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Background: The microalga H. pluvialis shows a distinct pattern of carbon repartitioning upon nitrogen starvation.
Results: Data-driven integrative modeling pinpoints metabolic adjustments underlying carbon repartition.
Conclusion: In vitro and in silico experiments can dissect the systemic response to nitrogen starvation.
Significance: Experimental data in conjunction with integrative modeling enables model-driven hypothesis testing.

The green alga Hematococcus pluvialis accumulates large
amounts of the antioxidant astaxanthin under inductive stress
conditions, such as nitrogen starvation. The response to nitro-
gen starvation and high light leads to the accumulation of car-
bohydrates and fatty acids as well as increased activity of the
tricarboxylic acid cycle. Although the behavior of individual
pathways has been well investigated, little is known about the
systemic effects of the stress response mechanism. Here we
present time-resolved metabolite, enzyme activity, and physio-
logical data that capture the metabolic response of H. pluvialis
under nitrogen starvation and high light. The data were inte-
grated into a putative genome-scale model of the green alga to in
silico test hypotheses of underlying carbon partitioning. The
model-based hypothesis testing reinforces the involvement of
starch degradation to support fatty acid synthesis in the later
stages of the stress response. In addition, our findings support a
possible mechanism for the involvement of the increased activ-
ity of the tricarboxylic acid cycle in carbon repartitioning.
Finally, the in vitro experiments and the in silico modeling pre-
sented here emphasize the predictive power of large scale inte-
grative approaches to pinpoint metabolic adjustment to chang-
ing environments.

Photosynthetic algae use light energy and carbon dioxide
(CO2) to generate and store chemical energy. Under imbal-
anced growth conditions, the carbon fixed by algae can be
directed toward compounds serving as storage reserves (e.g.
starch and lipids), which can be readily used to provide energy

and a carbon skeleton when needed (1–3). The composition of
these reserve molecules depends on the environmental condi-
tions and is interconnected with the content of other classes of
metabolite compounds (e.g. carotenoids) (4, 5).

The freshwater green microalga Hematococcus pluvialis has
been extensively studied due to its ability to accumulate the
valuable secondary metabolite astaxanthin (6). This ketocaro-
tenoid is a powerful antioxidant used as a food additive for
humans and as a colorant in aquaculture (7). Different stress
conditions, including high salinity, high irradiance, and nutri-
ent deprivation, induce the accumulation of astaxanthin to up
to 4% of the cell’s dry biomass (8, 9). However, the highest rate
of accumulation was observed under the combined stress of
nitrogen starvation and high light (HL)3 exposure (10). This
accumulation is accompanied by massive morphological and
metabolic changes (11), (e.g. the alga encysts and produces high
amounts of carbohydrates (CHs) and fatty acids (FAs), which
can reach up to 65 and 35% of the cell’s dry biomass, respec-
tively (6, 12). This behavior is unique in that most studied
microalgae accumulate either FAs or CHs, but not both, when
exposed to stress.

The temporal patterns of change in the cell’s components
upon nitrogen starvation and HL indicate that CH accumula-
tion is an immediate response to the stress application, fol-
lowed by FA accumulation (12), probably at the expense of the
CHs. This observation suggests that the FAs are in part built
from starch degradation derivatives. Similar results have been
obtained in studies of species of the family Chlorellaceae; for
instance, under sulfur deficiency, lipid accumulation begins
with a reduction in stored starch (13), and in Chlorella
UTEX29, the number of lipid bodies increased while starch
granules decreased after 24 h of nitrogen deprivation (14).* This work was financially supported by the European Commission’s Sev-

enth Framework Program for Research and Technology Development
(FP7) projects GIAVAP and BIOFAT.

□S This article contains supplemental Information Sheets 1–7.
1 Both authors contributed equally to this work.
2 To whom correspondence should be addressed. Tel.: 972-8-6596795; Fax:

972-8-6596802; E-mail: sammy@bgu.ac.il.

3 The abbreviations used are: HL, high light; CH, carbohydrate; FA, fatty acid;
TAG, triacylglycerol; InDisMinimizer, integrated discrepancy minimizer;
�E, microeinsteins; DW, dry weight; Chl, chlorophyll; TCH, total carbohy-
drate; FVA, flux variability analysis; Tcar, total carotenoid.

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 289, NO. 44, pp. 30387–30403, October 31, 2014
© 2014 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.

OCTOBER 31, 2014 • VOLUME 289 • NUMBER 44 JOURNAL OF BIOLOGICAL CHEMISTRY 30387

 at IN
R

A
 Institut N

ational de la R
echerche A

gronom
ique on M

ay 6, 2019
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


Several studies have investigated the interplay of FA and CH
biosynthesis and its regulation in microalgae, often with the aim
of enhancing oil accumulation in the cell (15–20). For example,
it was shown that inactivation of ADP-glucose pyrophosphory-
lase in a Chlamydomonas starchless mutant can lead to a
10-fold increase in triacylglycerol (TAG) (21); however, these
findings are still being debated (3). Recently, increasing atten-
tion has been given to carbon partitioning under different stress
conditions (12–14, 21). Nevertheless, the interplay between
carbon pools in microalgae is not entirely resolved.

Furthermore, during the stress response H. pluvialis exhibits
an increased activity of the tricarboxylic acid (TCA) cycle. For
the green alga Chlamydomonas reinhardtii as well as plants, it
has been proposed that FA biosynthesis can be promoted by the
enhanced activity of the TCA cycle (22–24). Moreover, in
Hematococcus lacustris, transcriptome analysis of the response
to high irradiance and nutrient starvation revealed a general
increase in respiration transcripts (i.e. glycolysis, TCA cycle,
electron transport, phosphorylation) during astaxanthin accu-
mulation (25). Although the TCA cycle is known to function as
an essential component of the respiratory metabolism contrib-
uting to the generation of energy in the cell (26), its exact
involvement in the stress response remains elusive.

The temporal changes in the cell’s major components and
activity patterns suggest concerted repartitioning of the carbon
pools and activation of the TCA cycle in response to environ-
mental cues. This observation of a system-wide response rein-
forces the need to provide a system-based understanding of the
metabolic regulation and constraints involved in the response
of H. pluvialis to stress. One promising approach to tackling
this task is metabolic profiling, which provides a snapshot of the
metabolic status of a cell. As endogenous (e.g. developmental
cues) and exogenous (e.g. environmental cues) factors induce
perturbations at the levels of gene expression, post-transcrip-
tional/post-translational regulation, and enzyme activity, these
processes lead to a concerted shift in the metabolic status of the
cell. When integrated with enzyme data, metabolite profiling
can reveal the activity in parts of the metabolic network (27).
However, only a few investigations on metabolomic and enzy-
matic data integration have been conducted in microalgae (23,
28, 29), and a systems-based study of the carbon-nitrogen
metabolism in response to nitrogen starvation under HL in
H. pluvialis is still lacking.

In the present study, we explored the metabolic regulation
and constraints of carbon partitioning under nitrogen starva-
tion and HL in H. pluvialis. We integrated metabolite and
enzyme activity data from H. pluvialis with the aim of generat-
ing a systems description of the microalga’s metabolism. In
addition, recent methodological developments have high-
lighted the possibility of predicting flux distributions and other
molecular phenotypes by integrating experimental data with
large scale metabolic models (30). We therefore developed a
putative genome-scale model for H. pluvialis by extending the
existing model of Chlamydomonas to allow the integration of
data about the cell’s physiology (e.g. FA, astaxanthin, and
starch) and enzyme activities. The resulting genome-scale net-
work reconstruction (31) was employed in combination with a
novel constraint-based modeling approach termed integrated

discrepancy minimizer (InDisMinimizer) to investigate the fol-
lowing two questions. (i) Is starch degraded to supply carbon
skeletons as precursors for the nitrogen starvation-induced FA
synthesis? (ii) Does increased activity of the TCA cycle support
FA biosynthesis? The results are discussed in the framework of
the current knowledge on algal metabolism and its regulation
under stress.

EXPERIMENTAL PROCEDURES

Organism and Growth Conditions—H. pluvialis Flotow
1844em.Wille K-0084 was obtained from the Scandinavian
Culture Center for Algae and Protozoa at the University of
Copenhagen. The culture medium was BG-11 (32), modified
according to Boussiba and Vonshak (6).

Algal Cultures—H. pluvialis was cultured as described previ-
ously (33). Cultures of green (non-flagellated) cells were first
cultivated for 5 days in mBG-11 medium at an irradiance of 75
�E m�2 s�1. Exponentially growing cells were washed in dou-
ble-distilled water and then resuspended in nitrogen-free
mBG-11 medium at a concentration of 2 � 105 cells ml�1. To
induce a rapid stress response to nitrogen depletion, cultures
were exposed to a HL intensity of 350 �E m�2 s�1 (10). The
culture was held under these stress conditions for either 48 or
96 h, as specified below.

Measurements of Growth Parameters and Pigment Content—
Samples were taken at 0, 6, 12, 24, 36, and 48 h after the stress
application for the 48-h exposure and at 0, 24, 48, 72, and 96 h
for the 96-h exposure to the stress conditions. The growth
parameters: dry weight (DW), cell count, chlorophyll (Chl), and
total carotenoid contents, were measured as described previ-
ously (6). However, DW determination was slightly modified,
and the filters were dried in a microwave oven (Lenco model
LMW-1826) at power level 3 for 8 min. Cell size was deter-
mined microscopically (Axioskop 1 (Zeiss) connected to an
Olympus DP70 digital camera). Protein content was deter-
mined by the BCA method according to Smith et al. (34).

Total Sugar Determination—Total carbohydrate (TCH) con-
tent was determined by the anthrone method (35, 36) with spe-
cific modifications for H. pluvialis (12). Biomass (200 �g) was
centrifuged at 16,000 � g, and the supernatant was discarded.
Residues were then hydrolyzed in boiling H2SO4 for 10 min.
Once cooled to room temperature, 1 ml of anthrone reagent
(35, 36) was added to all samples and incubated at room tem-
perature for 30 min, and absorbance was read in a spectropho-
tometer at 625 nm. Samples were then quantified by compari-
son with a calibration curve made from glucose under the same
conditions.

Analysis of FA Composition and Content—Transmethylation
of biomass, and quantification and qualification of FAs were
determined as described by Zhekisheva et al. (33). Transmeth-
ylation of FAs was performed by incubating freeze-dried bio-
mass in dry methanol containing 2% (v/v) H2SO4 at 80 °C for
1.5 h under argon atmosphere and continuous stirring. Hepta-
decanoic acid (C17:0; Sigma-Aldrich) was added as an internal
standard. FA methyl esters were quantified and qualified on a
Trace GC Ultra (Thermo, Italy) equipped with flame ionization
detector and programmed temperature vaporizing injector.
The detector temperature was fixed at 280 °C, and helium was
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used as the carrier gas. The programmed temperature vaporiz-
ing injector was programmed to increase the temperature from
40 °C at time of injection to 300 °C at time of sample transfer.
Separation was achieved on a fused silica capillary column (ZB-
WAX�, Phenomenex, 30 m � 0.32 mm). FA methyl esters
were identified by co-chromatography with authentic stan-
dards (Sigma-Aldrich).

Enzyme Activity Measurements—For routine measurements,
samples (�50 mg DW) were collected and centrifuged (4000 �
g, for 5 min), supernatants were removed, and pellets were
immediately frozen in liquid nitrogen and stored at �80 °C.
Prior to extraction, samples were resuspended in extraction
buffer (27) without detergent to prevent cell breakdown and
were then subaliquoted into fractions of �2 mg DW. After cen-
trifugation (4000 � g, for 5 min), the supernatant was removed,
and samples were ground and stored at �80 °C. Extraction was
then performed as described by Gibon et al. (37). Enzyme activ-
ities were determined as follows: pyruvate kinase (EC 2.7.1.40)
and phosphoenolpyruvate carboxylase (EC 4.1.1.31) according
to Gibon et al. (27); citrate synthase (EC 2.3.3.1), NAD-depen-
dent isocitrate dehydrogenase (EC 1.1.1.41), succinyl-CoA syn-
thetase (EC 6.2.1.4), and NAD-dependent malate dehydrogen-
ase (EC 1.1.1.37) according to Nunes-Nesi et al. (38); aconitase
(EC 4.2.1.3) according to Piques et al. (39); and NADP-depen-
dent malic enzyme (ME; EC 1.1.1.38) according to Gerrard
Wheeler et al. (40). Measurements were performed for two dif-
ferent setups. In setup 1 (48 h), 10 enzymes were measured in
two independent experiments (A and B) with four biological
replicates each, and in setup 2 (96 h), 21 enzymes were mea-
sured in four independent experiments (C–F) with four biolog-
ical replicates. A detailed list of the enzymes measured under
each setup can be found in supplemental Information Sheet 1.

Sample Extraction for Metabolite Profiling—Samples (�15
mg DW) were collected and centrifuged (4000 � g, for 5 min),
and the supernatant was discarded. The cells were immediately
frozen in liquid nitrogen and stored at �80 °C until extraction.
Metabolite extraction followed an established protocol (41)
optimized for algal cells. In short, samples were ground using a
miniature bead beater (BioSpec Products Inc.) and 2.5-mm
glass beads for 6 min with 700 �l of 100% methanol mixed with
internal standard (8.4 �l of D-[UL-13C6]glucitol (Cortecnet
Corp., catalogue no. ALD-053, from a stock of 10 mg ml�1 for
each sample)). Sorbitol was used instead of ribitol to enhance
standard resolution. The samples were then centrifuged at
14,000 � g for 10 min. To separate the polar water-soluble
phase from the apolar lipid phase, chloroform and double-dis-
tilled water were added to a final ratio of 1.5:1.4:0.75 water/
methanol/chloroform, respectively. Samples were then centri-
fuged (4000 � g for 10 min), and 200 �l of the upper phase with
methanol/water was moved to an Eppendorf tube and dried in a
SpeedVac concentrator for 7 h at room temperature. Samples
were then stored at �80 °C until analysis.

Derivatization and Analysis of Primary Metabolites Using
GC-MS—Extracted material was derivatized by a GC-MS tech-
nique according to the protocol described by Lisec et al. (41).
Chromatographic separation was carried out on a Thermo Sci-
entific DSQ II gas chromatograph/mass spectrometer using a
FactorFour Capillary VF-5ms column, and chromatograms

were analyzed using TagFinder04 software version 1.0 (42).
Metabolites were annotated by comparison with mass spectra
in the Golm database (43). All four biological replicates were
analyzed for each condition.

Multivariate and Statistical Analyses—Prior to the analysis,
data were normalized to the median of each metabolite over the
entire sample set and log-transformed. Cluster analysis was
performed based on the PAM (partitioning around medoids)
algorithm (44) using the “cluster” package in the R statistical
computing environment, version 3.0.2. The distance matrix
was calculated by using 1 � r2, where r is the Pearson correla-
tion coefficient. The number of clusters k was identified as the
square root of n/2, where n is the total number of elements used
(metabolites and enzymes). The compounds were ordered
according to classes: enzymes, sugars and alcohols, amino acids
and nitrogen compounds, carboxylic acids, others. Differences
between means were tested for significance using Student’s t
test.

Computational Approach—The state of the art approach for
modeling genome-scale network reconstruction is constraint-
based optimization (i.e. flux balance analysis) (31). This method
has the advantage that it only needs the stoichiometry of the
participating reactions (represented in the stoichiometric
matrix S), lower and upper boundaries for the respective fluxes,
and an optimization goal (i.e. objective, whose coefficients are
captured in the vector c) as input to predict steady-state flux
distributions that are thermodynamically feasible and mass-
balanced. No knowledge of initial metabolite concentrations or
kinetic parameters is required. The generic problem formula-
tion results in a linear program, which can be efficiently solved
as follows.

max c � v (Eq. 1)

s.t. S � v � 0 (Eq. 2)

v lb � v � vub (Eq. 3)

To improve the predictive power, a large set of methods that
integrate experimental data has been derived, which is
described elsewhere (30). Below, we detail aspects of our mod-
eling approach.

Integration of the External Conditions—The genome-scale
model on which our analysis was based explicitly accounts for
different light qualities and quantities (i.e. the effect of different
light sources and intensities on the metabolic behavior of the
cell can be simulated). For our in silico experiments, the light
source was set to white fluorescent light with an intensity of 350
�E m�2 s�1, according to the wet laboratory experiments. To
approximate how much of the emitted photons are actually
absorbed by the organism, we followed the approach presented
by Chang et al. (45) and used an effective and dimensional pho-
ton flux conversion factor (see also supplemental Information
Sheet 2). The effective photon flux conversion considers the
fact that not all light incident on a cell is available for sustaining
metabolism, but it may also be reflected or scattered. To
approximate this factor, we compared the experimentally
measured O2 evolution in dependence of the light intensity
with the simulated curve and found 80% of the maximum pho-
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tosynthetic activity to be achieved at �1000 �E m�2 s�1 (46).
The effective photon conversion factor was then determined as
follows.

ConversionEff �
145 mE/g DW/h

1000 �E/m2/s � ConversionDim

� 0.0375 effective/incident photon flux (Eq. 4)

The dimensional photon flux conversion factor includes cell
parameters, such as cell diameter and DW. We explicitly
accounted for cell growth during the stress application by
deriving a time-dependent dimensional conversion factor,
based on an approximated minimum and maximum cell diam-
eter for each time point (see supplemental Information Sheet
2). The time-dependent dimensional photon flux conversion
factor was then derived as follows.

ConversionDim �
cross-sectional area

dry weight
�

3600 s

h
�

1 mE

1000 �E

(Eq. 5)

To mimic internal nitrogen recycling during the nitrogen star-
vation stress, we allowed a maximum nitrogen uptake of
0.25e�7% of the upper flux boundary of the nitrogen-contain-
ing medium.

Integration of Sink Reactions and Derivation of Experimental
Flux Values—We modeled the measured physiological param-
eters, including total carotenoid (Tcar), protein, TCH, Chl, and
total fatty acid (TFA), as sums over several metabolites that
were allowed to accumulate in the model. These metabolites
were categorized into five groups: (i) astaxanthin (accumula-
tion of other carotenoids can be neglected (11)); (ii) all 21 amino
acids; (iii) carbohydrates (all sugars that form biomass in the
model (i.e. mannose, arabinose, and galactose) as well as
starch); (iv) Chl (Chl a and b); and (v) FAs. For the last group, we
used all metabolites in the model that are associated with the
metabolic pathways of “FA biosynthesis,” “FA elongation in
mitochondria,” “FA metabolism,” and “biosynthesis of unsatu-
rated FAs.” A complete list of all sink metabolites can be found
in supplemental Information Sheet 3. All physiological meas-
urements (in g liter�1) were converted to rates (mmol g DW�1

h�1) as follows. We determined the mean value of all replicates
of each experiment and divided it by the mean DW for each
time point of the time course. For the compounds with
unknown molecular weight, estimations were provided. For
instance, for the protein content, we assumed an average num-
ber and molecular weight of amino acids per protein. The aver-
age molecular weight of the FAs was approximated by using
measured ratios of the main FA constituents. A detailed list of
the estimated ratios can be found in supplemental Information
Sheet 4. These values were then converted to rates by consid-
ering the changes between adjacent time points and calculating
the mean value for each two adjacent rates. For the first time
point, we used the rate determined from the data for the time
points zero and one; for the last time point, we used the rate
determined from the data for the second to last and last time
point. Furthermore, we used the measured enzyme activity data
as a proxy for the flux through the respective reaction.

InDisMinimizer—The derived time-dependent flux estima-
tions were integrated by minimizing the discrepancy between
data and predictions (InDisMinimizer). The problem definition
results in the following quadratic optimization problem for
each time point,

min �
i � measured

���i,t��22 (Eq. 6)

s.t. S � vt � 0 (Eq. 7)

v lb � vt � vub (Eq. 8)

vi,t � vi,t
measured,t � �i,t, (Eq. 9)

where vt is the flux distribution at time t; vi,t, vi,t
measured, and �i,t

are the predicted fluxes, the flux estimated from the data, and
the corresponding error term for the reaction i � measured,
respectively, and �.�2

2 denotes the second norm squared. Equa-
tion 7 gives the mass-balance constraints of the metabolic
model, Equation 8 denotes the default lower and upper flux
boundaries, and Equation 9 captures the relationship between
the predicted and the estimated fluxes. The latter allows for an
error term that might arise from experimental error or the
errors in the derived rates. Because the flux constraints that
were derived from the physiology data are 2 orders of magni-
tude lower than the flux constraints derived from the enzymol-
ogy data, we introduced a relative weighting with an �-scaling
factor of 100. In doing so, we ensured that all deviations
between data and predictions are weighted equally. Moreover,
our problem formulation assumed a steady state at each time
point. Because the integrated data cover a time period of 0 –96
h after the shift in nutrients and light intensity, we can assume
that the system is in a pseudoequilibrium. This is based on the
observation that metabolic changes usually happen on a minute
time scale (47). The commercial solver MINOS was used to
solve the resulting quadratic optimization problems.

Flux Variability Analysis (FVA)—FVA (48) is an approach
that allows determination of the variability of the predicted
fluxes for a given flux balance analysis solution. To this end, the
lower and upper flux values for each reaction of the network
under consideration are determined while still imposing the
original constraints and the optimal value for the used objec-
tive. The resulting values provide a range of flux values for each
reaction of the network that is compliant with the overall con-
straints. Therefore, on the one hand, FVA can assess the extent
to which a predicted flux distribution can be used in testing and
verifying a hypothesis. For instance, if the flux range of a revers-
ible reaction of interest is between 1 and 2, we know that the
reaction can only proceed in the forward direction, whereas, if
we observe a flux range between �1 and 2, we cannot rule out
the possibility that the reaction proceeds in the backward direc-
tion. On the other hand, results from FVA provide insights into
flux capacities exhibited by a single reaction or pathway under
given constraints. One application is to test the influence of one
parameter in the model on a reaction of interest. For example, if
changing a certain nutrient’s uptake rate results in a larger
upper flux value for a reaction of interest, there exists a positive
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influence of the increased uptake rate on the maximum flux
through that reaction.

Variability Flux Sampling—Flux Variability Analysis is a use-
ful tool to determine upper and lower flux values for reactions
of interest, but it cannot be used to make statements about the
likelihood of a certain flux value to be achieved. To address this
problem, we here use a novel approach, termed variability flux
sampling, in which we compute probability distributions of flux
values based on a random flux value sampling. The method
consists of two steps. First, for all reactions of interest, we ran-
domly chose a flux value from the previously determined FVA
interval. Because the fluxes are mutually dependent, one cannot
guarantee that the set of randomly selected flux values for these
reactions fulfills the optimality requirement or even the steady-
state constraint. Therefore, in the second step, we use the pre-
viously determined constraints (i.e. optimality with respect to
the minimized discrepancy from the data integration and
steady state) together with the randomly selected set of flux
values from the first step, and we minimize the Euclidian dis-
tance between the sampled set of flux values and a feasible set of
flux values. In other words, given a randomly chosen set of flux
values within the feasible flux boundaries, we determine a set of
feasible flux values that is closest to the random set and fulfills
the optimality constraints. Repeating this procedure many
times results in a distribution of flux values for every reaction.
The corresponding optimization problem can be cast as a quad-
ratic problem with non-linear constraints,

min �
j � R

���j,t��22 (Eq. 10)

s.t. S � vt � 0 (Eq. 11)

v lb � vt � vub (Eq. 12)

vi,t � vi,t
measured,t

� � i,t � i � M (Eq. 13)

�i � M��� i,t��2
2 � MinDistt (Eq. 14)

vj,t � vj,t
r,t � � j,t � j � R, (Eq. 15)

where Equations 11–13 are the constraints from the InDis-
Minimizer, Equation 14 assures overall optimality with respect
to the results from the InDisMinimizer, and Equation 15
describes the relationship between the randomly sampled flux
vj,t

r,t, the feasible flux vj,t, and the deviation term �j,t, where R
denotes the set of reactions for which randomized flux values
are sampled from the corresponding FVA intervals. Note the
difference between the error term � which describes the devi-
ations from the experimental data, and the deviation term �,
which denotes the deviation from the randomly sampled flux
value. For the set of the seven reactions of interest, we repeated
this analysis 20 times for every time point and each experiment,
resulting in altogether 3200 sampling and optimization steps.

RESULTS

Changes in Metabolic Status Caused by Nitrogen Starvation
under HL

Cultures of 5-day-old vegetative green H. pluvialis cells were
inoculated into a nitrogen-free medium under continuous light

of 350 �E m�2 s�1. The combination of nitrogen deprivation
and HL exposure was used to facilitate stress response (10).
Cells were harvested every 6 or 12 h throughout the 48 or 96 h
of exposure to stress. Metabolite data were only collected
throughout the 48-h experiments, and the results of the physi-
ological, metabolite, and enzyme activity data for these experi-
ments are described below.

At time 0, the non-flagellated round palmelloid had an aver-
age diameter of 24.7 �m. During the 48 h of stress, cells trans-
formed into red cysts, and their average diameter increased to
36.5 �m (p � 0.001). Their number remained stable at 2.5 � 105

cells ml�1 (p � 0.625) throughout the experiment. The DW
increased significantly (p � 0.001) from 0.5 g liter�1 at time 0 to
1.9 g liter�1 after 48 h (Fig. 1A). Chl content remained stable at
12 mg liter�1 for the first 12 h and then decreased significantly
(p � 0.001) to 6.1 mg liter�1 after 48 h (Fig. 1A). Volumetric
protein content (Fig. 1B) remained stable at 0.13 g liter�1

throughout the whole experiment; however, as an outcome of
the increase in DW, the relative protein content in biomass
decreased strongly (p � 0.012) from 28 to 10.8% of DW during
the first 12 h and then slowly but significantly to 7% (p � 0.006)
after 48 h (Fig. 1C). As reported previously (12), TCH content
peaked after 24 h (p � 0.004) both in volumetric (from 0.2 g
liter�1 at time 0 to 1.2 g liter�1 after 24 h) and relative content
(from 40% of DW at time 0 to 74% after 24 h). However, after
36 h, TCH content had decreased significantly (p � 0.020) (to
1 g liter�1 and 54% of DW) and remained at this level through-
out the rest of the experiment. TFA content gradually increased
from 8% of DW at time 0 to 13% after 24 h (p � 0.012) and
further to 28% after 48 h (p � 0.014) (Fig. 1C). Tcar content
increased (p � 0.001) from 2.4 mg liter�1 (0.6% of DW) at time
0 to 76.5 mg liter�1 (4.2% of DW) after 48 h (Fig. 2A). The major
carotenoids at time 0 in H. pluvialis were lutein, 	-carotene,
violaxanthin, and neoxanthin, which amounted to 48.7, 21.3,
21.2, and 8.8% of Tcar, respectively (Fig. 2B). After 6 h of expo-
sure to nitrogen starvation and HL stress, carotenoid composi-
tion changed dramatically with a strong increase (p � 0.001) in
astaxanthin content from 0 to 45.4% of Tcar, whereas all other
major carotenoids decreased (p � 0.001) by half. After 24 h of
stress, astaxanthin content dominated carotenoid composition
with 92.6% of Tcar and after 48 h reached 97.7% of Tcar (Fig.
2B).

To dissect the central metabolic processes and carbon parti-
tioning to FA metabolism in response to nitrogen starvation
under HL, samples were analyzed by an established GC-MS
protocol and GC-flame ionization detector. We identified alto-
gether 63 FAs and metabolites of the central metabolism (Fig. 3;
for detailed values, see supplemental Information Sheet 1).

All sugar metabolites gradually increased after stress appli-
cation, with the exception of maltotriose and raffinose, which
peaked after 12 h of stress exposure and then gradually
decreased. Maltotriose, a starch degradation product, signifi-
cantly (p � 0.001) increased 4.5-fold during the first 12 h and
then significantly (p � 0.001) decreased to its original content
after 24 h and further to 0.7-fold its initial content after 48 h
(p � 0.041). Raffinose increased significantly (p � 0.001)
10-fold within the first 12 h; however, after 24 h, it decreased
strongly (p � 0.001) to half its peak content and continued
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decreasing (p � 0.019) to 3.6-fold its initial value after 48 h (Fig.
3). Glycerol content increased significantly (p � 0.003), peaking
after 24 h with a -fold change of 35.6, and remained high for the
following 24 h, in accordance with the observed TFA accumu-
lation (Figs. 1 and 3).

Within the first 6 h, the content of the amino acids Lys, Pro,
and Thr decreased significantly to 0.35-fold (p � 0.005), 0.68-
fold (p � 0.016), and 0.56-fold (p � 0.014) their initial values,
respectively; however, after 12 h, the levels returned to their
original values and in some cases even increased further (Fig. 3).
Other amino acids, including Met, Cys, and Asn, significantly
increased, with -fold changes of 6.6 (p � 0.007), 15.3 (p �

0.025), and 8.2 (p � 0.001), respectively, after 48 h of stress
exposure (Fig. 3). Glu and Asp showed a decrease after 6 h to
0.2-fold (p � 0.001) and 0.19-fold (p � 0.015) their initial con-
tent, respectively. After 12 h, Glu remained at 0.4-fold its initial
content, whereas Asp increased slightly (p � 0.013) and even-
tually reached 0.64-fold its initial content. Remarkably, GABA
showed the strongest increase with a -fold change of 5.5 after
6 h (p � 0.015), 44.9 after 24 h (p � 0.015), and 59.3 (p � 0.012)
after 48 h (Figs. 3 and 4).

FAs generally increased during the 48 h of stress exposure,
and changes in composition occurred. The most significant
increase was observed in oleic acid (C18:1w9), with a -fold
change of 33.8 after 24 h (p � 0.013) and a total -fold change of
99.6 after 48 h (p � 0.005) (Fig. 3 and Table 1).

Enzyme activities were measured to further explore the alter-
ations in the central carbon-nitrogen metabolism (Fig. 4). The
patterns of change in both enzyme activity and metabolite
abundance indicated a general enhancement of the TCA cycle
and of the metabolic processes closely associated with it. Nev-
ertheless, the TCA cycle did not act as one coherent unit;
rather, different patterns were evident. The first pattern
included phosphoenolpyruvate carboxylase, ME, and malate
dehydrogenase, which all increased in activity during the first
12 h, followed by a decrease after 36 h and a subsequent activity
peak after 48 h (Fig. 4). For example, ME activity increased

FIGURE 1. Changes in H. pluvialis cultures under nitrogen starvation
and high light stress for 48 h. A, cell DW and chlorophyll. B, TFA, TCH, and
protein contents in volumetric units. C, as in B but reported as relative
contents.

FIGURE 2. Changes in carotenoid content under nitrogen starvation and
high light stress in H. pluvialis throughout 48 h. A, Tcar in volumetric and
relative content. B, carotenoid composition presented as a percentage from
Tcar.
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significantly with a -fold change of 4 (p � 0.008) during the first
12 h and then decreased to a -fold change of 1.5 (p � 0.011) after
36 h and increased again to a -fold change of 6.9 (p � 0.001)
after 48 h. The metabolites associated with these enzymes
included pyruvate and the TCA cycle intermediates malate,
fumarate, and succinate. Pyruvate increased stepwise with -fold
changes of 3.6 after 6 h (p � 0.025) and 8.5 after 36 h (p � 0.012).
Malate gradually increased (p � 0.001) throughout the experi-
ment, with a 2.4-fold change after 48 h. Fumarate and succinate
exhibited a response pattern similar to that of malate, with a
strong accumulation of succinate up to a level of 10 times its
initial content after 48 h (p � 0.006).

The second pattern observed included citrate synthase and
aconitase. The activity of both enzymes increased gradually

(p � 0.001) in the first 36 h and peaked after 48 h (p � 0.001).
Citrate, the intermediate metabolite between citrate synthase
and aconitase, decreased significantly to 0.5-fold its initial con-
tent within the first 24 h (p � 0.002) and subsequently returned
to its initial level after 48 h.

The activity of succinyl-CoA synthetase remained stable dur-
ing the first 36 h and then slightly but significantly increased
after 48 h (p � 0.009), hardly explaining succinate’s response
pattern. Isocitrate dehydrogenase activity remained constant
during the first 12 h of stress exposure and then increased, with
a -fold change of 2.8 after 24 h (p � 0.003), followed by a
decrease to a -fold change of 1.4 after 36 h (p � 0.001) and then
another increase to 2.9-fold of its initial value after 48 h (p �
0.002).

FIGURE 3. Simplified scheme of the major carbon-nitrogen metabolism in H. pluvialis and the changes in identified metabolites and fatty acids
throughout 48 h of nitrogen starvation and high light. -Fold changes are represented as heat maps. Increase (red) and decrease (blue) in the cellular
metabolite’s content are indicated. Time points from left to right are 0, 6, 12, 24, 36, and 48 h.
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FIGURE 4. Changes in identified TCA cycle intermediates in H. pluvialis throughout 48 h of nitrogen starvation and high light. -Fold changes in
metabolite content are represented as bar charts, and enzyme activities are shown as scatter charts. Time points from left to right are 0, 6, 12, 24, 36, and 48 h.

TABLE 1
Changes in major fatty acid composition in H. pluvialis under nitrogen starvation and high light stress
Shown are -fold changes in fatty acid (lipid number nomenclature) content with respect to time 0. Values are normalized by cell number.

Time
Fatty acid composition

16:0 16:1 16:3 16:4 18:1w9 18:2 18:3w6 18:3w3 18:4w3

h
0 1 	 0.05 1 	 0.00 1 	 0.08 1 	 0.02 1 	 0.16 1 	 0.03 1 	 0.03 1 	 0.01 1 	 0.01
6 1.8 	 0.04 1.4 	 0.06 7.5 	 0.3 1.9 	 0.01 6.5 	 0.18 1.5 	 0.02 2.4 	 0.17 2.5 	 0.01 1.9 	 0.07
12 3.3 	 0.04 1.4 	 0.04 11.4 	 0.37 3.2 	 0.00 16.2 	 0.04 2.9 	 0.01 3.4 	 0.08 4.5 	 0.00 3.7 	 0.02
24 5.4 	 1.06 1.0 	 0.40 17.0 	 1.70 4.2 	 0.91 33.8 	 5.43 4.9 	 1.03 4.6 	 0.66 6.1 	 0.80 6.4 	 1.02
36 8.4 	 0.34 0.6 	 0.12 21.5 	 0.75 4.9 	 0.18 60.2 	 2.16 7.8 	 0.26 5.7 	 0.13 8.2 	 0.21 9.4 	 0.29
48 13.4 	 0.63 0.9 	 0.16 32.7 	 1.24 6.9 	 0.35 99.6 	 4.91 12.8 	 0.61 8.9 	 0.44 12.9 	 0.58 15.1 	 0.71
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Integrated Cluster Analysis of the Enzyme Activity and
Metabolite Data

Integrating two data sets generated from different analytical
platforms is a challenge that can produce biologically inconsis-
tent results (49). Nevertheless, it is one of the available tools to
suggest potentially common behavior and underlying mecha-
nisms of regulation. To test the occurrence of statistically coor-
dinated patterns of change, cluster analysis was applied to the
metabolite and enzyme activity data sets following the PAM
algorithm (see supplemental Information Sheet 5). The cluster
analysis resulted in five clusters of low average silhouette indi-
ces (a clustering quality measure), indicating a relatively weak
affiliation of the elements with their respective cluster. The only
cluster displaying a relatively high silhouette index (cluster 3)
included metabolites that increased in content during the 48-h
period and included non-glycolysis sugars, nitrogen-rich com-
pounds, and the TCA cycle intermediates fumarate and malate.
Interestingly, the only enzyme included in this cluster was
aconitase, a TCA cycle enzyme driving the conversion of
citrate to isocitrate via cis-aconitate. Despite its lower sil-
houette index, cluster 2 showed a coordinated pattern of
change between pyruvate kinase (the enzyme producing
pyruvate, the final product of glycolysis, on the one hand,
and the precursor of acetyl-CoA, the main supplier of carbon
to the TCA cycle, on the other hand), glycolysis sugars, the
TCA cycle intermediate succinate, and pyruvate itself. Clus-
ters 4 and 5, with relatively low silhouette indices and a small
number of members, displayed a close biochemical relation-
ship. Asp, Glu (cluster 5), and Ala (cluster 4) showed a sim-
ilar pattern of change throughout the experiment. So did Thr
(cluster 4), Ser (cluster 5), the branched-chain amino acid
Val (cluster 4), and Asp-derived Lys (cluster 4), except for
the last time point. These amino acids are closely connected
biochemically. Cluster 1 was composed of enzymes with the
exception of one sugar, alcohol xylitol.

Model Development and Constraint-based Data Integration

Integration of experimental data in large scale metabolic
models enables prediction and investigation of different molec-
ular phenotypes (see Lewis et al. (30) for a recent comprehen-
sive review). Here, we first described the model’s development
and how we integrated the available physiological and enzyme
activity data. We then used the model and the proposed data
integration approach to investigate biological questions of
interest. Because the genome of H. pluvialis has not yet been
assembled, we relied on modifying a recently published recon-
struction of Chlamydomonas, a model green alga of the same
order (45). Considering the list of pathways in MetaCyc (50)
that are associated with Chlamydomonas and those that are
associated with Hematococcus, we find an overlap of 99.4%;
therefore, the model serves as a good starting point for the
study. Moreover, the genome-scale model explicitly accounts
for different light qualities and light quantities. To enable the
integration of physiological characteristics specific for H. plu-
vialis, we included the astaxanthin pathway (see supplemental
Information Sheet 6), based on MetaCyc (50), and introduced
sink reactions for the measured physiological parameters

(e.g. CH and FA; see “Experimental Procedures” and supple-
mental Information Sheet 3). This manually curated putative
model of the metabolism of H. pluvialis included 1975
metabolites and 2622 reactions, of which 422 are sink reac-
tions for metabolites that are shown to accumulate during
the stress response.

We used two types of data to constrain the obtained model:
(i) parameters that describe the cell’s environment (i.e. the
experimental conditions) and (ii) measured physiological and
enzyme activity data, which we used to derive experimental flux
values (see “Experimental Procedures”). By integrating these
two types of experimental data, we were able to, on the one
hand, constrain fluxes into major biomass components and, on
the other hand, specifically constrain flux bounds of core
enzymes of the central carbon metabolism.

We set the light quality and quantity in the model to ade-
quately describe the experimental setting. Because the geomet-
ric parameters of the cell changed significantly during the stress
application (see “Changes in Metabolic Status Caused by Nitro-
gen Starvation under HL”), this needed to be explicitly consid-
ered when modeling the light absorption. We accounted for
this change in morphology by deriving a time-dependent
dimensional conversion factor, based on an approximated min-
imum and maximum cell diameter for each time point (see
“Experimental Procedures” and supplemental Information
Sheet 2). Nitrogen starvation was modeled as follows. Free
nitrogen uptake was limited to time point zero; for all other
time points, nitrogen uptake was blocked, and only internal
nitrogen recycling was allowed (see “Experimental Procedures”
for details of the implementation).

In the next step, to predict biologically meaningful flux dis-
tributions, we minimized the discrepancy between experimen-
tally estimated and predicted fluxes by using the InDisMini-
mizer approach. To this end, we minimized the discrepancy,
defined as the sum of squared weighted differences between all
experimentally derived and predicted fluxes, quantifying the
prediction error. For a detailed description of the computa-
tional approach, see “Experimental Procedures” and the sche-
matic overview in Fig. 5.

Altogether, we applied the InDisMinimizer to six different
biological replicates, each with four technical repeats. Experi-
ments A and B (setup 1) were monitored for 48 h and comprised
a set of 10 enzymes; experiments C–F (setup 2) were 96-h time
series comprising 21 enzymes. For a list of the measured
enzymes in both setups, see supplemental Information Sheet 7.
By using the proposed approach, we found a total error of
between 0.352 � 10�3 and 2.99 � 10�3 for each time series and
over all six experiments. To illustrate the agreement, Fig. 6
shows the experimentally derived and predicted fluxes for
all measured enzymes and physiological parameters for exper-
iment C. All predicted fluxes for reactions catalyzed by the
measured enzymes could be reproduced with high accuracy;
moreover, for all physiological parameters, except for the TCH
curve at the second and third time points, we found a good fit.
The fitted curves for the remaining experiments were of similar
quality.
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Flux Variability

To assess the predictive power of our approach, we next per-
formed FVA (48) for the same experiments. This method allows
determination of the variability of the fluxes from a flux balance
analysis solution by determining the minimum and maximum
flux through a given reaction that results in the same optimal
solution (i.e. minimum prediction error). If the integration of
different types of experimental data leads to less varying fluxes
than just one type of data or the generic flux bounds, the model
is better constrained and therefore of higher predictive power.
For instance, if two pathways lead to the same product, which is
accumulated at a certain rate, integrating measured flux values
for one pathway also narrows down the allowable flux range for
the second pathway. The results of the FVA and S.D. values over
all time points are given in Fig. 7. We divided the reactions into
four groups: those that showed little (�100 mmol g DW�1 h�1),
moderate (100–500 mmol g DW�1 h�1), high (500 –1000 mmol g
DW�1 h�1), and very high (
1000 mmol g DW�1 h�1) varia-
bility. For all six time points, we found more than 43% of all
reactions to have low variability, indicating that the network is
well constrained by the experimental data. We found between
33 and 39, 14 and 17, and 1 and 3% of the reactions to be in the
second, third, and fourth groups, respectively.

We repeated the analysis by only integrating the physiologi-
cal or enzyme activity data. Here we found only 32–35 and
35–37% of all reactions to be in the first group, respectively (Fig.
7). These results demonstrate the increase in predictive power
by integrating two types of data (global parameters, such as
TFA, TCH, and protein content, and activity rates of single
enzymes) and allow the use of this approach in model-based
testing of hypotheses. Moreover, the close fit between data and
predictions further illustrates the suitability of the model Chla-

mydomonas reconstruction to capture metabolic behavior that
is unique for Hematococcus.

Model-based Hypothesis Testing

Carbon Redistribution from Starch to FAs—We used our
setup to answer two biological questions. First, we addressed
the question of whether starch degradation can yield precur-
sors for de novo synthesis of FAs during the later stress
response, a hypothesis proposed by Recht et al. (12). We applied
the InDisMinimizer to two different scenarios, as illustrated in
Fig. 5. Scenario 1 allowed for starch accumulation into a virtual
pool over all time points; in addition, for the time points that
showed starch degradation in the experiment, we also allowed
for starch degradation into the system from the virtual pool.
Scenario 2 also allowed for starch accumulation at all time
points but not for starch degradation from the virtual pool back
into the system. Here, starch was only allowed to exit the cell
without being recycled into other building blocks. Fig. 8 shows
the overall discrepancy between the data and the simulation as
a sum over all time points for each biological replicate. Dark
and light green represent scenarios 1 and 2, respectively. For all
four replicates, scenario 1, which allowed for starch degrada-
tion, had a better fit, thus confirming the hypothesis that starch
degradation is used to support FA synthesis during the second
part of the stress response. Note that although the discrepancy
was small in both cases, scenario 1 had, on average, a 3.3% better
fit than scenario 2 for the two setups (i.e. 48 and 96 h). This
average value also included the initial time points when neither
scenario allowed for starch degradation from the virtual pool
and, therefore, had the same discrepancy value. Considering
the fact that altogether five physiological parameters as well as
10 or 21 enzymes (for setups 1 and 2, respectively) were fitted,

FIGURE 5. Schematic representation of the computational approach. Enzyme activity and metabolite data describing major physiological parameters were
measured during the time course of the experiment. A putative metabolic model for H. pluvialis was curated based on an existing model of Chlamydomonas.
The astaxanthin pathway, sink reactions for the integration of accumulating metabolites, and parameters describing the experimental setup were included.
The data-model integration was performed by minimizing the discrepancy between experimentally derived and predicted fluxes. Based on this setup, several
biological hypotheses can be tested, and alternative scenarios can be ruled out.
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the increase in quality of the fit can be regarded as considerable.
Furthermore, it is interesting to note that for setup 1 (i.e. 48 h),
which is constrained by partly different enzyme activity data,
the fits for scenario 1 performed over 5% better than those for
scenario 2.

To further validate the hypothesis, we investigated three flux
distributions based on the results of the InDisMinimizer. In this
second step, we kept the determined minimum discrepancy
between data and prediction fixed. Based on this overall best fit,
we investigated (i) the variability of the flux through malonyl-
CoA, the first reaction of the FA biosynthesis pathway; (ii) the
variability of the flux for the sum of fluxes through the entire FA
pathway; and (iii) the minimum discrepancy between the data
and simulation for the FA biosynthesis. For the latter, we kept
the best fit from the InDisMinimizer, and within the space of
optimal flux distributions, we chose those that gave the best fit
with respect to FA biosynthesis. The results of these computa-
tions are shown in Fig. 9. Bar plots in Fig. 9, A and B, are based
on the difference in flux variability between scenarios 1 and 2
(i.e. scenario 1 � scenario 2) in percentage of the total flux
variability with respect to scenario 1 and present the average
over the time points at which starch degradation was observed
in the experiment. The figure illustrates that for all experi-
ments, both the first reaction of the pathway and the whole

pathway itself had larger flux variability in scenario 1 than in
scenario 2, indicating that released building blocks from starch
degradation enable a larger flux through the FA pathways.
These findings highlight the connection between starch degra-
dation and de novo FA biosynthesis in the considered setting.
Finally, the bar plot in Fig. 9C shows the difference in deviation
between data and model predictions for scenario 2 with respect
to scenario 1 (i.e. scenario 2 � scenario 1) and demonstrates
that scenario 1 better describes the observed FA biosynthesis
rate than scenario 2. In summary, we can state that in all con-
sidered in vitro and in silico experiments, the model that allows
for starch degradation into the system performed better than
the model that does not allow for it. Altogether, these results
provided very strong model-based evidence that starch degra-
dation during the second stress response phase is a crucial
mechanism to support continued FA synthesis.

Carbon Redistribution from the TCA Cycle to FA Bio-
synthesis—We then investigated the following question: Can
the data-model integration support the hypothesis that malate
from the TCA cycle (which is shown to increase by the metab-
olite data) is transported from the mitochondria to the chloro-
plast, where it is converted to CO2 and pyruvate via ME? A
positive answer would indicate that pyruvate can serve as a
precursor for the chloroplast-based de novo FA synthesis. This

FIGURE 6. Results of the integrated discrepancy minimizer for experiment C. The model was used to determine flux distributions that minimize the weighted,
squared difference between measured and predicted fluxes. Shown are the time series of the experimentally derived and predicted fluxes for all physiological
parameters and all enzymes measured. Left panels, the rate for the experiment (Experiment). Right panels, the predicted rate in mmol g DW�1 h�1 (Simulation).
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mechanism would support the fact that under nitrogen starva-
tion and HL, TCA cycle activity increases to support a higher
FA synthesis rate. To investigate this hypothesis, we made use
of the predictions obtained from the InDisMinimizer and
investigated the possible fluxes through the reactions involved

in the proposed mechanism. For the reactions of interest, we
determined the range of allowed fluxes that result in the overall
best data fit. The results of this flux variability analysis are
shown in Fig. 10. The graphic illustrates the pathway from
malate, originating from the TCA cycle, to carbon fixation and
de novo FA biosynthesis in the chloroplast. The numbers rep-
resent the reactions involved. Their respective flux variability is
given in the left panel of each reaction. Given are the average
minimum and maximum flux values over all time points and all
six experiments with their respective S.D. values. The mito-
chondrial and plastidial malate transporters can carry a flux of
between 296.6 and 1440.9 and between 113.1 and 656.1 mmol g
DW�1 h�1, respectively. The three reactions involved in the
conversion from malate to acetyl-CoA can carry a flux of
between 0 and 729.3 mmol g DW�1 h�1 and allow for an overall
flux into acetyl-CoA of 491.0 mmol g DW�1 h�1 (the sum of the
smaller maximum flux value of reactions 3 and 4 and the max-
imum flux value of reaction 5, illustrated in Fig. 10). The flux
into carbon fixation can range between 0 and 175.5 mmol g
DW�1 h�1, and the flux to malonyl-CoA, an initial step of FA
biosynthesis, can range between 350.1 and 909.5 mmol g
DW�1 h�1. Taken together, these findings indicate that all of
the involved reactions can form a high flux pathway and sup-
port the proposed mechanism of malate integration via pyru-
vate in the de novo synthesis of FA. However, because some
reactions have a lower flux variability value of zero (reactions
3– 6), just by considering the FVA results, we cannot rule out
scenarios of flux distribution that carry a low flux through the
described pathway.

To make statistical statements about the likelihood of a given
reaction of the proposed pathway to carry a certain flux, we
performed a flux distribution analysis that is based on a random
flux sampling compatible with the derived flux bounds (from
FVA). This novel approach, termed variability flux sampling,
allows the prediction of flux values for the reactions of the path-
way that are compliant with the imposed constraints (e.g. over-
all optimality of the flux solutions with respect to the InDis-
Minimizer, steady state) and minimize the Euclidian distance
between the randomly chosen set of flux values and a set of
feasible flux values for the respective reactions. The details of
the computational approach are given under “Experimental
Procedures.” The results of this analysis are depicted in Fig. 10
in the right panel of each reaction. The two malate transporters
exhibit probability distributions for the fluxes that are centered
below the middle of the respective FVA interval. Reaction 3
shows a nearly uniform distribution. Interestingly, for reactions
4 and 6 the determined distributions indicate that there is a low
probability for a high flux from pyruvate to acetyl-CoA and
from pyruvate to carbon fixation. Nevertheless, reaction 5
shows a bimodal distribution with one peak in the lower flux
range �50 mmol g DW�1 h�1, whereas the other, higher peak
is at �300 mmol g DW�1 h�1. Finally, the flux into fatty acid
synthesis shows a probability distribution that is centered at
�900 mmol g DW�1 h�1. Altogether, this analysis further sup-
ports the hypothesis of a high flux through the proposed path-
way from malate to FA synthesis via reactions 1, 2, 5, and 7 and
a high activity of malic enzyme. It furthermore suggests that
pyruvate flux into acetyl-CoA and carbon fixations is low.

FIGURE 7. Distribution of flux variability for experiment C. Shown are the
flux variabilities and S.D. values (error bars) for all reactions based on the
integrated minimized discrepancy for three cases. The model is constrained
by (i) enzymology and physiology data, (ii) enzymology data, and (iii) physi-
ology data. The bar plots show four groups of reactions: low (�100 mmol g
DW�1 h�1), moderate (
100, �500 mmol g DW�1 h�1), large (
500, �1000
mmol g DW�1 h�1), and very large (
1000 mmol g DW�1 h�1) variability.

FIGURE 8. Integrated minimized discrepancy for the model with and with-
out starch degradation. Given are the best values of the minimization
between experimentally derived and predicted fluxes as the sum over the
time course for all six experiments. Dark green, starch degradation into the
system; light green, no starch degradation into the system. The model allow-
ing for degradation performed 3.3% better, on average.
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These results put forward an interesting hypothesis for further
experiments to investigate the role of chloroplastic ME in this
chain of reactions and the fate of the pyruvate pool.

DISCUSSION

H. pluvialis has been extensively investigated due to its abil-
ity to produce high amounts of the ketocarotenoid astaxanthin
under inductive conditions that are mainly related to stress (8,
51). A large amount of research has been conducted to elucidate
the astaxanthin biosynthesis pathway and its regulation (for
reviews, see Refs. 51 and 52). Whereas the initial astaxanthin

synthesis utilizes the existing 	-carotene as a precursor, bulk
accumulation of astaxanthin esters will depend on de novo
	-carotene synthesis (53). In fact, almost all of the genes
involved in astaxanthin biosynthesis from isopentenyl pyro-
phosphate were found to be simultaneously up-regulated in
transcriptional expression in high irradiance-induced red cells
of H. pluvialis (54). Similarly, high expression levels of enzymes
involved in the synthesis of terpenoids were also found in Neo-
chloris oleoabundans, under nitrogen deficiency (55). In Chla-
mydomonas reinhardtii, light treatment was found to promote
the accumulation of all transcripts of the methylerythritol

FIGURE 9. Performance comparison for the model with and without starch degradation based on the integrated minimized discrepancy (best fit) for
three different cases. Shown are flux variability though the first reaction of de novo fatty acid biosynthesis (A) and the whole de novo fatty acid biosynthesis
pathway (B) and respective S.D. values (error bars) for all time points. Shown is the percentage difference in variability for the solutions obtained for scenario 1
(degradation) and scenario 2 (no degradation). In both cases, scenario 1 shows a larger variability for all experiments. C, best minimized discrepancy for the fatty
acid synthesis pathway, while accounting for the overall best fit. Shown is the difference between scenarios 1 and 2. Scenario 1 performed better for all six
experiments.

FIGURE 10. Pathway representation and flux variability analysis of the proposed mechanism of carbon redistribution from the TCA cycle into de novo
fatty acid biosynthesis. Shown are the reactions involved in the carbon redistribution from mitochondrial malate to carbon fixation and fatty acid biosyn-
thesis in the chloroplast. The reactions are numbered from 1 to 7. Left panels of each reaction, mean flux variability and S.D. value (error bars) over all time points
and all experiments; right panels, probability distributions of flux values over all time points and all experiments.
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phosphate pathway (56). Specifically in the current work, the
fact that astaxanthin is accumulating to a level that is 30 times
higher than the initial level of total carotenoids (Fig. 2) is a
compelling indicator for de novo synthesis from the very early
precursors and a rapid flow through those intermediates.

When exposed to different stresses, there is a positive corre-
lation between the cellular content of FA and astaxanthin (4).
However, FA accumulation is not dependent on astaxanthin
synthesis (33), and as also shown for different algae (57), FA
accumulation represents a more general stress response.
Although some data on CH content under stress conditions can
be found (6), only recently (12) was the dynamics of CH accu-
mulation/degradation under stress targeted. This present study
was aimed at elucidating the carbon partitioning in H. pluvialis
under nitrogen starvation and HL stress; we therefore concen-
trated on the FAs and CHs, which together account for roughly
85% of the cell’s biomass (Fig. 1). It is worth mentioning that
astaxanthin content makes up a maximum of 4.5% of the bio-
mass (8, 51) (Fig. 2A); thus, neither astaxanthin nor total carot-
enoid content contributes much to the understanding of car-
bon partitioning in H. pluvialis. Moreover, because astaxanthin
accumulates as an FA ester, its small contribution is reflected in
the FA content. To further deepen our understanding of carbon
allocation in H. pluvialis, we employed metabolite and enzyme
profiling to describe the physiological, metabolic, and enzy-
matic changes that accompany carbon repartitioning in H. plu-
vialis cells exposed to nitrogen starvation stress under HL.
Moreover, we developed a putative model based on genome
scale reconstruction of the model green alga Chlamydomonas,
integrated two types of experimental data, and applied con-
straint-based optimization to predict flux distributions that
reflect the experimental observations. We then used flux vari-
ability analysis to estimate the effects of the network and data
constraints. Finally, two biological hypotheses were tested by con-
sidering alternative scenarios and comparing the predictive power.
During the first 24 h of stress application, the cells responded by
largely accumulating CH, accompanied by moderate FA accumu-
lation. However, after 24 h of stress exposure, FA accumulation
was accelerated, and TCH content decreased. Similar behavior has
recently been shown in five different Chlorellaceae species, where
lipid accumulation followed a reduction in stored starch when
exposed to different stresses (13, 14). The hypothesis that during
the second phase of the stress response (24–48 or 96 h), starch is
degraded to support continuous FA synthesis was supported by
our in silico experiments. We compared the computational results
for two model scenarios, with and without starch degradation. The
model that allowed for recycling of the building blocks resulting
from the degradation process better described the experimental
observations.

The present study also suggests a central role of the TCA
cycle in FA biosynthesis upon stress application. Increased
TCA cycle activity in the form of excess malate could support
FA biosynthesis, assuming that the malate is transferred to the
chloroplast, where it flows into FA synthesis. This flow has been
previously reported in exponentially growing C. reinhardtii
under heterotrophic conditions (58). Moreover, the CO2 pro-
duced by this process could be fixed by Rubisco to increase
photosynthetic capacity, as in C4 plants. Both C4 and C3 pho-

tosynthetic pathways have been recently shown to coexist in
the green tide-forming algae Ulva prolifera (59) and in different
marine diatoms (60). Although we cannot confirm the exis-
tence of the C4 pathway in H. pluvialis, the involvement of ME
in its stress response (i.e. increases in CH and FA) was evident
when using the ME inhibitor sesamol (12). Although the chlo-
roplastic isoform of ME could not be measured, the proposed
computational approaches strongly support both the hypothe-
sis of a high flux route for malate via malate transport to the
chloroplast with its subsequent conversion for de novo FA bio-
synthesis and a high activity of the malic enzyme. The low prob-
abilities for a high flux from pyruvate to acetyl-CoA and carbon
fixation suggest that pyruvate flows into other pathways. Pyru-
vate can serve as a precursor for the non-mevalonate 1-deoxy-
D-xylulose-5-phosphate pathway for the biosynthesis of plas-
tidic isoprenoids, such as carotenoids (61). Nevertheless, a high
flux cannot be ruled out, as suggested by the FVA results.
Finally, the predictions serve as a useful tool to investigate puta-
tive pathway fluxes; nevertheless, they have to be treated with
care and could clearly be improved upon measurement of the
chloroplastic malic enzyme.

The metabolite profiling led to the following observations.
After 24 h of nitrogen starvation and HL stress, maltotriose, a
starch degradation metabolite, decreased significantly, indicat-
ing a flow from starch toward glycolysis, which could in turn be
used as a carbon skeleton for FA biosynthesis (62). Concomi-
tantly, a large pool of glycerol, the backbone of TAG, was gen-
erated from the onset of stress exposure. This pool remained
relatively large during the experiments, most likely to support
TAG synthesis. Similarly, a correlation between starch break-
down and glycerol biosynthesis was recently shown to occur
upon salt stress treatment in Dunaliella tertiolecta (63). Raffi-
nose showed a pattern similar to that of the TCH, peaking after
the first 12 h of stress exposure. This sugar has been suggested
to be associated with stress tolerance, defense mechanisms, and
carbon partitioning in the cell, serving as an antioxidant signal-
ing stress (64). These observations indicate that as long as Chl
content is relatively high (9 –12 mg liter�1), the cell devotes its
energy and carbon reserves to maintaining a carbon pool in the
form of free sugars and starch. However, prolonged exposure to
stress causes a shift toward starch degradation and FA synthesis
(12). This behavior might also be related to the distinct pattern
of the glycolytic enzymes phosphoenolpyruvate carboxylase,
ME, and malate dehydrogenase, associated with pyruvate and
downstream malate metabolism, observed throughout the
experiment, namely reduced activity after 36 h. This character-
istic could result from a cascade of events leading to the degra-
dation of the photosynthetic apparatus (65) and enhanced FA
synthesis. Moreover, these changes may be modulated by key
enzymes, such as phosphoenolpyruvate carboxylase and pyru-
vate kinase, which are, in turn, regulated by TCA cycle inter-
mediates (66, 67). However, a more comprehensive study
would be needed to confirm this hypothesis.

When H. pluvialis is subjected to environmental stress, reac-
tive oxygen species are produced (8). The generation of reactive
oxygen species activates the synthesis of astaxanthin, which
protects the cell by shielding it from excessive irradiation (68).
However, reactive oxygen species are also known to inhibit the
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TCA cycle enzymes 2-oxoglutarate dehydrogenase and succi-
nyl-CoA synthetase, thereby shuttling 2-oxoglutarate toward
the GABA shunt (69 –72). In the present study, we found fur-
ther evidence for this alternative route (i.e. the accumulation of
GABA). This non-protein amino acid is known to be regulated
by enhanced glutamate decarboxylase activity via Ca2�-cal-
modulin and reduced succinyl semialdehyde dehydrogenase
activity as a response to altered energy balance and redox status
(73). Among the different roles suggested for the GABA shunt
(74 –77), it has been proposed as a modulator of the carbon-
nitrogen balance (78). We suggest that in H. pluvialis under
nitrogen starvation and HL, reduced nitrogen derived from the
deamination of free amino acids in the cell is stored in the
GABA pool, which can be used as a buffer for the turnover of
internal proteins. This suggestion is further supported by
results obtained from C. reinhardtii under ammonium defi-
ciency (24); TCA cycle enzyme activity increased, potentially
providing carbon skeletons for amino acid metabolism. It has
been shown that certain proteins in H. pluvialis degrade under
nitrogen starvation, whereas others are actually built (8,
79 – 81). Therefore, although volumetric protein content is pre-
served, it is likely that there is a change in the protein profile.

Finally, our findings demonstrate that physiological, metabo-
lite, and enzyme activity data in combination with constraint-
based optimization approaches can be used to test biological
hypotheses. The combination of experimental data and large scale
networks has two advantages. On the one hand, integrating (time-
resolved) experimental data enables the formulation of more real-
istic constraints on the model than those stemming only from bio-
chemistry, thermodynamics, and model-based boundaries (30).
On the other hand, the network framework allows the capture of
interdependencies between reactions, which would not be
revealed by a simple analysis of the experimental data. By following
this approach, we provide model-driven evidence that starch deg-
radation during the second phase of the stress response supports
continued FA synthesis. Moreover, we found support for malate
integration in the de novo synthesis of FA, although precise claims
regarding this hypothesis require more direct experimental
validation.
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70. Studart-Guimãraes, C., Fait, A., Nunes-Nesi, A., Carrari, F., Usadel, B., and

Response of H. pluvialis Systems to Nitrogen Stress

30402 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 289 • NUMBER 44 • OCTOBER 31, 2014

 at IN
R

A
 Institut N

ational de la R
echerche A

gronom
ique on M

ay 6, 2019
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


Fernie, A. R. (2007) Reduced expression of succinyl-coenzyme A ligase can
be compensated for by up-regulation of the 
-aminobutyrate shunt in
illuminated tomato leaves. Plant Physiol. 145, 626 – 639

71. Bolton, M. D. (2009) Primary metabolism and plant defense-fuel for the
fire. Mol. Plant Microbe Interact. 22, 487– 497

72. Bown, A. W., and Shelp, B. J. (1997) The metabolism and functions of

-aminobutyric acid. Plant Physiol. 115, 1–5
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