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ABSTRACT

The purpose of this study was to evaluate the ac-
curacy of genomic selection in single-step genomic 
BLUP (ssGBLUP) when the inverse of the genomic 
relationship matrix (G) is derived by the “algorithm 
for proven and young animals” (APY). This algorithm 
implements genomic recursions on a subset of “proven” 
animals. Only a relationship matrix for animals treated 
as “proven” needs to be inverted, and the extra costs of 
adding animals treated as “young” are linear. Analyses 
involved 10,102,702 final scores on 6,930,618 Holstein 
cows. Final score, which is a composite of type traits, 
is popular trait in the United States and was easily 
available for this study. A total of 100,000 animals with 
genotypes were used in the analyses and included 23,000 
sires (16,000 with >5 progeny), 27,000 cows, and 50,000 
young animals. Genomic EBV (GEBV) were calculated 
with a regular inverse of G, and with the G inverse 
approximated by APY. Animals in the proven subset 
included only sires (23,000), sires + cows (50,000), only 
cows (27,000), or sires with >5 progeny (16,000). The 
correlations of GEBV with APY and regular GEBV for 
young genotyped animals were 0.994, 0.995, 0.992, and 
0.992, respectively Later, animals in the proven subset 
were randomly sampled from all genotyped animals in 
sets of 2,000, 5,000, 10,000, 15,000, and 20,000; each 
sample was replicated 4 times. Respective correlations 
were 0.97 (5,000 sample), 0.98 (10,000 sample), and 
0.99 (20,000 sample), with minimal difference between 
samples of the same size. Genomic EBV with APY 
were accurate when the number of animals used in the 
subset is between 10,000 and 20,000, with little differ-
ence between the ways of creating the subset. Due to 
the approximately linear cost of APY, ssGBLUP with 

APY could support any number of genotyped animals 
without affecting accuracy.
Key words:  single-step method, genomic selection, 
genomic recursion

INTRODUCTION

Single-step genomic BLUP (ssGBLUP; Aguilar et 
al., 2010; Christensen and Lund, 2010) has emerged as 
a simple yet accurate tool for genetic evaluations. Its 
main advantages over multistep methods are simplic-
ity, no double counting, and resistance to preselection 
bias (Vitezica et al., 2011; VanRaden and Wright, 2013; 
Legarra et al., 2014). As originally defined, ssGBLUP 
uses classical BLUP mixed equations extended with the 
inverse of the genomic (G) and pedigree (A22) relation-
ship matrices for genotyped animals. With algorithms 
as described in Aguilar et al. (2011), the cost of obtain-
ing these matrices is cubic, and currently there is a soft 
limit of about 150k genotyped animals in the model; 
however, >600k genotyped animals are available for US 
Holsteins (https://www.cdcb.us/Genotype/cur_den-
sity.html). Several approaches have been proposed to 
overcome such a limit (Legarra and Ducrocq, 2012; 
Fernando et al., 2014; Liu et al., 2014) but either they 
have convergence problems or are expensive and hard 
to program and use with data and a variety of models 
such as multiple trait or random regressions.

Faux et al. (2012) attempted to extend the rules used 
in creation of the numerator relationship matrix to ap-
proximate the inverse of G. Their method was based on 
incomplete Cholesky factorization, where only genomic 
relationships between close relatives were considered. 
However, the approximation was not accurate enough, 
and steps proposed to increase that accuracy were ex-
pensive.

Recently, Misztal et al. (2014) proposed a method 
based on genomic recursion, where genomic breeding 
value (GBV) of a new genotyped animal is conditioned 
on GBV of all the previous genotyped animals. One 
of their proposed algorithms was called “algorithm for 
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proven andyoung animals” (APY). This algorithm con-
ditioned “young” animals on a small subset of “proven” 
animals. The APY algorithm has a cubic cost with the 
number of animals treated as proven and a linear cost 
with the animals treated as young; direct inversion is 
required for only a small portion of G composed of 
relationships among animals treated as proven. This 
algorithm was tested with simulated data and with US 
Holstein data (Fragomeni et al., 2014). In simulations, 
accuracies with APY were close to those with direct 
inverted G even when some animals with records were 
treated as young. This suggests that the definition of 
“proven” is not critical and this subset may not need 
to be composed of parents or animals with records, or 
possess any other special requirement. In US Holsteins 
with genotypes on 15k proven bulls and 60k young 
bulls, the correlations of genomic EBV (GEBV) ob-
tained through APY and regular method were >0.99.

In real data sets, genotyped animals include bulls and 
cows. Although the number of proven bulls is limited 
and increases slowly (~2,000/yr for US Holsteins), the 
number of cows with genotypes can be very high. The 
purpose of this study was to evaluate the accuracy of 
GEBV with APY for US Holsteins, considering geno-
types of bulls and cows and treating various groups of 
animals as proven and young.

MATERIALS AND METHODS

Genomic Recursions

The recursion for the additive genetic effect of animal 
i (ui) can be written as (Misztal et al., 2014)

 u u u p ui i ij j i
j

i
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where u is an additive genetic effect, p relates animals 
to all previous j individuals, and ε is the error term. 
Calculations can proceed as
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where M is a diagonal matrix of genomic Mendelian 
sampling, and G = {gij} is a genomic relationship ma-
trix, g is a vector of G, and p is a vector that contains 
p. Then, the inverse of G can be created using a for-
mula as in Henderson (1976) and Quaas (1988):

 G I P M I P TM T− − −= −( ) −( ) =1 1 1' ' , 

where T is a triangular matrix, P = {pij}, and I is an 
identity matrix; if many of its elements are very small, 
they can be set to 0 and G−1 may be computed at a 
low cost.

The APY Algorithm

In genomic recursions, contributions from proven and 
young animals can be separated as

 u u u u p u p ui i ij j
j proven

ij j
j young
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However, the contribution of information from young 
animals to other genotyped animals is 0 in GBLUP be-
cause young animals do not get information from data. 
Then, neglecting these contributions,

 u u u u p ui i ij j
j proven
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As shown in Misztal et al. (2014), the simplified recur-
sions lead to a new formula for an approximate inverse 
of G called APY:
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where Gpp is a subset of G relating proven animals, 
Gpy relates proven and young animals, Gip relates the 
ith young animal with all proven animals, and Mg is 
a diagonal matrix. Although this algorithm results in 
the same GEBV for GBLUP as the regular inversion of 
G−1, for ssGBLUP, the APY algorithm leads to an ap-
proximation, as a young genotyped animal may provide 
ties to ungenotyped ancestors. This happens if at least 
one of its parents is not genotyped.

The APY G−1 is a sparse matrix with nonzero ele-
ments forming an L shape, with only a diagonal for 
the submatrix due to young animals; the only direct 
inversion required is for Gpp. Whereas the regular G−1 
requires quadratic storage and cubic computations, the 
APY G−1 requires quadratic storage and cubic compu-
tations only for animals treated as proven and linear 
storage and computations for animals treated as young. 
When the number of animals treated as proven is a 
small fraction of all animals, the APY G−1 has ap-
proximately a linear cost and can provide large savings 
in memory and especially in computing time.
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Field Data

To check the quality of this approximation for G−1, 
we tested it using real data. Phenotypic data included 
11,626,576 records for final score on 7,093,380 cows, 
with 10,709,878 animals in the pedigree provided by 
Holstein Association USA Inc. (Brattleboro, VT). Fi-
nal score is a weighted linear combination of 5 major 
breakdown score for type traits in dairy cattle, and was 
chosen for this study because of availability of records. 
Genotypes on 42,503 SNP markers were available for 
569,404 animals. However, to have comparisons with 
the regular ssGBLUP where direct inversion of G is 
used, analyses involved only 100,000 of the genotyped 
animals, which is the limitation of ssGBLUP for the 
available computer. Thus, genotypes were considered 
for all 23,174 bulls with progeny information, all 27,215 
cows with records (hereafter termed “cows”), and ad-
ditionally 49,611 young animals.

Analyses

Initially, GEBV were calculated using the regular 
ssGBLUP, which applies direct inversion for G. Sec-
ond, GEBV were calculated using APY to obtain G−1 
recursively (G−1

APY) with several different definitions 
for proven animals: only sires; sires and cows; only 
cows; and sires with >5 progeny including sons and 
daughters. Third, previous analyses were repeated with 
“proven” animals randomly sampled from the group 
of all 100k genotyped animals in sets of 2k, 5k, 10k, 
15k, and 20k animals; the sampling was replicated 4 
times. Evaluations for final score were done using a 
single trait model as described in Tsuruta et al. (2002). 
All analyses were conducted with blup90iod2 (http://
nce.ads.uga.edu/wiki/BLUPmanual) program with 
modifications as in Aguilar et al. (2011). The quality 
of approximations was assessed by correlations between 
GEBV for the almost 50k young animals obtained from 
ssGBLUP using direct inversion of full G (regular ss-
GBLUP) and ssGBLUP using approximated G−1 from 
the APY algorithm.

RESULTS AND DISCUSSION

Table 1 summarizes runs with regular and APY ssG-
BLUP when the subset of animals treated as “proven” 
were sires, sires + cows, cows, and sires with >5 daugh-
ters. For all subsets, the correlations of GEBV obtained 
with a regular and APY algorithms are >0.99. In all 
cases except when cows were treated as proven, the 
convergence rate was close to a regular run, indicating 
good computing properties. The smallest set of proven 
animals with good predictive ability was sires with >5 

daughters (16,434 animals). Treating more animals as 
proven—that is, including sires with <5 progeny—only 
marginally affected the correlations. Computing an 
inverse for 16k animals (assuming cubic algorithm for 
inversion) cost about 200-fold less than for 100k ani-
mals and would cost 4,000-fold less for 600k animals.

Surprisingly good correlations were observed with 
only cows treated as proven although the convergence 
rate was affected, but was still much better than with 
ssGBLUP with unsymmetric equations constructed 
to avoid the inverse of G. (Aguilar et al., 2013). This 
means that the original definition of animals as young 
and proven is not necessarily important for accuracy 
of GEBV; only the number of animals in Gpp matters. 
To test this hypothesis, 2k, 5k, 10k, 15k, and 20k ani-
mals were chosen randomly from all bulls and cows and 
treated as proven in the APY algorithm. Rounds to 
convergence increased with subset size but were lower 
than with the regular algorithm. This suggest that G−1 
by APY is well numerically conditioned. The correla-
tions of GEBV with the regular and APY algorithms 
ranged from >0.94 for 2k animals to >0.99 for 20k ani-
mals, with very small variations among the replicates 
(Table 2). This means that the choice of animals in Gpp 
is mostly arbitrary.

Initially, the last statement seems hard to believe; 
however, recursions generate very similar inverses re-
gardless of the order of animals. The single step modi-

Table 1. Correlations between genomic EBV with regular and APY 
(algorithm for proven and young) single-step genomic BLUP for young 
genotyped animals and rounds to convergence for different subset of 
animals used in recursions

Definition  
of subset

Animals  
in subset Correlation

Rounds to  
convergence

All 100,000 1.000 567
Sires 23,174 0.994 432
Sires + cows 50,389 0.995 428
Cows 27,215 0.992 797
Sires >5 progeny 16,434 0.992 415

Table 2. Ranges of correlations between genomic EBV with regular 
and APY (algorithm for proven and young) single-step genomic BLUP 
for young genotyped animals and rounds to convergence when different 
numbers of randomly sampled animals were used in the subset for 
recursions

Number of  
proven animals Correlation

Rounds to 
convergence

2,000 0.943–0.944 351–357
5,000 0.971–0.972 354–367
10,000 0.985 391–403
15,000 0.989–0.990 411–480
20,000 0.992–0.993 416–425
20,0001 0.989–0.990 552–556
1Proven were randomly sampled from the group of young animals.
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fies the pedigree relationship matrix (A) toward a real-
ized relationship matrix (H). Possibly, to obtain a good 
H, only a good sample of genotyped animals is needed, 
and several such samples may exist.

To test whether the presence of sires and cows is 
crucial for good properties of APY, an extra set in-
cluded 20k animals selected randomly only from young 
animals. The correlations of GEBV for this set were 
slightly lower than with complete random 20k choice 
and similar to a 15k random sample. Also, the con-
vergence rate was slightly worse. In general, we expect 
better properties of APY when animals treated as 
“proven” are well related to animals treated as “young.” 
Although proven sires are well related to the general 
population, cows and young animals may be less so.

The Henderson’s algorithm for creating the inverse 
of the numerator relationship matrix (A−1) is based on 
younger animals conditioned on older animals (Hender-
son, 1976). In such a case, each recursion has at most 2 
nonzero elements, each with a value of 0.5 and due to a 
parent. However, an identical A−1 can be derived with 
animals in the reverse order (see Appendix in Misztal 
et al., 2014). In such a case, the number of nonzero ele-
ments in each recursion can be greater than 2 and they 
can take different values. Assume the following genomic 
recursion, where the additive genetic effect of an animal 
i is conditioned on the first m animals:

 u u u p ui i ij
j

i m

j i| , , (m),
min( , )

1 1
1

1

… −
=

−

= ∑  + ε  

where εi(m) is the error term; although the error term 
should be smaller with larger m, apparently the re-
duction of εi(m) for m >10k is small. In an alternate 
interpretation, the inverse of G created with APY is 
becoming more accurate as m increases, with small 
improvements beyond m > 10k.

The limited number of animals required in the recur-
sion (<20k) suggests that the genomic information for a 
population has a limited dimensionality (<20k). Nearly 
all genomic information from a reference population is 
usually assumed to be accounted for by SNP solutions 
with a medium-size chip (~50,000 SNP markers). How-
ever, many SNP are correlated. Pintus et al. (2013) 
found that 15,207 principal components extracted from 
matrices based on 39,555 SNP markers explained 99% 
of the genetic variation. Thus, the real dimensional-
ity of the SNP information may be ~15k. Alternately, 
when the number of QTL is high, the accuracy of 
GBLUP depends on the number of independent chro-
mosome segments, with the number of the segments 
usually <10k (Daetwyler et al., 2010). Further research 
will determine whether the limits based on the recur-

sion, eigenvalues, and chromosome segments are related 
through equivalent models.

The US Holstein population is very homogeneous. 
In other species, populations may be more diverse and 
a larger subset may be needed. Lourenco et al. (2015) 
applied APY to genetic evaluation of US Angus for 3 
traits with 52k genotyped animals. Using 4k and 8k 
subsets generated 84 and 97% of gains in accuracy, 
respectively, over BLUP compared with a regular ssG-
BLUP. A detailed analysis on the number and choices 
of animals treated as proven in APY will be a topic for 
a separate study. Further investigations will also look at 
whether specific subgroups of animals are invariant to 
the selection of the subset of animals defined as proven.

The original derivation of the APY algorithm was 
based on labeling animals in the recursion as proven. 
Because the algorithm works with any sufficiently large 
subset of animals in the recursion, the designation of 
proven or young may no longer be relevant. In particu-
lar, the animals can be decomposed into a base genomic 
relationship group (b) and a conditional genomic rela-
tionship group (c); for example, with relevant matrices 
Gbb and Gbc.

In this paper, we focused on accuracy of ssGBLUP 
with G−1 calculated by APY. In practical implementa-
tions, important issues will be memory requirements 
and computing costs for a large number of genotyped 
animals. Assume a total of n = 500k genotyped ani-
mals, recursion on m = 20k animals, and double preci-
sion half-storage. The amount of memory necessary for 
APY G−1 is approximately 80 gigabytes (n × m × 8 = 
20k × 500k × 8 bytes) or 8% of 1 terabyte (n2/2 × 8 = 
500k × 500k × 8 bytes/2) required for a regular half-
stored G−1. As current servers have memory capacity in 
the order of terabytes, the memory requirements will 
not limit the APY algorithm. Computing APY G−1 
would require approximately m3 + 2m2(n − p) opera-
tions, or about 0.3% operations (n3) for a regular G−1. 
Another issue is efficient computations of A22

1− . In sepa-
rate analyses (results not provided), computing this 
matrix using formulas similar to that of Stranden and 
Mantysaari (2014) took negligible time and memory.

CONCLUSIONS

Inverse of a genomic relationship matrix can be 
approximated with the APY algorithm where actual 
inversion is applied only to a small subset of geno-
typed “proven” animals and an approximate inversion 
by recursion is applied on “young” animals. The ap-
proximation is very accurate when the number of 
animals in the subset is 10k or greater, and storage 
and computing costs can be dramatically lower. The 
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choice of animals in the subset is arbitrary, as various 
definitions, including random choices, provide similar 
accuracy. The convergence rate is superior to that of 
conventional inversion. Costs of APY inversions with 
a larger number of animals are approximately linear, 
making the algorithm potentially suitable for any num-
ber of genotypes. Single-step GBLUP with APY may 
be suitable for models with any number of genotyped 
animals.
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