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Microbiota-host interplay at the gut
epithelial level, health and nutrition
Jean-Paul Lallès1,2,3

Abstract

Growing evidence suggests the implication of the gut microbiota in various facets of health and disease. In this
review, the focus is put on microbiota-host molecular cross-talk at the gut epithelial level with special emphasis on
two defense systems: intestinal alkaline phosphatase (IAP) and inducible heat shock proteins (iHSPs). Both IAP and
iHSPs are induced by various microbial structural components (e.g. lipopolysaccharide, flagellin, CpG DNA motifs),
metabolites (e.g. n-butyrate) or secreted signal molecules (e.g., toxins, various peptides, polyphosphate). IAP is
produced in the small intestine and secreted into the lumen and in the interior milieu. It detoxifies microbial
components by dephosphorylation and, therefore, down-regulates microbe-induced inflammation mainly by
inhibiting NF-κB pro-inflammatory pathway in enterocytes. IAP gene expression and enzyme activity are influenced by
the gut microbiota. Conversely, IAP controls gut microbiota composition both directly, and indirectly though the
detoxification of pro-inflammatory free luminal adenosine triphosphate and inflammation inhibition. Inducible HSPs are
expressed by gut epithelial cells in proportion to the microbial load along the gastro-intestinal tract. They are also
induced by various microbial components, metabolites and secreted molecules. Whether iHSPs contribute to shape
the gut microbiota is presently unknown. Both systems display strong anti-inflammatory and anti-oxidant properties
that are protective to the gut and the host. Importantly, epithelial gene expressions and protein concentrations of IAP
and iHSPs can be stimulated by probiotics, prebiotics and a large variety of dietary components, including
macronutrients (protein and amino acids, especially L-glutamine, fat, fiber), and specific minerals (e.g. calcium)
and vitamins (e.g. vitamins K1 and K2). Some food components (e.g. lectins, soybean proteins, various polyphenols) may
inhibit or disturb these systems. The general cellular and molecular mechanisms involved in the microbiota-host epithelial
crosstalk and subsequent gut protection through IAP and iHSPs are reviewed along with their nutritional modulation.
Special emphasis is also given to the pig, an economically important species and valuable biomedical model.
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Background
The gastrointestinal tract (GIT) is, like the skin or the
lung, a major interface organ between the environment
and interior milieu. It is the site with the highest load of
microorganisms (also referred to as “the microbiota”).
This is especially true in the large intestine due to sub-
stantial amounts of undigested dietary and endogenous
(e.g. mucus, enzymes) components amenable to micro-
bial fermentation. Gut epithelial cells are thus the first
cells to be exposed to nutrients and the microbiota, with
complementary functions between the small intestine

aiming at digestion and nutrient absorption and the
large intestine specialized in the fermentation of un-
digested materials. The gut epithelium is also the first
line of GIT (and body) defense and protection. Its action
is complementary to that of the associated mucosal im-
mune system whose development and maintenance are
induced by the microbiota [1]. Thus gut epithelial cells -
enterocytes and colonocytes - are polarized key players
influenced by both the environment (e.g. food, patho-
gens, toxicants) and body metabolism and functions.
The gut epithelium has developed over time various
mechanisms for sensing not only nutrients but also mi-
crobial structural components (e.g. lipopolysaccharide,
LPS; peptidoglycan, flagellin, CpG DNA motifs), metab-
olites (e.g. short chain fatty acids, SCFA) or secreted
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molecules (e.g. toxins, polyphosphate chains, other com-
pounds still unknown). These sensors include for ex-
ample Toll-like receptors (TLRs) [2, 3] and receptors to
SCFA. All these mechanisms make the molecular basis
of the crosstalk between the host and the gut microbiota
at the epithelial level.
Numerous experimental and clinical data have shown

that defects in gut barrier function may lead to chronic
inflammatory diseases and sometimes cancers [4–7].
These diseases affect not only the GIT but also other or-
gans (e.g. liver, brain) and include diverse metabolic dis-
turbances (ranging from glucose intolerance and insulin
resistance, type-2 diabetes to metabolic syndrome and
obesity), known risk factors for cardiovascular disorders.
Importantly, more recent investigations has highlighted
that many of these diseases may be modulated by the
gut microbiota [8], though cause-and-effects relation-
ships are often poorly understood. For instance, chronic
metabolic diseases and obesity may be related to body
entry of enteric microbial components (e.g. LPS) thus
triggering chronic low-grade, “metabolic” inflammation
[9, 10]. This in turn favors diet energy extraction, fat
synthesis and adipose tissue development, and shifts en-
ergy metabolism towards fat deposition and adipose tis-
sue inflammation, thus leading to metabolic syndrome
and obesity. The diet is a major lever of gut microbiota
modulation and is now regarded as a serious approach
for maintaining high microbiota diversity (or gene rich-
ness) and preserving health as well as correcting dysbio-
sis often observed in many chronic diseases [11]. This is
of utmost importance in the context of drastic reduction
of food diversity over the last decades [12].
The present review focuses on two specialized defense

and protection systems at the epithelial level, namely in-
testinal alkaline phosphatase (IAP) and inducible heat
shock proteins (iHSPs). Both of them are modulated by
the microbiota and the diet and confer gut epithelial (and
body) protection due to their potent anti-inflammatory
and anti-oxidant capacities. Data available in the pig are
also reviewed given the economic importance of this
species and its high potential as a biomedical model
for studies on development, microbiology, physiology,
neurobiology and nutrition [13–16]. In particular, the
weaning period is critical to pig rearing due to high
stress, GIT pathophysiology, growth check and in-
creased risk of enteric diseases [17, 18]. Fortunately,
selected dietary approaches may help circumvent
these disorders [19]. Therefore, dietary components
improving gut health through stimulating IAP and in-
ducible HSP proteins are briefly reviewed here too.

Intestinal alkaline phosphatase and the gut microbiota
Intestinal alkaline phosphatase (IAP), the specific intes-
tinal isoform of ubiquitous AP gene products, displays

an array of physiological properties that include: entero-
cyte apical surface pH maintenance through the control
of bicarbonate secretion, absorption of nutrients and
minerals (e.g. fatty acids, calcium), detoxification (by de-
phosphorylation) of pro-inflammatory microbial compo-
nents (e.g. LPS, flagellin, CpG DNA motifs, uridine
diphsophate (UDP)) and, ultimately control of gut (and
systemic) inflammation [20, 21]. IAP is an enzyme dy-
namically produced by the enterocyte in the small intes-
tine and secreted both luminally and basolaterally. Part
of lumen IAP escapes digestion in the bowel, remains
active along the large intestine and can still be detected
in small amounts in the feces.
Previous data suggested IAP to participate indirectly

to the control of intestinal barrier function [21], but a
direct involvement was demonstrated in mice recently
[22]. More precisely, IAP stimulates gene expression of
key tight junctions (Zonula occludens ZO-1 and ZO-2;
occludin) and their correct cellular localization.
Many recent data now converge to indicate that IAP not

only detoxifies microbial components but also contributes
to shape the gut microbiota and to prevent microbial en-
teric translocation into the body [14]. Free exogenous (e.g.
from bovine intestine) IAP per se does not seem to influ-
ence bacterial growth but enterocyte-bound IAP could
delay that of Escherichia coli in vitro (with no effects on
other bacteria such as Clostridium difficile, S. typhimur-
ium or Enterococcus faecalis) [23–25]. Mice deleted for
Iap gene (called Akp3 in this species) were reported to dis-
play fecal microbiota that were different from those of
wild-type mice: marked decrease in the overall load of
both aerobic and anaerobic bacteria, drastic reduction in
E. coli population and, conversely, increases in Clostri-
diales, Lactobacilli and Enterococci [24]. The precise
mechanisms for these IAP-dependent changes in gut
microbiota composition are not fully understood yet but
they may involve alterations in epithelial surface pH
and reduced gut inflammatory tone [26, 27]. Another
pathway of microbial control involving IAP was re-
cently reported [28, 29]. Free luminal adenosine tri-
phosphate (ATP), a strong pro-inflammatory danger
signal, dose-dependently inhibited microbial growth,
targeting more specifically Gram-positive (but not
Gram-negative) bacteria [29]. IAP was able to dephos-
phorylate and detoxify ATP, thus ultimately releasing
free adenosine which is a strong anti-inflammatory
molecule. Importantly, ATP was shown to drive cell dif-
ferentiation of Th17 T lymphocytes that produce IL-17
and IL-22 cytokines. The former is known to favor neu-
trophil tissue infiltration while both cytokines stimulate
antibacterial peptide production. IAP was already
shown to inhibit gut tissue infiltration of neutrophils in
zebra fish [23], thus strengthening the anti-inflammatory
capabilities of IAP.
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Regarding bacterial translocation, earlier investigations
reported an inhibitory effect of IAP [30]. However, later
work suggested a rather indirect influence though IAP-
driven down-regulation of inflammation and subsequent
reinforcement of gut barrier function [31, 32].
Collectively these data indicate that IAP directly and

indirectly controls gut microbiota load and balance and
that this directly connects to gut inflammatory tone.

Inducible heat shock proteins and the gut microbiota
Beside the general roles of HSPs as intracellular protein
chaperones, those induced specifically in gut epithelial
cells, namely HSP25 (or HSP27, depending on the host
species) and HSP70 are involved in many vital functions
(e.g. cell proliferation and apoptosis, immune responses)
and the control of inflammation and oxidation [33, 34].
Importantly, iHSPs regulate gut barrier function, by spe-
cifically controlling the expression of key tight junction
proteins (e.g. occludin) and by down-regulating adverse
effects of oxidative and inflammatory stress on cells [33].
In rodents, epithelial iHSPs are expressed at low and

high levels in the small and large intestines, respectively
[34]. This actually reflects the loads of microbes present
along these compartments and that are a major factor of
iHSP induction. Indeed, intestinal and colonic epithelial
cells per se are equally responsive to iHSP-inducing
stimuli and the gut proximal-distal iHSP gradient disap-
pears in germfree animals [35, 36].
The microbiota-host epithelial crosstalk is first

brought about by specific microbial compounds, includ-
ing structural components (e.g. LPS, lipoteichoic acid,
flagellin), metabolites (especially n-butyrate but also pro-
pionate), toxins (e.g. toxin A from Clostridium difficile,
enterotoxin B superantigen from Staphylococcus aureus)
and other soluble substances (e.g. various peptides like
fMLP) [34]. All these substances are recognized by spe-
cific receptors (e.g. TLRs) or are internalized in gut epi-
thelial cells by specific transporters (e.g. the peptide
transporter PepT1), and intracellular signaling pathways
involve various kinases (especially p38 MAPK) [34].
Many HSP inducers are active at very low concentra-
tions (ng order) and responses are often fast (within a
few hours). Therefore, the physiological epithelial iHSP
tone is under direct influence of the gut microbiota
composition and metabolic activities. Their stimuli are,
in turn, essential for permanently triggering optimal
levels of epithelial defense given the fact that iHSPs con-
fer protection to gut epithelial cells exposed to oxidative
stress and inflammation [34].
Anaerobic bacteria (e.g. Bacteroides fragilis) were re-

ported to have important roles in HSP induction [37, 38].
A variety of Gram-negative bacteria (e.g. E. coli) and
Gram-positive bacteria (Bifidobacterium breve, Lactobacil-
lus paracasei, L. plantarum, L. Johnsonii) have been

shown to be strong inducers of gut epithelial iHSPs in
vitro and sometimes in vivo, though others (e.g. Entero-
bacter aerogenes and Proteus mirabilis for Gram-negative
species; Enterococcus faecalis for Gram-positive species)
had no effects on iHSPs. In the same line, many probio-
tics, especially of Lactobacilli and Bifidobacteria strains,
but not all probiotics (e.g. E. coli Nissle 1917) were dem-
onstrated to induce gut epithelial HSPs and different cell
sensors (e.g. TLRs or other molecules) and signaling path-
ways (often p 38 MAPK) have been disclosed (Table 1)
(see also Table 2 and Table of ref. [34]). Finally, some (e.g.
metronidazole), but not all antibiotics (or mixtures) may
decrease iHSP levels and increase gut susceptibility to
microbial toxins (e.g. C. difficile toxin A).
Collectively these data suggest that iHSP induction at

the gut level might be one important mechanism of gut
epithelial protection by commensal bacteria and probio-
tics and that any alterations in this protection may be
detrimental to the host.

Dietary modulation of gut defense and protection
systems
We have reviewed that many dietary compounds can
modulate both IAP and iHSP gene expressions and pro-
tein concentrations or activities [20, 21, 34].

Intestinal alkaline phosphatase
Food intake per se is a stimulator of IAP while starvation
has opposing effects [30]. Dietary added calcium stimu-
lates IAP in rat intestine [39]. Calcium is known to be
protective in colonic inflammation models but the impli-
cation of IAP was not explored. Free phosphorus had
inhibitory effects on IAP while bound phosphate (e.g. to
starch in some potato varieties) is dose-dependently
stimulatory. Therefore, calcium-to-phosphorus ratio and
their chemical forms in the diet are critical to IAP activity.
Besides, vitamins K1 (philloquinone) and K2 (menaquin-
one-4) could also stimulate IAP in rodents.

Table 1 Molecular sensors, microbial component and
intracellular signalling pathways involved in the induction of
HSPs by intestinal epithelial cells (adapted from ref. [34])

Molecular sensor/receptor
on intestinal epithelial cell

Microbial component
recognized

Signalling pathway
involved

TLR-2 Lipoteichoic acid ?

TLR-4 Lipopolysaccharide MAPK p38, ERK1/2

TLR-5 Flagellin MAPK p38

GPR-41 & GPR-43
(putatively)

Butyrate, propionate ?

PepT1 fMLP peptide MAPK p38

OCTN-2 ERGMT peptide MAPK p38

Integrin-β Polyphosphate chains MAPK p38
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Fat intake stimulates IAP in rodents and this has been
interpreted as an adaptive response to fat-dependent in-
creases in intestinal LPS uptake and translocation (via
the chylomicron pathway) into the interior milieu [40].
The degree of saturation and length of fatty acids are
also important to consider [20, 21]. Saturated and
medium-chain fatty acids appear as stronger inducers of
IAP compared to poly-unsaturated fatty acids (PUFA).
Saturated fats are known for shifting the gut microbiota
towards more Gram-negative bacteria and, therefore,
more pro-inflammatory microbial components and more
inflammation [41]. Importantly, intestinal tissue con-
centration of (n-3) PUFA was recently demonstrated
to determine the level of gene expression and enzyme
activity of IAP which, in turn modified the gut micro-
biota composition and enhances barrier function [42].
In particular, the proteobacteria phylum (e.g. E. coli
and other LPS-producing species) was reduced while
anti-inflammatory bacteria (e.g. Bifidobacteria, Lactoba-
cilli; Akkermansia muciniphila) were enhanced in (n-6)
PUFA-fed, genetically engineered (Fat-1) mice that are
able to convert dietary (n-6) PUFA into (n-3) PUFA. This
contributes to explain, especially at the gut level the anti-
inflammatory properties of (n-3) PUFA.

Inducible gut epithelial HSPs
Many dietary components are modulators of gut epithe-
lial iHSPs [43]. This includes notably various amino
acids and proteins, fiber, zinc, n-butyrate and many pro-
biotics. The stronger inducer of iHSPs is without contest
L-glutamine whose action is fast and of high magnitude.
Its mode of action involves polyamines that increase the
binding between transcription factor HSF-1 and heat-
shock element on Hsp genes. Putrescine and spermidine,
and their precursor ornithine stimulate the induction of
both HSP25 and HSP70 in various gut epithelial cell
lines in vitro. Spermine seems to induce HSP25 only.
Molecular mechanisms of L-glutamine action involve
the up-regulation of Hsf1 gene expression and promoter
activation resulting in iHSP production and subsequent
down-regulation of the pro-inflammatory NF-κB path-
way (by inhibiting protein p65 nuclear translocation and
cell apoptosis). Other iHSP-stimulatory L-amino acids,
though less effective than glutamine include glutamate,
arginine, threonine and metabolic intermediates like cit-
rulline [34]. Regarding dietary proteins, plant lectins
(from kidney bean or wheat germ) inhibit iHSP expres-
sion while wheat gluten (involved e.g. in celiac disease)
disturbs iHSP cellular localization in vitro, thus increas-
ing cell sensitivity to oxidation and inflammation.
Mineral and organic forms of zinc as well as SCFA like

butyrate (n- and iso- forms) and propionate are strong
inducers of gut epithelial iHSPs in vitro. Pectin, a soluble
and fermentable fiber (but not cellulose) stimulates both

iHSPs in the ileum and the colon of rats. Conversely,
pro-inflammatory, high sulfated saccharides like dextran
sulfate sodium and carrageenans are known to disturb
iHSP phosphorylation and functionalities, thus favoring
gut inflammation. Therefore, the type of dietary fiber is
important to consider when iHSP stimulation is needed.
Surprisingly, various polyphenols were often shown to
be potent inhibitors of gut iHSPs (e.g. quercetin), though
they display anti-oxidant properties [34]. Finally, dietary
mycotoxins with high oxidant capacity (e.g. zearalenone,
fumonisins) induce iHSPs but this response is usually in-
sufficient to counteract mycotoxin toxicity.
Many probiotics, especially Lactobacillus and Bifido-

bacteria strains are inducers of gut epithelial iHSPs and
contribute to gut protection (see Tables 3 and 5 in ref.
[34]). These probiotics can induce either or both (HSP25
and HSP70) iHSPs, depending on the strain. Inhibition
of pro-inflammatory cytokine (e.g. IL-8) secretion and of
some pathogens (e.g. S. typhimurium) has been docu-
mented too. The probiotic-dependent protection are me-
diated by various microbial triggers: cell wall components
(lipoteichoic acids, LPS, flagellins), metabolites (butyrate,
propionate) or secreted molecules (e.g. peptides; poly-
phosphate) (Table 1). A number of epithelial cell mem-
brane sensors have been identified (TLRs, peptide
transporters, etc.) while others remain to be discovered.
Intracellular signaling often involves kinases, and espe-
cially p38 MAPK. Interestingly, Japanese groups have se-
lected Lactobacillus (L. paracasei and L. brevi) probiotic
strains that produce high amounts of long-chain polypho-
sphates (up to 700 phosphate units) that are responsible
for improving epithelial barrier function in vitro and in
mice [43–46]. Polyphosphate is endocytosed by the cell
through caveolin-1 and integrin-β1 mechanisms and
p38-MAPK-dependent gene expression and protein
production of HSP27. Endocytosis is the key step for
polyphosphate protective action [44, 45]. As a result,
synthetic long-chain polyphosphates added to the diet
may be serious candidates for mimicking the protect-
ive action of those probiotics in vivo.
Collectively these data support the diet (including

probiotics) as a major lever for stimulating gut defense
systems and controlling inflammation and oxidative
stress.

Gut IAP and iHSP defense systems and their nutritional
modulation in the pig
The pig is a major source of meat worldwide and it is
increasingly used as a biomedical model in various
domains [13–16]. Most of the mechanisms of gut epithe-
lial protection by IAP or iHSPs and their modulation by
dietary components have been described, at least partly
in the swine species too (e.g. for IAP: [47]).
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Intestinal alkaline phosphatase
Pigs display three alkaline phosphatase gene copies in
the intestine, thus being intermediate between domestic
carnivorous (single copy) and ruminants (seven copies)
[48]. IAP is strongly inhibited after early weaning in pigs
and this is considered as a major factor in post-weaning
disorders and enhanced piglet sensitivity to enteric infec-
tions [49]. The hormone glucagon-like peptide 2 (GLP-2),
known for its intestine-trophic properties has been re-
cently shown to stimulate duodenal and jejunal IAP in
weaned pigs injected with exogenous (human) GLP-2
[50]. This was associated with the maturation of intestinal
epithelial cells. Finally, piglets born to sows treated with
antibiotics (amoxicillin) around parturition transiently dis-
played lower Iap gene expression and IAP enzyme activity
than piglets born to untreated sows [51].

Inducible gut epithelial HSPs
Pigs display substantial and fairly similar iHSP concen-
trations in the small and large intestine [52–54], con-
trary to laboratory rodents that are virtually devoid of
iHSPs in the small intestine (except in its distal part: the
ileum) [34]. Growing pigs even displayed higher iHSP
concentrations in the ileum than in the colon [55].
Intra-uterine growth retarded piglets were shown to dis-
play higher duodenal and jejunal HSP70, as hallmarks of
fetal stress in utero [55]. iHSPs have been evidenced to
be modulated by weaning along the GIT of piglets [52].
Small intestine iHSPs were not influenced in piglets
born to sows given antibiotics (amoxicillin) around par-
turition but colonic HSP70 was transiently decreased
[53]. Important links between iHSPs and the gut micro-
biota were demonstrated in pigs (fed chicory inulin, see
below) [55]. These included: negative correlations be-
tween HSP27 and lumenal bacteria (L. reuteri and
Enterobacteriacae), positive correlations between iHSPs
and lactic acid-producing bacteria or L. Johnsonii. Ileal
HSP27 and colonic HSP70 correlated negatively with
the diversity of mucosa-associated bacteria and Rose-
buria faecis (a butyrate producer). Colonic HSP70 cor-
related negatively with Prevotella brevis but positively
with the anti-inflammatory bacterium Faecalibacterium
prausnitzii [56]. Although such individual correlations
are difficult to interpret in terms of cause-and effect re-
lationships, they suggest intimate interactions between
iHSPs and the gut microbiota in pigs.

Dietary modulation of gut IAP and iHSPs in pigs
IAP Few data are available on the effects of dietary
factors on IAP in pigs [20, 21]. First, feed intake is an
important IAP modulator in pig gut [53]. Regarding
fat, Dudley et al. [57] reported higher IAP in pigs fed
high fat diets with saturated (tallow), compared to un-
saturated (corn oil) fat sources. Intestinal cell membranes

reflected dietary fatty acid profiles, suggesting a link with
IAP levels [43, 57]. Furthermore, wheat arabinoxylan
alone or associated with cellulose was recently shown to
increase ileal total AP activity [58]. This was interpreted
as positive as it is essentially the IAP isoform that is
present in the small intestine [20, 21]. The Authors also
reported increased AP activity in the mid-colon in re-
sponse to arabinoxylan supplementation [58]. This obser-
vation should be interpreted with caution because it was
total AP (and not specifically IAP isoform) activity that
was measured and this could reflect a sign of colonic in-
flammation, e.g. resulting from increased tissue infiltration
by neutrophils [21]. Thus, effects of dietary components
on GIT AP activity should be interpreted carefully accord-
ing to GIT segment and efforts to differentiate between
true IAP isoform and nonspecific AP activities using
appropriate AP inhibitors [20] should be considered.
Interestingly, IAP was shown to be higher in pigs selected
for low, compared to high residual feed intake and this
was associated with lower inflammation and circulating
levels of LPS [59]. These data collectively suggest that IAP
is influenced by the type/source of dietary fat and fiber
and also reduces LPS intestinal translocation and inflam-
mation in pigs. Also, intestinal IAP could be one key to
residual feed intake and feed efficiency.

iHSPs Feed intake modulates iHSPs along pig GIT [52].
Many feed ingredients, including amino acids and pro-
teins, carbohydrates (including fiber) and fat are known
to modulate gut function in pigs [18]. However, only
some studies specifically investigated iHSPs.
L-glutamine as repeatedly been shown to improve

growth performance and intestinal anatomy and function
in weaned piglets [18], and these effects were partly medi-
ated by intestinal epithelial HSP70 [60]. L-glutamine also
improved intestinal maturation in intra-uterine growth
retarded pig neonates through HSP70-mediated mecha-
nisms [61]. Protective iHSP-mediated effects on the gut
were also brought about with diets supplemented with
L-arginine, α-ketoglutarate and N-carbamyl-glutamate
[62, 63]. Besides, soybean proteins are considered as
toxic for the gut of piglets [64]. The storage protein
β-conglycinin was recently shown to inhibit gut HSP70
in pigs, probably contributing to the adverse effects of
soybean proteins [65]. Conversely, a weaning diet supple-
mented with a melon pulp rich in the anti-oxidant enzyme
superoxide dismutase decreased iHSP protein concentra-
tions along the GIT of already weaned piglets, but this
probably reflected reduced oxidative stress [66]. Finally,
zinc oxide up-regulated Hsp70 gene in porcine IPEC-J2
epithelial cell line but could not be shown to do so at high
zinc level (2,200 ppm) in vivo [67–69]. Regarding dietary
fiber, chicory pectin was recently shown to stimulate ileal
and colonic HSP27 in growing pigs [56]. Interestingly,
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ileal iHSP27 was positively correlated with fiber intake
and various correlations between iHSPs and the gut
microbiota were set up for both the ileum and the
colon (see above) [56]. Also, two probiotic strains (L.
johnsonii strain P47-HY and L. reuteri strain P43-
HUV) were demonstrated to stimulate iHSPs in
IPEC-J2 porcine intestinal cell line in vitro [70]. By
contrast, another probiotic (Enterococcus faecium
strain NCIMB) did not do so in this porcine cell line,
despite its stimulation on HSP70 in human Caco2
cells [71]. This highlights the host species-dependent
specificity of probiotic effects on gut epithelial cells.
Finally, we showed that the mycotoxin fumonisin-B1
slightly stimulated iHSP70 (but not iHSP27) in the je-
junum, without effects on iHSPs in the colon of
already weaned pigs [72].

Conclusions
The present review summarizes the published infor-
mation on gut protection and defense systems,
namely IAP and inducible HSPs, in rodent species
and in pigs (Fig. 1). It also highlights the stimulation
of these protection systems by a variety of dietary
components that could, therefore be used to promote
gut health. Importantly, many probiotic strains dis-
play protective properties that involve IAP and (or)
iHSP stimulation. Data in pigs are more limited than
in laboratory rodents but they also support roles for
IAP and iHSPs in microbiota - host interactions and
in controlling gut function and inflammation.
Additional work is needed (especially in pigs) for
setting up unequivocal cause-and effect relationships
in the microbiota-host interaction for gut health and

highlighting better the importance of dietary compo-
nents for stimulating IAP- and (or) iHSP-dependent
mechanisms of gut epithelial protection.
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Fig. 1 Various food components (nutrients, minerals, vitamins) modulate inducible heat shock proteins (iHSPs) and intestinal alkaline phosphatase
(IAP) in the epithelium of the small intestine. It is mostly microbial compounds, fermentation products (short-chain fatty acids, SCFA) and other
unknown secreted molecules of microbial origin that induce iHSP in the large intestine (nb: IAP expression and activity are very low there).
Luminal IAP contributes to control the gut microbiota (present in low numbers) in the small intestine. Luminal IAP also partially escapes digestion
in the small intestine and is active to shape the gut microbiota in the large intestine. iHSPs and IAP display potent anti-oxidant and anti-inflammatory
properties that dynamically stimulate gut epithelial resistance to oxidative stress and inflammation. IAP is also anti-inflammatory systemically
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