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ABSTRACT: Predictive ability of genomic EBV when using single-step genomic BLUP 1 

(ssGBLUP) in Angus cattle was investigated. Over 6 million records were available on birth 2 

weight (BW) and weaning weight (WW), almost 3.4 million on post-weaning gain (PWG), and 3 

over 1.3 million on calving ease (CE). Genomic information was available on at most 51,883 4 

animals, which included high and low EBV accuracy animals. Traditional EBV was computed 5 

by BLUP and genomic EBV by ssGBLUP and indirect prediction based on SNP effects derived 6 

from ssGBLUP; SNP effects were calculated based on the following reference populations: 7 

ref_2k (high EBV accuracy sires and cows), ref_8k (ref_2k, plus all genotyped ancestors of 8 

validation animals), and ref_33k (ref_8k, plus all remaining genotyped animals not in the 9 

validation). Indirect prediction was obtained as direct genomic value (DGV) or as an index of 10 

DGV and parent average (PA). Additionally, runs with ssGBLUP used the inverse of the 11 

genomic relationship matrix calculated by an algorithm for proven and young animals (APY) 12 

that uses recursions on a small subset of reference animals. An extra reference subset included 13 

3872 genotyped parents of genotyped animals (ref_4k).  Cross-validation was used to assess 14 

predictive ability on a validation population of 18,721 animals born in 2013. Computations for 15 

growth traits used multiple-trait linear model, and for CE, a bivariate CE-BW threshold-linear 16 

model. With BLUP, predictivities were 0.29, 0.34, 0.23, and 0.12 for BW, WW, PWG, and CE, 17 

respectively. With ssGBLUP and ref_2k (ref_33k), predictivities were 0.34, 0.35, 0.27, and 0.13 18 

(0.39, 0.38, 0.29, and 0.13), respectively.  Low predictivity for CE was due to low incidence rate 19 

of difficult calving. Indirect predictions with ref_33k were as accurate as with full ssGBLUP. 20 

Using APY and recursions on ref_4k (ref_8k) gave 88% (97%) gains of full ssGBLUP.  21 

Genomic evaluation in beef cattle with ssGBLUP is feasible while keeping the models (maternal, 22 

multiple trait, threshold) already used in regular BLUP. Gains in predictivity are dependent on 23 
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the composition of the reference population. Indirect predictions via SNP effects derived from 24 

ssGBLUP allow for accurate genomic predictions on young animals, with no advantage of 25 

including PA in the index if the reference population is large. With APY conditioning on about 26 

10,000 reference animals, ssGBLUP is potentially applicable to large number of genotyped 27 

animals without compromising predictive ability. 28 

 

Key words: beef cattle, genomic recursion, genomic selection, indirect prediction 29 

 

INTRODUCTION 30 

Genomic selection in beef cattle has currently been performed with multistep methods, which 31 

uses deregressed EBV to estimate SNP effects and then direct genomic value (DGV) for 32 

selection candidates based on their genotypes (Meuwissen et al., 2001; Garrick et al., 2009). The 33 

main advantage of this approach is that the traditional BLUP evaluation is kept unchanged and 34 

genomic selection can be carried out by a separate entity owning genotypes but not phenotypes. 35 

Also new animals are easily evaluated if DGV is computed as a sum of marker effects, but not if 36 

selection indexes including DGV and parent average (PA) are used. 37 

When both phenotypes and genotypes are available jointly, single-step genomic BLUP 38 

(ssGBLUP) (Aguilar et al., 2010) is a simple alternative. This method does not rely on 39 

deregressed proofs, properly weighs information from genotyped sires and cows, thus avoiding 40 

double-counting of contributions due to relationships and records, and accounts for pre-selection 41 

bias of genomically selected parents without phenotypes (Legarra et al., 2014). In ssGBLUP it is 42 

also possible to quickly evaluate young genotyped animals without running a complete 43 

evaluation that requires several hours to converge. Quick predictions can be calculated indirectly, 44 
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where genomic predictions for young animals are obtained from SNP effects.  It was shown by 45 

Wang et al. (2012)  that SNP effects can be derived from GEBV solutions from the main 46 

ssGBLUP evaluation. 47 

In its current implementation, ssGBLUP uses direct inversion of genomic matrices (Aguilar 48 

et al., 2011), which has a cubic cost and a limit of 150,000 animals (Aguilar et al., 2013). Several 49 

methods were proposed to overcome that limit (Legarra and Ducrocq, 2012; Fernando et al., 50 

2014; Liu et al., 2014), but none was successful.  Recently Misztal et al. (2014) presented a 51 

method which uses an approximate inversion of genomic relationships based on recursions on a 52 

fraction of the total population; which can be suitable and inexpensive. The first goal of this 53 

study was to evaluate the feasibility of ssGBLUP for genomic evaluation in Angus cattle with 54 

reference populations of different composition. An additional goal was to evaluate the ability to 55 

predictive GEBV with genomic recursions and with indirect prediction for young animals.  56 

 

MATERIAL AND METHODS 57 

Datasets from American Angus Association (AAA) were available for this study that 58 

included growth traits and calving ease (CE). Growth traits included birth weight (BW), weaning 59 

weight (WW), and post-weaning gain (PWG). As the data were obtained from existing 60 

databases, Animal Care and Use Committee approval was not obtained for this study. 61 

 

Data 62 

Over 6 million phenotypes were available for BW and WW, almost 3.4 million for PWG, and 63 

over 1.3 million for CE. Whereas BW, WW, and PWG are continuous traits, CE is a categorical 64 

trait with 5 calving scores, where 5 is abnormal delivery and is excluded. Because few animals 65 

had scores 3 and 4, these scores were combined into category 2, which resulted in 93% of 66 
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animals with score 1 and 7% with score 2. The number of animals in the pedigree for evaluation 67 

of growth traits was 8,236,425, and for CE was 8,025,676.  68 

For evaluation of growth traits, 81,878 animals were genotyped for 54,609 SNP from the 69 

BovineSNP50k v2 BeadChip (Illumina Inc., San Diego, CA). Currently, no genotyping strategy 70 

is applied by AAA; therefore, the members can choose which animals are being genotyped, and 71 

most of them are young. A total of 29,995 genotyped animals were young without phenotypes 72 

for any of the 3 traits, which caused them to have genotypes excluded from this study. If the 73 

number of genotyped animals is relatively large, young genotyped animals without phenotypes 74 

in the dataset give very small contribution to their relatives’ evaluation (Misztal et al., 2014). 75 

After removing SNP with unknown position or located on sex chromosomes and running a 76 

general quality control analysis, genotypes on 38,528 SNP markers were available for 32,465 77 

males and 19,418 females born from 1977 to 2013; therefore, the maximum number of 78 

genotyped animals used in all analyses on growth traits was 51,883. For CE evaluation, a 79 

genotyping set with 72,069 animals was available, but only genotypes on 40,546 animals born 80 

from 1977 to 2013 (26,074 males and 14,472 females) were used for the same reason above. The 81 

number of SNP that passed the general quality control for this dataset was 38,568. 82 

For this study, the animals were then split into training and validation populations according 83 

to year of birth. Thus, all 18,721 (13,166) genotyped animals born in 2013 were chosen to be in 84 

the validation population for growth (CE) traits and had their phenotypes removed from the 85 

evaluations. The pedigree relationship between training and validation populations ranged from 0 86 

to 0.82, with an average relationship of 0.09.  87 

 

Model  88 
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Traditional and genomic evaluations were performed for growth traits and CE. A 89 

multivariate linear animal model was used for growth traits as: 90 

yt = Xb + Z1u + Z2m + Z3p + e         [1] 91 

where t is for each one of BW, WW, PWG; y, b, u, m, p, and e are vectors of phenotypes, fixed 92 

effect of contemporary group, additive direct genetic effect, additive maternal genetic effect, 93 

maternal permanent environmental effect, and random residuals, respectively; X, Z1, Z2, and Z3 94 

are incidence matrices for b, u, m, and p, respectively. All random effects were present for WW, 95 

but only u, m, and e for BW, and u and e for PWG. 96 

A bivariate threshold-linear animal model was used to model CE jointly with BW: 97 

Yc = Xb + Z1u + Z2m + e        [2] 98 

where c is for BW and CE; y, b, u, m and e are vectors of phenotypes, fixed effects of 99 

contemporary group, sex, age of dam (only for CE), and sex by age of dam interaction (only for 100 

CE), additive direct genetic effect, additive maternal genetic effect, and random residuals, 101 

respectively; X, Z1, and Z2 are incidence matrices for b, u, and m, respectively. According to 102 

Ramirez-Valverde et al. (2001) when BW is available, bivariate threshold-linear models 103 

including CE and BW are a better alternative than a single-trait threshold model to evaluate CE, 104 

especially if the population has animals with different levels of EBV accuracy. From this model, 105 

only results for CE are discussed, whereas results for BW are from the multiple trait linear model 106 

for growth traits. Heritabilities for all traits were calculated by AAA using the same models as in 107 

[1] for BW, WW, and PWG; and in [2] for CE. For our study, the values were then provided by 108 

AAA and ranged from 0.12 to 0.41 (Table 1).  109 

  

Analyses 110 
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Three different genomic analyses were performed using ssGBLUP (Aguilar et al., 2010; 111 

Christensen and Lund, 2010) as implemented in BLUP90IOD program 112 

(http://nce.ads.uga.edu/wiki/BLUPmanual). Compared to BLUP, in ssGBLUP the inverse of the 113 

numerator relationship matrix A
-1

 is replaced by matrix H
-1

 defined as follows: 114 

H
-1=A

-1
+ �0 0

0 G 
-1

– A22
-1 �, 115 

where G is the genomic relationship matrix. The computations used default options in 116 

BLUP90IOD. In all analyses the validation population was defined as genotyped animals born in 117 

2013 with phenotypes excluded. 118 

 

First analysis: ssGBLUP with different reference populations. Different reference 119 

populations were defined according to EBV accuracy calculated with the ACCF90 program 120 

(http://nce.ads.uga.edu/wiki/BLUPmanual), which uses the concept of prediction error variance 121 

and reflects the standard error of EBV for each individual. The objective was to investigate the 122 

influence of different groups of reference animals on genomic predictions, and possibly to guide 123 

genotyping strategy. The current trend in livestock genomics is to genotype young animals; 124 

however, more important animals give more information to the evaluations. For growth traits 125 

(CE), the first reference population was composed of 1,628 (1,541) top bulls with EBV accuracy 126 

for BW ≥ 0.85; which we will refer hereinafter as “ref_bulls”. As BW was present in models for 127 

growth and CE evaluations, using its EBV accuracy for selecting top bulls helped to compose 128 

sets with proportional number of animals. In this case, the G matrix was composed of animals in 129 

the reference population and also animals in the validation population; the last had 18,721 130 

animals for growth traits and 13,166 for CE. The second reference population was composed of 131 

the top bulls and also top cows that had an EBV accuracy for BW ≥ 0.85; which we will refer as 132 
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ref_2k. The number of top cows was small and only 268 were added for the growth trait analysis 133 

and 323 for CE. The third reference population was composed of top bulls, top cows, and all 134 

other genotyped animals born from 1977 to 2012 (we will refer as ref_33k). This group had a 135 

total of 33,162 animals for growth and 27,380 for CE, with an average EBV accuracy for BW of 136 

0.77 (± 0.16). For the latter analysis, the G matrix was composed of the maximum number of 137 

51,883 genotyped animals for growth analysis and 40,546 for analysis of CE.  138 

   

Second analysis: ssGBLUP with indirect predictions for young animals. With the 139 

increasing number of genotyped heifers and steers in dairy and beef, the genomic methods 140 

should be able to provide predictions for young animals without phenotypes in a quick run, 141 

externally to the official evaluations. This concept is introduced here as indirect ssGBLUP, and 142 

basically mimics the mixed model equations. It would be advantageous from different 143 

perspectives: to evaluate young animals mainly for traits that are measured later in life, after the 144 

selection decisions are made; and to reduce computing costs because the dimension of G would 145 

not increase in the same proportion as the number of genotyped animals.  146 

In order to explain how it works, consider the equation for the GEBV of a single individual 147 

in ssGBLUP (VanRaden and Wiggans, 1991; Aguilar et al., 2010; Lourenco et al., 2015): 148 

GEBV = w1PA + w2YD + w3PC + w4DGV – w5PP 149 

where PA is Parent Average, YD is Yield Deviation (phenotypes adjusted for model effects other 150 

than additive genetic and error), PC is Progeny Contribution, DGV is direct genomic value 151 

(corresponding to G
-1

), PP is the pedigree prediction based on the subset of genotyped animals 152 

from A (corresponding to A22
-1

) and w1 to w5 are weights that sum to 1. In the case of young 153 

animals with no progeny or own performance record, YD=PC=0 and w2=w3=0. In this case, for 154 
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individual i, PAi=(GEBV
s
+GEBVd)/2; DGVi= -

∑ ����	
���,���
gii

; PP=-
∑ �����

j,j≠i �	
��
�����  and w1=

�
���, 155 

w4=
���
��� , w5=

�����
���, where den is the denominator that equals to 2 + ���� − ����� �; gij (����!

) is an 156 

element of G
-1

 (A22
-1

) corresponding to relationships between animal i and j; s and d correspond to 157 

sire and dam, respectively. If all individuals are genotyped, then PA=PP and GEBV reduces to 158 

DGV.  159 

For ssGBLUP with indirect predictions, SNP effects can be calculated using the current run 160 

of ssGBLUP with all but young animals, and genomic predictions for young animals are 161 

obtained by multiplying the SNP content by SNP effect to obtain DGV; a more complete GEBV 162 

can also be available through a selection index that combines DGV and PA. The flow for indirect 163 

predictions in ssGBLUP is: 164 

1) Run ssGBLUP with a reference population to obtain GEBV. In this step, 3 reference 165 

populations were tested: 166 

a) ref_2k: reference population with top bulls and top cows (n=1,896); 167 

b) ref_8k: reference population with all parents that were genotyped (n=8,285), this 168 

includes ref_2k; 169 

c) ref_33k: reference population with all genotyped animals born up to 2012 (n=33,162), 170 

this includes ref_8k; 171 

2) Split GEBV into all the components shown before, where DGV for an animal i in the 172 

reference population is calculated as below (Aguilar et al. (2010): 173 

DGVi=-
∑ gijGEBV& j,j≠i

gii
 

with all elements previously defined. 174 

3) Calculate SNP effects using DGV from the reference population: 175 
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u'= DZ'
G

-1
(DGV) 

where () is a vector of estimated SNP effects, D is a diagonal matrix of weights 176 

(standardized variances) for SNP (identity matrix in this case), and Z is a matrix of 177 

centered genotypes for each animal (VanRaden, 2008). A similar approach that uses 178 

GEBV instead of DGV to calculate SNP effects was proposed by Wang et al. (2012). 179 

However, for numerical purposes this involves approximations as G matrix is formed as 180 

G=0.95ZDZ'
+0.05A22 (Aguilar et al., 2010). This is done as a default approach to avoid 181 

singularity problems and may result in negligible error as shown later. 182 

4) Calculate DGV for young genotyped animals (DGVy): 183 

DGVy=Zyu' 

where DGVy and Zy are direct genomic values and a matrix of centered genotypes for 184 

young animals not included in ssGBLUP evaluation, respectively. 185 

5) Combine DGVy with PA for young genotyped animals: 186 

GEBVy ≈ w1PA + w4DGVy 187 

where GEBVy is GEBV obtained via indirect predictions for young animals, w1 and w4 188 

are weights identical for all animals and calculated based on covariances between DGVy 189 

and PA as: 190 

*w1

w4+ = , σPA
2 σPA,DGVy

σDGVy,PA σ0��1� 2 � σPA
2

σ0��1� � 

Note this is an approximation which ignores PP. In general, PP includes part of PA 191 

explained by DGV. When all animals are genotyped, PP and PA cancel out, with 192 

approximate cancellation when parents of an animal are genotyped. When an animal is 193 

unrelated to a genotyped population, PP=0.  Fixed weights in the index account for an 194 
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average relationship of all young animals to a genotyped population. It is possible to 195 

create different indices based on the number of genotyped parents (VanRaden et al., 196 

2012).  197 

The ssGBLUP with indirect prediction allows calculation of DGV or GEBV for young 198 

genotyped animals, with lower computing cost compared to a full ssGBLUP where young 199 

animals are explicitly included.  200 

 

Third analysis: ssGBLUP with G inverted by a recursive algorithm. When the number of 201 

genotyped animals is large and there is a desire for using all of them in ssGBLUP evaluations to 202 

get direct predictions for all, including young animals, an algorithm that splits genotypes into 203 

proven and young animals and uses recursion to approximate the inverse of the G matrix was 204 

proposed by Misztal et al. (2014). This algorithm is known as APY, and G
-1

 containing all 205 

genotyped animals can be expressed as:   206 

G
-1

= 3Gpp
-1

0

0 0
4 + 3-Gpp

-1
Gpy

I
4Mg

-15-GypGpp
-1

I6 
where the subscript pp stands for proven animals and py for the covariance between proven and 207 

young animals; each element of  Mg is obtained (for the i
th

 young animal) as 208 

mg,i = g
ii
 - GipGpp

-1
Gpi  and is called genomic Mendelian sampling. In APY, the only direct 209 

inversion needed is for part of G that contains relationships among proven animals (Gpp), 210 

whereas all other coefficients are obtained through recursions.  211 

For this analysis, four definitions of proven animals were tested that included the 3 212 

definitions used for indirect predictions (ref_2k, ref_8k, and ref_33k), plus one more definition 213 

where 3,872 genotyped parents of genotyped animals were considered as proven (ref_4k). This 214 
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last group was added to test if proven animals would have strong links with the young genotyped 215 

population.  216 

The greatest advantages of this algorithm are the reduction of computing cost, which is still 217 

cubic for proven animals, but can be linear for young animals; and the possibility of using large 218 

amounts of genotyped animals in ssGBLUP evaluations. The secondary advantage is numerical 219 

stability as the regular G matrix is singular when the number of animals is greater than the 220 

number of SNP markers and cannot be inverted without blending with A22.  221 

 

Validation 222 

The ability to predict future phenotypes was the validation method chosen for this study. This 223 

method is based on Legarra et al. (2008), and predictive ability for traditional and genomic 224 

evaluations for animals born in 2013 was calculated as the correlation between (G)EBV and 225 

phenotypes corrected for fixed effects (y-Xb): 226 

r = cor[7G8EBV,y–Xb] 

The predictive ability or predictivity is used as an approach to compare the methods applied 227 

in this paper. For all analyses, the validation groups were kept the same to make comparisons 228 

easier. Validations involved 18,721 animals for growth traits and 16,133 animals for CE. 229 

Predictivity calculated with EBV in the above formula was the benchmark used to compare the 230 

gain in predictive ability due to genomics, and predictivity calculated with GEBV was used to 231 

compare the genomic methods previously described. Prediction accuracy could be described as 232 

r/h, where h is square root of heritability; however, prediction accuracy can be overestimated if 233 

heritabilities are obtained by simplified models as the ones used by AAA.  234 
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RESULTS AND DISCUSSION 235 

ssGBLUP with different reference populations 236 

Predictive ability on young animal when using several reference populations is shown in 237 

Table 2.  Using only top bulls as a reference population (ref_bulls) increased predictivity relative 238 

to BLUP by 0.05 for BW, 0.01 for WW, 0.04 for PWG, and 0.01 for CE. Addition of top cows to 239 

the reference population (ref_2k) did not increase the predictivity for any trait. This could be due 240 

to the small number of animals added and also because daughters of those cows already 241 

contributed through the inclusion of bulls. Addition of around 31,000 animals to the reference 242 

population provided an additional increase in predictivity of 0.05 for BW, of 0.03 for WW and of 243 

0.02 for PWG. However, no additional increase was observed for CE by adding extra 27,000 244 

genotyped animals, of which about 7,000 had phenotypes for that trait.  245 

The addition of 31,000 animals with few or no progeny led to the same increase of 246 

predictivity as using only the top bulls for BW, led to an increase of 3 times for WW and an 247 

increase of 0.5 times for PWG. Among the 31,000 extra animals, almost all had phenotypes for 248 

BW and WW, but only 24,000 had phenotypes for PWG. Evidently, the composition of reference 249 

population is also a factor that influences predictivity of GEBV besides the reference population 250 

size. Thus, genotyping strategy should take into account genotyping more important and maybe 251 

older animals with more information (higher EBV accuracy) along with genotyping large 252 

amounts of young animals.    253 

Previous studies showed that prediction accuracies or predictive ability are biased downward 254 

by selection (Bijma, 2012; Lourenco et al., 2015). In our study, it appears that selection for 255 

proven bulls was much stronger for WW than for PWG (lower increase in predictivity with twice 256 

the phenotypic data at similar heritability) but there was a small selection on genotyped animals 257 
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with own records (approximately twice the increase of predictivity with twice the phenotypic 258 

data). It may be hard to calculate the amount of bias in livestock species, including beef cattle, as 259 

the selection process is sequential and affected by both genetic correlations and specific indexes 260 

used for selection.  261 

Low predictivity for CE in this study is due to lower heritability combined with limited 262 

recording for this trait and a low incidence of difficult calving. Additionally, very few genotyped 263 

animals had a difficult calving, perhaps because animals from a difficult calving are unlikely to 264 

be retained for breeding and therefore would not be genotyped on a regular basis. Higher 265 

predictivity and impact of genomic selection for CE could be expected in breeds with higher 266 

incidence of calving problems. 267 

Because the increase in predictivity for CE was very small compared to predictivity of 268 

traditional evaluations, indirect predictions and APY were not tested for this trait.   269 

In this paper, only predictivity for the direct genetic effect is shown; however, models for 270 

BW and WW included maternal effect, which is also important in genetic evaluations. We 271 

attempted to derive formulas for predictivity of maternal effects, unsuccessfully. Such 272 

predictivity can be hard to assess because the maternal effect occurs one generation back, which 273 

means that the corrected phenotype of animal i should be correlated with the maternal effect of 274 

the dam of animal i. But, dams usually have more than one progeny and there is genetic 275 

correlation between direct and maternal for BW, which makes derivations difficult. Lourenco et 276 

al. (2013) used simulated data that mimicked a beef cattle population and showed that the gain 277 

for the maternal effect with ssGBLUP is as high as for the direct effect.  278 

 

ssGBLUP with indirect predictions for young animals 279 
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Predictive ability for indirect prediction via conversion of DGV into SNP effects is shown in 280 

Figure 1. When the reference population included top bulls and top cows (ref_2k), the 281 

predictivity of indirect DGVy was lower than predictivity for traditional EBV for the three traits 282 

(0.23 vs. 0.29 for BW; 0.28 vs. 0.34 for WW; 0.19 vs. 0.23 for PWG).  Predictivity for GEBVy 283 

calculated as an index of indirect DGVy with PA was higher than those for EBV for the three 284 

traits (0.31 vs. 0.29 for BW; 0.36 vs. 0.34 for WW; 0.24 vs. 0.23 for PWG), however, this 285 

predictivity was lower than the ones from full ssGBLUP (except for WW). With larger reference 286 

population (ref_8k), all indirect DGVy were similar or more accurate than EBV, and the index 287 

had similar predictivity as the full ssGBLUP. With the largest reference population (ref_33k), all 288 

indirect DGVy were almost as accurate as GEBV from full ssGBLUP, with the index marginally 289 

improving predictivity for WW. This marginal improvement for WW may be caused by the use 290 

of less than optimal genetic parameters, e.g., zero covariance between direct and maternal effects 291 

(to reduce computing costs). The DGVy obtained with ref_33k reference population were more 292 

accurate than GEBV from full ssGBLUP obtained with ref_8k reference population.  293 

Although predictivity of indirect predictions when using ref_33k was similar to predictivity 294 

from full ssGBLUP, it does not mean that predictions have the same average. The reason for that 295 

is the different sources of information used to calculate indirect predictions. Correlations 296 

between GEBV and indirect predictions are a good tool to assure that the latter can be used for 297 

interim evaluations. Correlations between GEBV from full ssGBLUP and DGVy or GEBVy from 298 

indirect predictions are shown in Table 3. On average, correlations with DGVy were 0.73, 0.89, 299 

and 0.96 for ref_2k, ref_8k, and ref_33k, respectively. Higher correlations were observed 300 

between GEBV and GEBVy, with values for the three reference sets being 0.89, 0.95, and 0.97, 301 

respectively.  Those results endorse the use of a reference population of size close to 33,000 302 
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animals for this American Angus dataset. By doing that, indirect predictions are as accurate as 303 

predictions including genotypes for young animals in the evaluation (full ssGBLUP). 304 

For young animals, GEBV = w1PA + w4DGV – w5PP, with all weights summing to 1.0 305 

(VanRaden and Wiggans, 1991; VanRaden et al., 2009; Aguilar et al., 2010). When the number 306 

of genotyped animals is small, w4 is small and ignoring PA reduces predictivity. Using an index 307 

with PA improves the predictivity, however, PP is ignored and computed weights w1 and w4 are 308 

approximate. When the number of genotyped animals is large, w4 is close to 1.0, and ignoring 309 

PA marginally reduces the predictivity for some traits. Therefore, the indirect prediction via 310 

DGV is accurate when SNP effects are derived from ssGBLUP with sufficient size of the 311 

reference population.  312 

Neglecting PP seems to have no considerable effect in this population, because predictivity 313 

of indirect predictions was very similar to predictivity from full ssGBLUP. Neglection of PP 314 

indirectly means adjusting PA for an average PP. VanRaden et al. (2012) used different weights 315 

for animals based on the number of genotyped parents, which better accounts for PP.  316 

A study by Wiggans et al. (2014) used SNP effects from previous monthly genomic multi-317 

step evaluations to calculate preliminary GEBV for young genotyped animals. The objective was 318 

to have daily or weekly genomic evaluations for US dairy cattle and reduce the time between 319 

having DNA samples and predictions from a monthly official evaluation. Their reference set 320 

contained all genotyped animals with phenotypes (about 597,000; corresponding to ref_33k in 321 

our study) and correlations between preliminary and official evaluations were higher than 0.99 322 

for Holsteins, but smaller for other breeds with a smaller number of genotyped animals.  Further 323 

research with different species will be critical in determining the sufficient size of the reference 324 

population for indirect predictions in order to achieve high predictivity. It may be related to 325 
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effective population size, number of independent SNP (Pintus et al., 2013), and relationships 326 

between reference and validation populations as in multi-step methods. Although indirect 327 

predictions via ssGBLUP use a concept similar to multi-step methods for young genotyped 328 

animals, indirect predictions via ssGBLUP may be more accurate than multistep predictions 329 

because the latter are affected by approximations involved in deregressions and possible double-330 

counting of phenotypic information.  331 

For young animals, indirect predictions via SNP effects from ssGBLUP seems a viable 332 

alternative as it can be done separately from the full evaluation. As SNP effects are calculated 333 

based on trait GEBV or DGV, indirect predictions are easily obtained for multi-trait models, as 334 

done in this study; multi-breed and crossbred evaluations are possible when the G matrix is able 335 

to account for information on all breeds. However, if young animals and particularly full-sibs are 336 

intensively selected, selection on the Mendelian sampling will not be accounted for, leading to 337 

pre-selection bias (Patry and Ducrocq, 2011). Analyses by ssGBLUP with all genotypes subject 338 

to selection are expected to account for pre-selection (VanRaden and Wright, 2013), because 339 

selection is accounted for when all information used for selection is included in the model 340 

(Henderson, 1975).   341 

 

Comments on SNP weighting and SNP selection 342 

The way SNP effects are calculated in ssGBLUP allows for inclusion of different weights for 343 

SNP:  u'= DZ'
G

-1
(DGV), with weights for G fit into the diagonal matrix D. Those weights can be 344 

calculated through an iterative process, or external weights can be used as input for ssGBLUP 345 

(Wang et al., 2012; Su et al., 2014). Weighting G seems to be a reasonable approach to achieve 346 

higher prediction accuracy, especially in the presence of “major” SNP. Sun et al. (2011) showed 347 
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higher prediction accuracy when using weighted G in regular GBLUP compared to BayesB. For 348 

some traits, SNP weighting or SNP selection in ssGBLUP also gave additional prediction 349 

accuracy (Wang et al., 2014). In fact, when weights are different per trait, this precludes the use 350 

of multiple traits unless the model includes one common additive effect and specific additive 351 

effects for individual traits. In practice and especially under a selection index, gains from a 352 

multiple trait analysis can overcome losses due to not fitting “major” SNP. Also, when the 353 

number of genotyped animals increases, the rate of gain in reliability increases at a slower pace 354 

(VanRaden et al., 2011); therefore, weighting SNP may no longer have a big impact on 355 

prediction accuracy (Winkelman et al., 2015).  356 

 

ssGBLUP with G inverted by a recursive algorithm 357 

Predictive ability of GEBV when the inverse of G is computed with APY is shown in Figure 358 

2.  When the recursions were conditioned on ref_2k, ref_4k, ref_8k, and ref_33k, the procedure 359 

accounted for 67%, 88%, 97%, and 100% of predictivity gains of ssGBLUP over BLUP, 360 

respectively. Therefore, in ssGBLUP, using genomic recursion to invert G while conditioning on 361 

enough number of animals, in this case about 8,000, has the same prediction power as G using 362 

direct inversion. The amount of memory necessary for APY G
-1

 using ref_2k, ref_4k, ref_8k, 363 

and ref_33k was approximately 0.8, 1.6, 3.2, and 13.7 Gbytes, respectively, whereas the amount 364 

of memory for the regular G
-1

 is 21.6 Gbytes. Therefore, using APY G
-1

 makes computations 365 

less costly and faster.   366 

Tests involving 100,000 genotyped Holsteins with recursions conditioned on more than 367 

15,000 animals resulted in practically identical GEBV compared to the regular inversion but with 368 

a better convergence rate (Fragomeni et al., 2015) indicating that APY has good predictive and 369 
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numerical properties. They suggested that the necessary number of animals being conditioned is 370 

proportional to the number of independent chromosome segments, which is a function of an 371 

effective population size.  372 

 The main advantages of APY are low computing costs and numerical stability. With 373 

conditioning on 8,000 animals, for example, the only inverse required is for a block of G for 374 

8,000 animals, and additional genotypes require only linear storage and computations. 375 

Subsequently, computations with a large number of genotyped animals may be feasible with 376 

similar predictivity as in the regular inversion. APY would be the algorithm of choice for regular 377 

evaluations with very large number of genotyped animals.  378 

   

CONCLUSIONS 379 

Genomic evaluation in beef cattle using single-step genomic BLUP is feasible for either 380 

linear or categorical traits. Gains in predictive ability over BLUP are dependent on the size and 381 

composition of the reference population, and are large for growth traits and small for CE. With a 382 

sufficient number of animals in the reference population, indirect prediction for young animals 383 

via SNP effects provides similar predictivity to full single-step genomic BLUP, allowing for 384 

quick genomic predictions without running a complete evaluation. Use of the algorithm for 385 

proven and young animals in single-step genomic BLUP allows for incorporation of large 386 

number of genotyped animals at low cost without compromising the predictive ability.  387 
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Table1. Heritability (h
2
) and general statistics for growth traits and CE 473 

Trait
1
 h

2
 

Number of 

records 
Average (kg) SD (kg) 

Number of genotyped 

animals with records 

BW 0.41 6,189,661 36.47 4.45 50,784 

WW 0.20 6,890,625 263.13 44.63 51,830 

PWG 0.20 3,387,252 162.25 67.00 36,196 

CE 0.12 1,310,684  -  - 10,558 

easy  - 1,215,571  -  - 10,228 

difficult  - 95,113  -  - 330 
1
 BW = birth weight; WW = weaning weight; PWG = post-weaning gain; CE = calving ease. 474 
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Table 2. Predictive ability of future phenotypes for young genotyped animals born in 2013 475 

Trait
1
 

Animals in 

validation 
BLUP 

                        ssGBLUP
2
 

ref_bulls
3 

ref_2k ref_33k 

BW 18,721 0.29 0.34 0.34 0.39 

WW 18,721 0.34 0.35 0.35 0.38 

PWG 18,721 0.23 0.27 0.27 0.29 

CE 13,166 0.12 0.13 0.13 0.13 

1
 BW = birth weight; WW = weaning weight; PWG = post-weaning gain; CE = calving ease. 476 

2
 Single-step genomic BLUP (ssGBLUP) included genotypes for reference and validation 477 

populations, but phenotypes for validation animals were removed. Predictive ability was 478 

calculated as correlation between corrected phenotypes and genomic EBV. 479 
3
 ref_bulls is a reference populations that contains top bulls, ref_2k contains top bulls and top 480 

cows, and ref_33k contains all genotyped animals born up to 2012. 481 
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Table 3. Correlations between GEBV from full ssGBLUP and DGVy or GEBVy from indirect 482 

predictions. 483 

Trait Indirect Prediction
1
 ref_2k

2
 ref_8k ref_33k 

BW 
DGVy 0.66 0.87 0.96 

GEBVy 0.85 0.94 0.97 

WW 
DGVy 0.75 0.89 0.95 

GEBVy 0.90 0.95 0.97 

PWG 
DGVy 0.78 0.90 0.96 

GEBVy 0.91 0.96 0.97 
1 

DGVy is direct genomic value; GEBVy is the indirect genomic EBV obtained by an index 484 

combining parent average and DGVy. 485 
2 

ref_2k is a reference populations that contains top bulls and top cows, ref_8k contains all 486 

parents that were genotyped, and ref_33k contains all genotyped animals born up to 2012.487 
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Figure 1. Predictive ability of indirect predictions on 18,721 young genotyped animals when using reference populations ref_2k, 488 

ref_8k, and ref_33k animals to run single-step genomic BLUP (ssGBLUP) and derivate SNP effects; ref_2k is a reference populations 489 

that contains top bulls and top cows, ref_8k contains all parents that were genotyped, and ref_33k contains all genotyped animals born 490 

up to 2012. DGVy is direct genomic value; GEBVy is the indirect genomic EBV obtained by an index combining parent average and 491 

DGVy; GEBV is genomic predictions obtained directly from ssGBLUP when genotypes on reference and validation animals were 492 

considered together in evaluations. Predictive ability was calculated as correlation between corrected phenotypes and genomic EBV.493 
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 494 

 495 

Figure 2. Predictive ability of GEBV for 18,721 young genotyped animals when using APY 496 

(algorithm for proven and young animals) to invert G matrix (genomic-based relationship 497 

matrix) with different definitions of proven animals: ref_2k, ref_4k, ref_8k, and ref_33k; ref_2k 498 

is a reference populations that contains top bulls and top cows, ref_4k contains genotyped 499 

parents of genotyped animals, ref_8k contains all parents that were genotyped, and ref_33k 500 

contains all genotyped animals born up to 2012. Predictive ability was calculated as correlation 501 

between corrected phenotypes and genomic EBV. Predictions in single-step genomic BLUP 502 

(ssGBLUP) are obtained through direct inversion of G.  503 
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