longer 0 or 0.5. (See the Appendix for an 
example on regular and genomic recursions.)

The genomic recursions are a form of Cholesky de-
composition:

G−1 = T MT = UDU ,

where U is an upper triangular matrix and D is a di-
agonal matrix. However, the genomic recursions have a 
clear interpretation of what the elements of U and D 
are, which can be useful for insight into the genomic 
prediction [i.e., which animals contribute the most for a 
given animal’s genomic EBV (GEBV)] and for compu-
tational refinements (progressive accumulation of ele-
ments in G−1, parallelization, and possible elimination 
of unimportant coefficients).

Efficient Computing Algorithms

Algorithm with Sequential Updates. The preced-
ing algorithm is expensive, as it requires repeated inver-
sion of sections of G. The following algorithm creates 
those sections directly.

 1.  GIn×n = 0;GI1:1,1:1 = 1/g1,1; m1 = g1,1. 
 2.  i = 2.
 3.  p i,1:i−1 = GI1:i−1,1:i−1g1:i−1,i. 
 4.  mi = gi,i − pi,1:i−1g1:i−1,i. 
 5. 

 GI GI
p

p1: ,1: 1: ,1:
,1: -1

i,1:1
1 /i i i i

i= +
−

−
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i
i 1 mmi . 

 6.  i = i + 1; continue to 3 until i > n.

Step 3 calculates the genomic coefficients, step 4 cal-
culates the genomic Mendelian sampling, and step 5 
updates G−1 for the same animal. After the last step, 
GI = G−1. This algorithm is equivalent to that of Sher-
man and Morrison (1950).

When the purpose of the algorithm is only to create 
genomic recursions [e.g., solving with a preconditioned 
conjugate gradient (PCG) algorithm directly], some 
steps can be modified:

 1.  GIn×n = 0;GI1:1,1:1 = 1/g1,1; m1 = g1,1. 
 2.  i = 2.
 3. 
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 4.  mi = gi,i − pi,1:i−1g1:i−1,i. 
 5.  i = i + 1; continue to 3 until i > n.

Zeros were added above for conformity in matrix op-
erations. In actual computing, operations on zeros are 
never done.

Algorithm with Forward Updates. The modified 
algorithm with sequential updates can be presented in 
a form where genomic coefficients for animal i are im-
mediately applied to update recursions partially for the 
remaining animals (step 2):

 1.  T = I; m1 = g1,1; i = 2.
 2.  tj,1:i−1 = tj,1:i−1 − ti−1,1:i−1(t i−1,1:i−1g 1:i−1,j)/mi−1, j 

= i,n.
 3.  mi = gi,i + ti,1:i−1g1:i−1,i. 
 4.  i = i + 1; continue to 2 until i > n.

This algorithm is more suitable for vector or parallel 
computations.

Costs. Without additional optimization, both the 
sequential and forward update algorithms have cubic 
cost because they implement inversion for a general 
symmetric matrix. Costs can be reduced if many coef-
ficients in P or T are so small that they can be set to 
zero with negligible effect on G−1, although the risk of 
propagation of numerical errors needs to be verified for 
large n.

In commercial analyses, the genomic relationship for 
each animal needs to be computed only once. If the 
population is expanded to include new animals, only 
genomic recursions for new animals need to be added. 
In such a case, the algorithm with sequential updates 
is equivalent to formulas for updates to G−1 when ad-
ditional genotypes are available (Meyer et al., 2013).

Use of G−1 when Solving Large Systems of 
Equations. Solutions to mixed model equations that 
include G−1 can be computed without creating G−1 
explicitly. Currently, a standard method to solve large 
BLUP equations is PCG iteration on data (Strandén 
and Lidauer, 1999; Tsuruta et al., 2001). For PCG 
computation, the left-hand side of the system of equa-
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tions is not needed explicitly; however, each round of 
iteration requires a product of the left-hand side times 
a specified vector, say r. The product G−1r can be 
computed as a series of vector-by-vector multiplications 
involving the genomic recursions,

 G r t t r− = ( )∑1
1 1' / ,, : , :i n i n i

i
m  

at computing cost O(ns), where s is average length of t. 
If T is dense, the cost is O(n2).

Algorithm when a Population Includes  
Proven and Young Animals

Assume that n initial animals have been proven (i.e., 
have phenotypes or progeny with phenotypes) and the 
remaining m are young. Then

 u u u u p u p u i ni i ij
j

n

j ij
j n

n m

j i| , , , .1 2 1
1 1

… −
= = +

+

= +∑ ∑  +   for  > ε  

In Bayesian regressions on SNP effects (e.g., Ridge 
regression BLUP and BLUP_SNP) and equivalent 
genomic BLUP, young animals do not provide any 
information to GEBV of other animals. This is not 
true for ssGBLUP because new genomic relationships 
may modify old pedigree relationships; however, the ef-
fect of genotypes of young animals on GEBV of other 
genotyped animals is likely small, especially if n is very 
large. Assuming that the contributions of young ani-
mals sum to 0,

 u u u u u p u i ni n i ij j i
j

| , , , |1 2 … = =
∈
∑uproven
proven

 +  for  > .ε  

If p denotes proven animals, y denotes young animals, 
and G = ZZ /q as in VanRaden (2008), then

 P G G Z Z Gy yp pp y p ppq= = ′− −1 1/   

and

 var( )/ / ,ε σi u ii ip pp pi ii i p pp p i ig g q m2 1 1 2≈ − = − ′ ′ =− −G G G z Z G Z z  

with the approximation because covariances among 
young animals were ignored. Finally,
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1 . 

The last equation does not require the expensive op-
eration of forming sections of G for young animals 
explicitly.

If n = number of proven animals, m = number of 
young animals, and � = number of SNP, then

 cost[ˆ ( / ) ˆ ] ~ ;u Z Z G uy y p pp pq n m n= ′ + +( )−1 3 �  

cost(G−1r) ~n2 + 2(�m + �n + n2);

 cost ; and( ) ~Gpp n−1 3  

 cost  if  is precomputed at cost M m np pp p( ) ′ −~ ~ .� �2 1 2Z G Z  

All costs are cubic with n, quadratic or linear with �, 
and linear with the number of young animals. If n = 
50,000, � = 50,000, and PCG iteration completes in 300 
rounds, then adding 450,000 young animals increases 
computing costs associated with G−1 by 11 times. With 
a regular algorithm for inversion, the costs increase 
1,000 times.

Equivalent Formulas for Approximate Inverse of A22

Computing ssGBLUP also requires an inverse for A22 
A22

1−( ), which is a submatrix of A for genotyped animals. 
Using notation analogous to that for G,

 A
A A A

I
M A A I22

1
1 1

1 10

0 0
−

− −
− −≈
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⎢
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⎥
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−pp pp py
yp pp

⎡⎡
⎣⎢

⎤
⎦⎥ , 

with 

 m ai ii ip pp pi≈ −
−

22
1

, .a A a  

The product of a section of A by a vector can be 
computed efficiently using an algorithm by Colleau 
(2002). In particular, that algorithm can be used to 
compute a large number of aip in parallel (Aguilar et 
al., 2011).

Alternately, the formulas for A22
1−  may be computed 

using the sequential update algorithm. This requires 
accessing elements 1 to i of A22 at a time, which can be 
done either by recursion or using Colleau’s algorithm. 
When the depth of pedigree is limited, A22

1−  and T are 
relatively sparse (Faux and Gengler, 2013). Subse-
quently, the main cost of obtaining A22

1−  may be com-
puting A22.
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DISCUSSION

The algorithm for genomic selection based on ge-
nomic recursions offers an extra insight compared with 
algorithms based on estimation of SNP effects or based 
on G obtained through usual means. Methods based 
on estimation of SNP effects provide insight into the 
genetic architecture of traits. The genomic relation-
ships allow for comparisons and, subsequently, quality 
control for pedigree-based relationships. They also aid 
in computing theoretical accuracy by inversion of the 
mixed model equations. The genomic recursions allow 
some insight into the flow of information from older to 
younger animals. Such perceptions may lead to modifi-
cations of recursion coefficients for a higher realized ac-
curacy, because theoretical accuracies using traditional 
G are inflated (Su et al., 2012). Such modifications 
may include accounting for decay of genomic predic-
tions over generations (Wolc et al., 2011) or for less 
information from imputed genotypes (Cleveland and 
Hickey, 2013). A great advantage of modified genomic 
recursions is that they result in at least semipositive 
definite G−1. The application of genomic recursions 
depends on their properties in practice. Although they 
are dense for small populations (not shown), their spar-
sity pattern with large populations is unknown.

If animals are sequentially added to a population, 
both the sequential and forward update algorithms pro-
vide a possibility to create genomic recursions that are 
computed once for every animal, which is functionally 
similar to ideas of Meyer et al. (2013). The genomic 
recursions are calculated as animals are registered. The 
costs of computations once the genomic recursions are 
known is reasonable because those pedigrees result in 
quadratic (or less if recursions are sparse) costs for a 
PCG iteration program.

The proposed algorithms were evaluated with a simu-
lated data set of 1,500 genotypes and ssGBLUP. In the 
algorithm with sequential updates, setting very small 
elements (−0.001 to 0.001) in P to zero resulted in little 
sparsity. Setting larger elements (−0.01 to 0.01) to zero 
caused large errors in G−1due to accumulation of er-
rors. However, this algorithm worked very well for A22

1− . 
When complete P was computed and its small elements 
were zeroed (−0.01 to 0.01), the accuracy of G−1 and 
GEBV were almost unaffected, but the sparsity level 
was moderate. The sparsity level increased to >60% 
when G was blended with 20% of A22. In all computa-
tions involving the algorithm for proven and young 
animals, the correlations of GEBV with those using the 
regular algorithm were >0.99. However, this testing is 
not extensive and its conclusions cannot by extended to 
real life data sets. Future, more detailed studies will 
address these points.

The algorithm based on decomposition for proven and 
young animals can reduce costs dramatically when the 
number of genotypes is >50,000 and potentially help 
with stability during iteration. In fact, evaluation with 
1 million genotypes would be possible. Although GEBV 
computed with G from the proven-young algorithm are 
the same as with traditional G in GBLUP, which is 
not the case for ssGBLUP. In particular, genotypes of 
young animals can improve accuracy of EBV for their 
nongenotyped relatives, although the improvement is 
small (Christensen et al., 2012). Therefore, ssGBLUP 
computed using the proven-young algorithm is an ap-
proximation. With fewer coefficients in that algorithm, 
the numerical properties of mixed model equations 
are likely better. Aguilar et al. (2013) found that the 
convergence rate decreases with the addition of young 
animals. The proven-young algorithm is of interest only 
when the number of animals is large, (e.g., >50,000); 
otherwise, conventional algorithms are cost effective 
(Aguilar et al., 2011).

The increase in the number of animals with highly 
accurate evaluations (e.g., reliability of >95%) is 
fairly slow for dairy cattle; perhaps 1,000 such bulls 
are added yearly in the United States. It is unclear 
how the genomic accuracy of cows is affected if they 
are treated as young animals in the proven-young al-
gorithm. Normally, the addition of genotypes of cows 
with records increases the accuracy of genomic predic-
tions very little. For example, the mean accuracy across 
breeds and traits for New Zealand dairy cattle using 
about 7,000 male genotypes in the training population 
was approximately 0.70 (Harris et al., 2013). Adding 
17,000 female genotypes increased that accuracy by ap-
proximately 0.02. Accuracies for cows treated as young 
with the proven-young algorithm in ssGBLUP may be 
close to that with exact G, but at a much lower cost.

CONCLUSIONS

The inverse of the genomic relationship matrix, which 
is needed for genomic evaluation, can be computed us-
ing genomic recursions. In general, the cost of obtaining 
those recursions depends on their sparsity pattern and 
needs to be determined experimentally. In a specific 
case where the genotyped population included proven 
and young animals, the approximate cost is cubic with 
the number of proven animals and linear with the num-
ber of young animals.

ACKNOWLEDGMENTS

Helpful discussions with P. M. VanRaden (Animal 
Improvement Programs Laboratory, Agricultural Re-
search Service, USDA, Beltsville, MD) as well as S. 



3948 MISZTAL ET AL.

Journal of Dairy Science Vol. 97 No. 6, 2014

Tusruta, Breno Fragomeni, Daniela Lourenco, and R. 
Rekaya (University of Georgia, Athens) are gratefully 
acknowledged. We greatly appreciate very useful cor-
rections and suggestions by the two anonymous review-
ers. This research was supported by grants from Zoetis 
(Kalamazoo, MI), Cobb-Vantress Inc. (Siloam Springs, 
AR), Smithfield Premium Genetics (Rose Hill, NC), 
American Angus Association (St. Joseph, MO), Hol-
stein Association USA (Brattleboro, VT), Pig Improve-
ment Company (Hendersonville, PIC), and Binational 
Agricultural Research and Development (BARD) grant 
IS-4394-11R.

REFERENCES

Aguilar, I., A. Legarra, S. Tsuruta, and I. Misztal. 2013. Genetic eval-
uation using unsymmetric single step genomic methodology with 
large number of genotypes.  Interbull Bull.  47:222–225.

Aguilar, I., I. Misztal, D. L. Johnson, A. Legarra, S. Tsuruta, and T. J. 
Lawlor. 2010. Hot topic: A unified approach to utilize phenotypic, 
full pedigree, and genomic information for genetic evaluation of 
Holstein final score.  J. Dairy Sci.  93:743–752.

Aguilar, I., I. Misztal, A. Legarra, and S. Tsuruta. 2011. Efficient com-
putation of the genomic relationship matrix and other matrices 
used in single-step evaluation.  J. Anim. Breed. Genet.  128:422–
428.

Chen, C. Y., I. Misztal, I. Aguilar, S. Tsuruta, T. H. E. Meuwissen, S. 
E. Aggrey, T. Wing, and W. M. Muir. 2011. Genome-wide marker-
assisted selection combining all pedigree phenotypic information 
with genotypic data in one step: An example using broiler chick-
ens.  J. Anim. Sci.  89:23–28.

Christensen, O. F., and M. S. Lund. 2010. Genomic prediction when 
some animals are not genotyped.  Genet. Sel. Evol.  42:2.

Christensen, O. F., P. Madsen, B. Nielsen, T. Ostersen, and G. Su. 
2012. Single-step methods for genomic evaluation in pigs.  Animal  
6:1565–1571.

Cleveland, M. A., and J. M. Hickey. 2013. Practical implementation of 
cost-effective genomic selection in commercial pig breeding using 
imputation.  J. Anim. Sci.  91:3583–3592.

Colleau, J.-J. 2002. An indirect approach to the extensive calculation 
of relationship coefficients.  Genet. Sel. Evol.  34:409–421.

Council on Dairy Cattle Breeding. 2013. Genotypes included in eval-
uations by breed, chip density, presence of phenotypes (old vs. 
young), and evaluation year-month (cumulative). Accessed Oct. 
27, 2013. https://www.cdcb.us/Genotype/cur_density.html.

Emik, L. O., and C. E. Terrill. 1949. Systematic procedures for calcu-
lating inbreeding coefficients.  J. Hered.  40:51–55.

Faux, P., and N. Gengler. 2013. Inversion of a part of the numerator 
relationship matrix using pedigree information.  Genet. Sel. Evol.  
45:45.

Faux, P., N. Gengler, and I. Misztal. 2012. A recursive algorithm for 
decomposition and creation of the inverse of the genomic relation-
ship matrix.  J. Dairy Sci.  95:6093–6102.

Fernando, R. L., D. Garrick, and J. C. M. Dekkers. 2013. Bayesian 
regression method for genomic analyses with incomplete genotype 
data. Page 225 in Book of Abstracts of the 64th Annual Meeting of 
the European Federation of Animal Science, No. 19. Wageningen 
Academic Publishers, Wageningen, the Netherlands.

Gray, K. A., J. P. Cassady, Y. Huang, and C. Maltecca. 2012. Effec-
tiveness of genomic prediction on milk flow traits in dairy cattle.  
Genet. Sel. Evol.  44:24.

Harris, B. L., A. M. Winkelman, and D. L. Johnson. 2013. Impact of 
including a large number of female genotypes on genomic selection.  
Interbull Bull.  47:23–27.

Henderson, C. R. 1976. A simple method for computing the inverse 
of a numerator relationship matrix used in prediction of breeding 
values.  Biometrics  32:69–93.

Legarra, A., I. Aguilar, and I. Misztal. 2009. A relationship matrix 
including full pedigree and genomic information.  J. Dairy Sci.  
92:4656–4663.

Legarra, A., and V. Ducrocq. 2012. Computational strategies for na-
tional integration of phenotypic, genomic, and pedigree data in a 
single-step best linear unbiased prediction.  J. Dairy Sci.  95:4629–
4645.

Masuda, Y., and M. Suzuki. 2013. Efficient inversion of a large genom-
ic relationship matrix stored on a disk using a multi-core proces-
sor and graphic processing units.  J. Dairy Sci.  96(Suppl. 1):622. 
(Abstr.)

Meyer, K., B. Tier, and H.-U. Graser. 2013. Technical note: Updat-
ing the inverse of the genomic relationship matrix.  J. Anim. Sci.  
91:2583–2586.

Misztal, I., A. Legarra, and I. Aguilar. 2009. Computing procedures 
for genetic evaluation including phenotypic, full pedigree, and ge-
nomic information.  J. Dairy Sci.  92:4648–4655.

Patry, C., and V. Ducrocq. 2011. Accounting for genomic pre-selection 
in national BLUP evaluations in dairy cattle.  Genet. Sel. Evol.  
43:30.

Quaas, R. L. 1988. Additive genetic model with groups and relation-
ships.  J. Dairy Sci.  71:1338–1345.

Sherman, J., and W. J. Morrison. 1950. Adjustment of an inverse ma-
trix corresponding to a change in one element of a given matrix.  
Ann. Math. Stat.  21:124–127.

Strandén, I., and M. Lidauer. 1999. Solving large mixed linear models 
using preconditioned conjugate gradient iteration.  J. Dairy Sci.  
82:2779–2787.

Su, G., P. Madsen, U. S. Nielsen, E. A. Mäntysaari, G. P. Aamand, 
O. F. Christensen, and M. S. Lund. 2012. Genomic prediction for 
Nordic Red Cattle using one-step and selection index blending.  J. 
Dairy Sci.  95:909–917.

Tsuruta, S., I. Misztal, I. Aguilar, and T. J. Lawlor. 2011. Multiple-
trait genomic evaluation of linear type traits using genomic and 
phenotypic data in US Holsteins.  J. Dairy Sci.  94:4198–4204.

Tsuruta, S., I. Misztal, and I. Strandén. 2001. Use of the precondi-
tioned conjugate gradient algorithm as a generic solver for mixed-
model equations in animal breeding applications.  J. Anim. Sci.  
79:1166–1172.

VanRaden, P. M. 2008. Efficient methods to compute genomic predic-
tions.  J. Dairy Sci.  91:4414–4423.

VanRaden, P. M. 2012. Avoiding bias from genomic pre-selection in 
converting daughter information across countries. Interbull Bull. 
45. Accessed Mar. 21, 2014. https://journal.interbull.org/index.
php/ib/article/view/1243/1241.

Vitezica, Z. G., I. Aguilar, I. Misztal, and A. Legarra. 2011. Bias in 
genomic predictions for populations under selection.  Genet. Res. 
(Camb.)  93:357–366.

Wang, H., I. Misztal, I. Aguilar, A. Legarra, and W. M. Muir. 2012. 
Genome-wide association mapping including phenotypes from rel-
atives without genotypes.  Genet. Res. (Camb.)  94:73–83.

Wolc, A., J. Arango, P. Settar, J. E. Fulton, N. P. O’Sullivan, R. Preis-
inger, D. Habier, R. Fernando, D. J. Garrick, and J. C. M. Dekkers. 
2011. Persistence of accuracy of genomic estimated breeding values 
over generations in layer chickens.  Genet. Sel. Evol.  43:23.



Journal of Dairy Science Vol. 97 No. 6, 2014

RECURSION AND GENOMIC RELATIONSHIP MATRIX 3949

APPENDIX

Example of Regular and Genomic Recursions

Consider 4 animals with the following pedigree:

  

Animal Sire Dam
1 0 0
2 0 0
3 0 2
4 1 2

. 

The numerator relationship matrix is

  A =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥1 00 0 00 0 00 0 50
1 00 0 50 0 50

1 00 0 25
1 00

. . . .
. . .

. .
.symm

⎥⎥
⎥
⎥
⎥
⎥⎥

. 

Using equation [1] yields the following recursions:

  

Animal m P
1 1 00
2 1 00 0 0
3 0 75 0 0 0 5
4 0 50 0 5 0 5 0 0

.      

. .    

. . .  

. . . .

. 

Those are the same values as in the Henderson algorithm, except that the values in t are shown explicitly. They 
point to the following recurrence equations (setting additive variance for simplicity to 1.0):

  

u

u

u u

1 1 1

2 2 2

3 2 3 3

1 00

1 00

0 50

= ( ) =
= ( ) =
= + ( )

ε ε

ε ε

ε ε

, var . ;

, var . ;

. , var ==

= + + ( ) =
0 75

0 50 0 50 0 504 1 2 4 4

. ;

. . , var . .

 and

u u u ε ε

 

If the recursion is used in the reverse order from youngest to oldest animal, the recursions are

  

Animal m P
1 0 667 0 000 0 333 0 000 0 667
2 0 600 0 000 0 000 0 400 0

. . . . .

. . . . .
−

4400
3 0 937 0 000 0 000 0 000 0 250
4 1 000 0 000 0 000 0 000 0 000

. . . . .

. . . . .

, 

with the new recurrence equations
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u u u

u u u
1 2 4 1 1

2 3 4 2

0 333 0 667 0 667

0 4 0 4

= − + + ( ) =
= + +

. . , var . ;

. . , var

ε ε

ε εε

ε ε

ε ε

2

3 4 3 3

4 4 4

0 600

0 25 0 937

1

( ) =
= + ( ) =
= ( ) =

. ;

. , var .

, var

u u

u

; and

.. .0

 

The coefficients with reverse ordering are no longer 0.5, although some coefficients still equal zero. The new 
recurrence equations have no clear meaning although they result in the same A−1.

Now assume that the genomic relationships are slightly different:

  G =

−⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

1 02 0 04 0 06 0 51
1 05 0 47 0 54

0 98 0 31
0 97

. . . .
. . .

. .
.symm

⎥⎥
⎥
⎥
⎥
⎥
⎥⎥

. 

Using the same formulas yields results in the following genomic recursions:

  

Animal m P
1 1 020
2 1 048 0 039
3 0 764 0 076 0 451
4 0 414 0 51

.      

. .    

. . .  

. .

−

88 0 517 0 036. .

. 

The new recurrence equations are

  

u

u u

u u

1 1 1

2 1 2 2

3 1

1 02

0 039 1 048

0 076

= ( ) =
= − + ( ) =
=

ε ε

ε ε

, var . ;

. , var . ;

. ++ + ( ) =
= + +

0 451 0 764

0 414 0 518 0 0306
2 3 3

4 1 2 3

. , var .

. . .

u

u u u u

ε ε ; and

++ ( ) =ε ε4 4 0 414, var . .

 

Example for an Algorithm Based on Decomposition for Young and Proven Animals

Assume 7 animals are genotyped for 10 SNP and have the following matrix of genotypes:

  Z =

− − −
− − −

− −
− − − −

− −

1 0 1 0 1 1 0 0 0 1
0 1 1 1 1 1 0 0 0 1
1 0 1 0 1 0 1 1 1 1
0 1 0 0 1 1 1 0 0 1
1 0 11 1 1 0 1 1 1 1
0 1 1 0 1 0 0 1 1 1
1 1 1 1 0 1 1 0 0 1

−
− − − −

− − − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

. 

The genomic relationship matrix constructed according to VanRaden (2008) is
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G ZZ= ′ =

− − −
− −

/

. . . . . . .

. .

q

0 795 0 318 0 000 0 477 0 636 0 159 0 318
0 318 0 955 00 159 0 318 0 000 0 636 0 477
0 000 0 159 1 114 0 159 0 159 0 1

. . . . .
. . . . . .

−
− − − 559 0 000

0 477 0 318 0 159 0 795 0 477 0 159 0 318
0 636 0 000 0

.
. . . . . . .
. .

− − − −
.. . . . .

. . . . . .
159 0 477 1 273 0 477 0 159

0 159 0 636 0 159 0 159 0 477 0 9
− −

− − − 555 0 159
0 318 0 477 0 000 0 318 0 159 0 159 1 114

−
− − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

.
. . . . . . .

⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

 

where q = 6.29, which was chosen arbitrarily for a mean diagonal of 1.0. The inverse is

  G− =

− − −

1

12 229 14 726 1 704 2 121 12 225 12 902 2 114
14 726 23 208

. . . . . . .

. . 22 269 4 877 17 428 19 874 3 996
1 704 2 269 1 191 0 200 1 817

. . . . .
. . . . .

− − −
− − −−

− − − −
−

1 834 0 426
2 121 4 877 0 200 3 199 3 930 4 208 0 530

12 225

. .
. . . . . . .
. −− − −

− − −
17 428 1 817 3 930 14 774 15 553 2 742

12 902 19 874 1 834 4
. . . . . .

. . . .. . . .

. . . . . . .
208 15 553 18 379 3 225

2 114 3 996 0 426 0 530 2 742 3 225 1
−

− − − 7786

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

. 

Assuming that observations are available for the first 5 animals,

  y = −[ ]31 856 46 657 6 941 34 636 51.571. . . . ,0 0  

the incidence matrix is

  D = [ ]( )diag 1 1 1 1 1 0 0 . 

Then the GBLUP equations are

(D + G−1)û = y, 

with solutions

  ̂ .. . . . . . .u = [ ]′− −10 962 23 830 5 688 7 958 29 040 4 893 9 151  

For the algorithm that decomposes the animals into proven and young,

RECURSION AND GENOMIC RELATIONSHIP MATRIX
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G− =

−
− −

1

3 154 0 837 0 429 0 858 1 309 0 0
0 837 1 505 0 242 0 414 0 60
. . . . .
. . . . . 44 0 0

0 429 0 242 0 999 0 202 0 264 0 0
0 858 0 414 0 202 2 200 0 371
. . . . .
. . . . .

−
− 00 0

1 309 0 604 0 264 0 371 1 612 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

− − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢ . . . . .
⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

+

− −
−
−

0 724 0 123
1 008 0 416
0 085 0 085
0 2

. .

. .

. .

. 559 0 171
0 844 0 010

1 0
0 1

.
. .−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

0.080 00
0

0 724 1 008 0 085 0 259 0 844 1 0
0 123 0 41

1

0.820

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− − −
−

−

. . . . .

. . 66 0 085 0 171 0 010 0 1

9 744 9 932 1 187 1 519 8

. . .

.   .   .     .   .

−

− −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

9977 9 083 0 150
9 932 14 478 1 359 3 604 11 297 12 657

− −
− − −

.   .
  . . .     .   .   .    .
.   .     .     .   .         .       .

0 508
1 187 1 359 1 098 0 056 1 164 1 065 0 104− − −
. . . . . . .
. .

− − −
− − −

1 519 3 604 0 056 3 077 3 113 3 250 0 208
8 977 11 297 1.. . . . .
. . . .

164 3 113 10 564 10 601 0 012
9 083 12 657 1 065 3 250 1

−
− − − 00 601 12 553 0

0 150 0 508 0 104 0 208 0 012 0 1 220
. .

. . . . . .− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.

 

Solutions from GBLUP with the new G−1 were identical.
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