

Integrating microalgae production with anaerobic digestion: a biorefinery approach

Enrica Uggetti, Bruno Sialve, Eric Trably, Jean-Philippe Steyer

▶ To cite this version:

Enrica Uggetti, Bruno Sialve, Eric Trably, Jean-Philippe Steyer. Integrating microalgae production with anaerobic digestion: a biorefinery approach. Biofuels, Bioproducts & Biorefining, 2014, 8 (4), pp.516-529. 10.1002/bbb.1469. hal-02639931

HAL Id: hal-02639931 https://hal.inrae.fr/hal-02639931

Submitted on 9 Aug 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	INTEGRATING MICROALGAE PRODUCTION WITH ANAEROBIC DIGESTIC		
2	A BIOREFINERY APPROACH		
3			
4	Enrica Uggetti [*] , Bruno Sialve, Eric Trably, Jean-Philippe Steyer		
5			
6	INRA, UR0050,		
7	Laboratoire de Biotechnologie de l'Environnement,		
8	Avenue des Etangs, Narbonne, F-11100, France.		
9			
10			
11	*Corresponding author: Enrica Uggetti		
12	Tel: +33 468 42 51 51		
13	Fax: +33 468 42 51 60		
14	E-mail address: enrica.uggetti@supagro.inra.fr		

15 Abstract

In the energy and chemical sectors, alternative production chains should be considered 16 17 in order to simultaneously reduce the dependence on oil and mitigate climate change. 18 Biomass is probably the only viable alternative to fossil resources for production of 19 liquid transportation fuels and chemicals since, besides fossils, it is one of the only 20 available sources of carbon rich material on earth. Over recent years, interest towards 21 microalgae biomass has grown in both fundamental and applied research fields. The

1 biorefinery concept includes different technologies able to convert biomass into added 2 value chemicals, products (food and feed) and biofuels (biodiesel, bioethanol, 3 biohydrogen). As in oil refinery, a biorefinery aims at producing multiple products, 4 maximizing the value derived from differences in biomass components, including 5 microalgae. This paper provides an overview of the various microalgae-derived 6 products, focusing on anaerobic digestion for conversion of microalgal biomass into 7 methane. Special attention is paid to the range of possible inputs for anaerobic digestion 8 (microalgal biomass and microalgal residue after lipid extraction) and the outputs 9 resulting from the process (e.g. biogas and digestate). The strong interest for microalgae 10 anaerobic digestion lies in its ability to mineralize microalgae containing organic 11 nitrogen and phosphorus, resulting in a flux of ammonium and phosphate that can then 12 be used as substrate for growing microalgae or that can be further processed to produce 13 fertilizers. At present, anaerobic digestion outputs can provide nutrients, CO₂ and water 14 to cultivate microalgae, which in turn, are used as substrate for methane and fertilizer 15 generation.

16

17 Keywords: Microalgae, Biorefinery, Co-products, Anaerobic Digestion, Methane18 production.

19 **1. Introduction**

Nowadays, the important increase of the oil demand is placing an enormous pressure on the finite supply of fossil fuel-derived energy and chemicals. For this reason, the development of alternative production chains in the energy and chemical sectors is necessary in order to simultaneously reduce the dependence on oil and mitigate climate change. Plant-based raw materials (i.e. biomass) have the potential to replace a large fraction of fossil resources as feedstock for industrial production. Due to its high carbon content, biomass is a suitable alternative to fossil resources for production of liquid transportation fuels and chemicals. In addition, biomass resources are locally available in many countries and their use could largely contribute to reduce national dependence on imported fossil fuels.¹

6 Beyond their energetic value, microalgae have been widely investigated as sources of 7 chemicals, cosmetics and health products, animal and human feed. In fact, photosynthetic 8 organisms such as higher plants, algae, and cyanobacteria are capable of using sunlight and 9 carbon dioxide to produce valuable organic molecules, such as carbohydrates, lipids, 10 pigments, fibers, etc. Over the recent years, the interest for microalgae biomass has increased 11 in both fundamental and applied research fields aiming at producing biofuels and biochemicals. This paper provides an overview of the various products obtained from 12 13 microalgae biomass, with a special focus on anaerobic digestion for methane and fertilizer 14 production.

15 **2. Microalgae biorefinery**

The biorefinery concept consists in different technologies able to convert any type of biomass 16 17 to value-added products, biofuels and chemicals. This concept is derived from the petroleum refinery, which uses petroleum to produce multiple fuels and products with applications in 18 19 various industries. As in oil refinery, a biorefinery aims at generating multiple end-products, 20 and maximizing the value derived from differences in biomass components. In order to design 21 an efficient and cost effective biorefinery, an important stage is the provision of a renewable, 22 consistent and regular supply of feedstock (raw materials used in biorefinery). In this context, 23 microalgae, including all unicellular and simple multi-cellular microorganisms, such as 24 prokaryotic microalgae (e.g. cyanobacteria Chloroxybacteria), eukaryotic microalgae (e.g. green algae *Chlorophyta*), red algae (*Rhodophyta*) and diatoms (*Bacillariophta*) play an important role as biorefinery feedstock.² These photosynthetic organisms can be cultivated in freshwater, seawater and wastewater, and they can be farmed on non-arable land. Moreover, certain microalgae can tolerate and adapt to a wide variety of environmental conditions (in terms of pH, temperature, light, etc.) and can be produced all year round. Table 1 compares the biomass productivity of microalgae (up to 70 ton dry weight (DW) per ha per year) and conventional agricultural crops together with their raw energy productivity.

8 Microalgae are typically composed by proteins, carbohydrates, lipids, and other valuable 9 components (e.g. pigments, anti-oxidants, fatty acids and vitamins) (Table 2). These 10 components are valuable for a wide range of applications. The carbohydrates present in 11 microalgae are considered as an appropriate feedstock for microbial growth and generation of 12 various fermentation products. The high lipid content in algal biomass makes it promising for 13 biodiesel production. However, special attention to the fractions of lipids stored in microalgae 14 should be paid, and unsaturated fatty acids from microalgae may need to be hydrogenated to 15 improve fuel properties. Finally, the related long-chain fatty acids, pigments and proteins 16 have their own nutraceutical and pharmaceutical applications. However, the technology for 17 the commercial production of microalgae bioproducts is still being under development and 18 investigation. More particularly, additional efforts should be made to reduce the operating 19 costs, that are essentially associated with algal biomass growth (e.g. nutrients, light and CO₂ 20 distribution), harvesting (i.e. isolation of the biomass from the culture, dilution or 21 concentration of algae to suitable levels for further processing), and downstream processing 22 obtaining valuable products or subproducts.

In this sense, even though economics are strictly correlated with the biochemical composition of the biomass, Williams and Laurens (2010)⁵ emphasized that the "biofuel only" option is unlikely to be economically viable and other sources of revenue are needed to make the system profitable. For this reason, the main challenge prior to any biorefinery development is
 the optimization of efficient and cost effective production of transportation biofuels,
 biomaterials and biochemicals, by using all biomass components as co-products.

4 2.1 Pharmaceuticals, food and feed

5 Many microalgae naturally contain omega-3 fatty acids which can be purified to provide a 6 high-value food supplement.⁶ In addition, eicosapentanoic acid (EPA) as well as 7 decosahexaenoic acid (DHA) have pharmaceutical applications in the treatment of heart and 8 inflammatory diseases (e.g. asthma, arthritis, headache and psoriasis) as well as in the 9 prevention and cure of cancer, AIDS, to control and lower cholesterol, or to boost the immune 10 system and body detoxification.⁷

The antioxidants produced from microalgae to protect the photosynthetic cells from oxidative stress can be used in the medical field to limit or prevent health problems, such as atherogenesis, cancer, neurodegenerative diseases, infant retinopathy, muscular degeneration and renal failure.⁸ In addition, hydrocarbons contained in microalgae can replace the paraffinic and natural waxes in the production of facial masks for the cosmetic industry.

16 Microalgae are also used in pharmaceuticals or in cosmetics as a source of chlorophyll 17 pigment and they are currently gaining importance as a food additive due to their strong 18 naturally green color. Traditionally the above mentioned compounds have been obtained by 19 solvent extraction. However many researchers are nowadays focusing on more sustainable 20 extraction techniques. As an illustration, supercritical CO₂ extraction was recently applied for 21 successful lipid extraction on Botryococcus braunni, Chlorella vulgaris, Dunaliella salina and the cyanobacteria Arthrospira (Spirulina) maxima.⁹ However, CO₂ can only extract the 22 neutral lipid fraction and, in order to achieve higher yields, alternative extraction techniques 23 combined with polar extraction solvents (e.g. microwave-assisted extraction, ultrasound-24 25 assisted extraction, extraction with pulsed electric field, bead-beating-assisted extraction,

Soxhlet extraction, pressurized fluid extraction, and others) were also reported in the
 literature, each having their own advantages and disadvantages.¹⁰

Many algal species have been also examined by various researchers for their biochemical compositions to be suitable as substitute or primary livestock feed. Indeed, it has been reported that microalgae can play a key role in high-grade animal nutrition food, from aquaculture to farm animals. Comprehensive nutritional and toxicological evaluations demonstrated the suitability of algae biomass as a valuable feed supplement or substitute in conventional animal feed sources.¹¹

9 2.2 Fuel products

10 2.2.1 Biodiesel

The viability of microalgae for biodiesel production has been investigated by a number of studies.^{12, 13, 14} Authors pointed out that, in spite of a certain dependence of the oil yield of the algal strain, the oil content of microalgae is generally much higher than for other plant crops. In fact, many species of algae produce amounts of lipids as high as 50–60% of their dry weight. Various methods for lipid extraction from microalgae were reported in literature, the most common methods being expeller/oil press, liquid–liquid extraction (solvent extraction), supercritical fluid extraction and ultrasound techniques.¹³

Concerning the species the most suitable for biodiesel production, *Botryococcus braunii*, *Chlorella vulgaris*, *Nannochloropsis* sp., *Nitzschia laevis*, *Parietochloris incise* and *Schizochytrium* sp. have oil contents higher that 50% dry weight.¹⁵ However, only few strains are nowadays commercially produced and there is a strong need for screening for new strains or modifying the existing strains in order to reach an optimal lipid content for efficient biodiesel production.¹⁶

1 2.2.2 Bioethanol

2 Bioethanol from algae represents a significant potential due to their low percentage of lignin 3 and hemicellulose compared to other lignocellulosic plants and to the important amount of 4 carbohydrates, typically galactose (23%) and glucose (20%) which are energy-rich compounds¹⁷ In fact, certain species of microalgae have the ability of producing high levels of 5 6 carbohydrates instead of lipids as reserve polymers. The starch accumulated within the chloroplasts or the cytoplasm¹⁸ is a source of carbohydrates that can be extracted to produce 7 8 fermentable sugars. Bioethanol from biomass could therefore be obtained by means of 9 biochemical processes (i.e. fermentation), thermo-chemical processes or gasification. The 10 microalgae Chlorella vulgaris, more particularly, has been considered as a promising feedstock for bioethanol production as it can accumulate up to 37% (dry weight) of starch.¹⁹ 11 12 Chlorococum sp. was also used as a substrate for bioethanol production under different fermentation conditions.¹⁹ Bioethanol can be produced directly from the microalgae biomass 13 or from the exhausted biomass following lipid extraction. For example, Harun et al. (2009)²⁰ 14 15 tested the effect of different fermentation conditions and parameters on accumulation of 16 bioethanol and found that the lipid-extracted microalgae gave 60% higher ethanol 17 concentrations than the dried and intact microalgae. In this way, microalgae could be used for 18 the production of both lipid-based biofuels and for ethanol biofuels from the same biomass, 19 thus increasing their overall economic value.

In addition, CO_2 produced as by-product from the fermentation process can be recycled as carbon source for further microalgae cultivation. This aspect is discussed in further details below.

23 2.2.3 Biohydrogen

In the case of biohydrogen production, microalgae can either produce themselvesbiohydrogen after derivation of their photosynthetic metabolism, or be used as feedstock for

further biohydrogen production by microbial dark fermentation.^{21,22} For one side, certain 1 2 photosynthetic microalgae and cyanobacteria are capable of directly producing biohydrogen 3 through photobiolysis involving the oxidation of ferredoxin by the hydrogenase enzyme, but only when the cellular metabolism is restricted, ie. under medium (S) starvation and low light 4 5 intensity. In that case, the reduced ferredoxin are reoxidized by transfering their electrons to 6 the hydrogenase. However, hydrogenases directly compete with many other metabolic 7 processes for the partitioning of electrons, and are strongly inhibited by the presence of the 8 oxygen, produced concomitantly by photosynthesis. To avoid such inhibition, a two steps 9 growth, so-called indirect biopholysis, is recommended where the microalgae grows in the 10 first stage with no light or medium limitation followed by hydrogen production under medium 11 (S) starvation and lower light intensity.

12 In this context, a significant amount of recent research on microalgae photobiohydrogen 13 production has focused on the optimization of process operation as well as the identification 14 of more robust hydrogenase activities, and especially on oxygen-tolerant hydrogenases.^{23, 24}

15 In addition, certain purple non sulfur (PNS) bacteria, e.g. Rhodobacter sp. or Rhodospirillum sp., can also produce biohydrogen by photofermentation.²² This consists in the fermentation 16 17 of organic compounds (sugars, volatile fatty acids, alcohols) under illumination but in absence 18 of nitrogen in the growth medium. In these microorganisms, the organic compounds are 19 oxidized by a fermentative pathway, ie. under anoxygenic conditions, and the protons are reduced by a nitrogenase, when the cells are under nitrogen starvation.²⁵ In fact, nitrogenase 20 21 has a high affinity to nitrogen and any nitrogen source in the medium can cause severe 22 inhibition of the phtotofermentative production of biohydrogen. Moreover, this cellular 23 mechanism requires high amount of energy in the form of ATP molecules, and therefore with low hydrogen yields (<1.5 moleH2 per mole glucose).²⁵ 24

On the other side, microalgae can also be used as substrate for dark fermentation to produce hydrogen. The hydrogen productivities are considerably higher with microbial dark fermentation when considering the use of algae as substrate than through photobiological pathways. For this reason, dark fermentative H₂ production from microalgal biomass has received increasing attention over the past few years. It was shown that the use of microalgae *Chlamydomonas* spp., *Chlorella* sp., *Dunaliella tertiolecta* and *Scenedesmus* spp. as feedstock led to hydrogen yields ranging between 17 and 114 mLH₂/gVS (volatile solids).²⁶

8 These results are consistent or even competitive with the biohydrogen yields obtained 9 fromterrestrial plants and agricultural wastes, as previsouly reported byGuo et al. (2010)²⁷ As 10 pointed out by Cheng et al. (2011), the algal biomass is very suitable as feedstock for 11 biohydrogen by dark fermentation since several strains of microalgae could accumulate 12 carbohydrates in significant amounts.²⁸ Yang et al. (2010) suggested also to use the residual 13 microalgal biomass after oil extraction processes to produce hydrogen, which suits perfectly 14 with a concept of environmental biorefinery.²⁹

15

16 2.2.4 Biogas

Anaerobic digestion is a common process to treat organic waste in most of the developed 17 countries across the world. During the past few years, it has been largely implemented 18 19 because of the increase in the economic subsidies for generation of electricity from biogas. In 20 certain countries (such as Germany and Sweden), biogas is also used as transportation biofuel, 21 after purification upgrading to biomethane. In the following, we will focus on the anaerobic 22 conversion of microalgae biomass to methane. Special attention will be paid to the vast range of possible inputs on anaerobic digestion and outputs resulting from the process (e.g. biogas 23 and digestate). 24

3. Anaerobic digestion of microalgae

Anaerobic digestion is a microbial process of degradation and stabilization of organic 2 3 materials under anaerobic conditions, leading to the formation of biogas and digestate (with 4 liquid and solid phases). The process is carried out by heterogeneous microbial populations 5 involving multiple biological and substrate interactions. Anaerobic digestion (also called 6 methanogenic fermentation, or methanogenesis) is widely applied to the treatment of liquid 7 wastewaters (in particular for the treatment of effluents from food, pulp, paper and chemical 8 industries) and solid waste originating from agriculture (e.g. manure and plant residues) or 9 from urban activities such as sewage sludge in wastewater treatment plants and the organic 10 fraction of municipal solid wastes (OFMSW)).

11 3.1 Substrate for anaerobic digestion

12 3.1.1 Microalgae

13 During the past years, interest has grown in favor of anaerobic digestion of microalgal 14 biomass, leading to studies on various freshwater and marine microalgae, and using different 15 process combinations. Over the past five years, investigations tested a wide range of process 16 temperatures, reactor configurations, pretreatment methods as well as the use of co-substrates. 17 Due to the specific cell wall properties, anaerobic digestion efficiency is often strain specific.^{30,31} Indeed, a significant variability of the methane yield (from 140 up to 400 18 19 mLCH₄/gVS_{influent}) is observed in the literature, likely due to different operating conditions of the digester (i.e. bioreactor type, hydraulic retention time and the digestion temperature³⁰) in 20 21 combination with microalgal strain selection and cultivation conditions that are responsible 22 of variations in protein, carbohydrate and lipid cellular contents, as well as cell wall structure.³² 23

Recently, Frigon et al. (2013)³³ tested under similar operating conditions a selection of 15 freshwater and 5 marine microalgae in order to identify a microalgal strain suitable for large 1 scale production of methane. The Biochemical Methane Potential (BMP) tests were 2 performed using a microalgae:sludge inoculum ratio of 2:1 based on volatile solids 3 concentration. Results showed no significant difference in the maximum methane yield 4 between freshwater microalgae (330 mLCH₄/gVS_{influent}) and marine microalgae (300 5 mLCH₄/gVS_{influent}) although it varied greatly within the tested strains (230-410 6 mLCH₄/gVS_{influent}).

Moreover, the anaerobic digestion process can be inhibited by ammonia issued from biological degradation of nitrogenous matter and by sulfide causing toxicity effects on various bacterial groups.^{32, 34} Toxic effects on AD can also be induced by high sodium levels when marine microalgae are used as a substrate. Optimum sodium concentrations are around 230-350 mg Na⁺/L, while inhibitory effects were reported at concentrations higher than 3,500 mg Na⁺/L.³⁴

13 The wide and recent interest of the scientific community on microalgae anaerobic digestion is 14 related to its ability to mineralize algal waste containing high amount of organic nitrogen and 15 phosphorus, resulting in a flux of ammonium and phosphate that can then be reused as substrate for microalgae cultivation^{35,36} or further processed to obtain fertilizers. Similarly to 16 17 light, CO₂ and water, the lack of nutrients can be an important obstacle preventing the scaling up of microalgae biorefinery technologies.⁵ Here, these nutrients are partially supplied by the 18 19 outlet of the anaerobic digester. In this context, the microalgae grown in wastewaters, together 20 with other residues, can be used as a digestion substrate and the digestion outputs (nutrients, 21 water and CO_2) can provide substrates for microalgal culture (Figure 1). Then, the methane 22 produced from the anaerobic digestion process can be converted to generate transportation 23 biofuel, heat, or electricity used in microalgae processing.

24

1 3.1.2 Co-digestion

2 The carbon/nitrogen (C/N) ratio is an important factor for guarantying the stability of the 3 anaerobic digestion process. A C/N ratio of 25 to 32 was reported to have a positive effect on the methane yield.³⁷ At lower C/N ratios, the risk of excess in nitrogen, not needed for 4 5 biomass synthesis, becomes inhibitory. On the contrary, a very high C/N ratio would lead to 6 nitrogen deficiency for biomass synthesis. Hence, co-digestion can be an alternative to 7 improve process performance by adding a secondary substrate that supplies nutrients lacking 8 in the initial substrate. Combination of two or more substrates could create a synergistic effect 9 by alleviating the nutrient imbalance and, in turn, attenuating the inhibition effects of the 10 individual substrate. As previously mentioned, microalgal biomass generally contains high 11 amounts of nitrogen, therefore a carbon-rich co-substrate could be added to facilitate the 12 methane conversion process. For example, the addition of carbon-rich paper waste to a 13 mixture of Scenedesmus spp. and Chlorella spp. resulted in an improved methane yield and increased cellulase activity.³⁸ Similarly, Gonzalez et al. (2011)³⁹ detected a significant 14 15 increment of the methane yield when microalgae biomass was digested with swine manure as 16 co-substrate.

17 *3.1.3 Microalgae residue*

18 The microalgae lipid extraction process results in a biomass residue which accounts for 19 approximately 65% of the harvested biomass.⁴⁰ This can be considered as a waste with a 20 certain disposal cost that will further increase the already unfavorable economics for biodiesel 21 production from microalgae.⁴¹ However, algal residues contain significant quantities of 22 proteins and carbohydrates, which could undergo anaerobic digestion to produce biogas.⁴²

23 Yang et al. $(2011)^{43}$ reported a methane yield of 390 mLCH₄/gVS_{influent} from residual 24 *Scenedesmus* biomass derived from oil extraction processes. However microalgae biomass residues generated after lipid extraction may cause more severe ammonia inhibition than the whole algae, due to their higher protein contents.⁴² As already pointed out, this can be moderated through co-digestion to increase the carbon:nitrogen ratio. An an illustration, co-digestion of algae biomass residue and lipid-rich fat, oil, and grease waste resulted in a specific methane production rate of 540 mL CH₄/gVS_{influent}·d with regards to a rate of 150 mL CH₄/gVS_{influent}·d when microalgae biomass was digested alone.⁴⁴⁴

7 The co-digestion of *Chlorella* residues with glycerol, produced from the transesterification process of biodiesel production, was also examined by Ehiment et al. (2009)⁴⁵. These authors 8 9 showed the effect of the type of solvent used in the oil extraction step on methane yield. In 10 particular, extraction solvents such as chloroform resulted in a repression of methane 11 production. Therefore, where energy generation via anaerobic digestion of microalgae 12 residues is planned, investigations on possible solvent interferences on the microbial process 13 should be performed before solvent selection. Nonetheless, the solvent inhibitory effects can 14 be reduced by a rinsing step to remove the toxic solvent from biomass. In counterpart, the 15 rinsing process may have important water and energy requirements and could evacuate 16 unbound energy-rich polar molecules, thus reducing the calorific value of the biomass feedstock.45 17

18 The information available in literature on this subject is still scarce and more investigation is 19 needed to improve knowledge in this interesting option of microalgae biorefinery.

20 3.2 Products from the anaerobic digestion

21 *3.2.1 Biogas*

The biogas produced by anaerobic digestion is characterized by a methane percentage
 between 60% and 70%, depending of the substrate characteristics.⁴⁶

A number of different pretreatments (thermal, chemical, enzymatic and mechanical pretreatments) have already proved their efficiency to enhance the methane yields.³⁰ For instance, Passos et al. (2013)⁴⁷ detected an increment of the methane yield of 4%, 53% and
62% when a temperature pretreatment of 55, 75 and 95°C was applied, respectively.
Similarly, in BMP tests, microwave pretreatment showed an increase of microalgae solubility,
leading to a final yield improvement from 12 % up to78% depending on the power applied
(from 300 to 900 W).⁴⁸

6 Some other options, such as an increase in the lipid content, were also proposed to improve 7 the methane yield. However, cultivation strategies (i.e. high light intensity, nutrient 8 starvation) which would raise lipid accumulation in cells, would probably affect the overall 9 microalgae biomass productivity. It is thus not yet clear whether a particular cultivation 10 strategy would be favorable to further increase the methane yields. In spite of recent 11 developments in the field of biomethane production from microalgae, an optimal scenario 12 combining ease of cultivation, high biomass yields and high anaerobic biodegradability has 13 still to be determined.

14 Furthermore, several operational strategies were recently tested to improve the methane potentials of microalgal biomass. Zamalloa et al. (2012)⁴⁹ employed a hybrid flow-through 15 16 reactor (combining a sludge blanket and a carrier bed) to increase the retention time of the 17 algae biomass and decouple hydraulic and solid retention times. Markou et al. $(2013)^{50}$ 18 proposed an increase in biomass carbohydrates through a phosphorus limitation process as an 19 attractive technique to improve the bio-methane yield. Indeed, these authors tested various 20 percentages of carbohydrates in cells and observed a methane yield ranging between 123 and 21 203 mLCH₄/gCOD_{influent} (chemical oxygen demand) corresponding to 20% and 60% 22 carbohydrates, respectively.

Concerning biogas quality, an important factor affecting CH_4 proportion in the biogas is the pH, which controls the speciation of the carbonate system and the release of CO_2 . Rates and yields of CH_4 formation also often increase with digestion temperature.²² However, since

- microalgae hardly contain sulphurated amino acids (Becker, 2007)⁵¹, their digestion releases a
 lower amount of hydrogen sulfide than other types of organic substrates.
- 3

4 Biogas could thus be reused for microalgae growth, promoting the interesting possibility to close the flux of products and effluents. In fact, the exploitation of biogas energy within a co-5 6 generation process can produce a gas mixture mainly composed of CO₂ with the same quality as turbine gas. A comparison between flue gas from turbines, water heaters and ovens, 7 8 refinery activities, coal ovens and fuel injection, reveals that the turbine gas composition is 9 characterized by the lowest concentrations in toxic compounds (NO_x, SO_x, C_xH_y, CO, heavy 10 metals and particles). Thus, the product resulting from biogas combustion can be a suitable 11 source of inorganic carbon for microalgal cultures with low concentrations of toxic 12 compounds. Moreover, the oxidized form of nitrogen and sulfur present in high 13 concentrations in flue gas can contribute to fulfill microalgae nutrient requirements.

It is known that microalgae incorporate inorganic carbon as a primary nutrient, and not limiting carbon conditions is one of the key conditions to optimize microalgal production. On average, algae consume 1.83 g CO_2 to produce 1 g of biomass.¹² Thus, biological CO_2 fixation by microalgae is considered to be a promising mean for fixing CO_2 , combining environmental and economic advantages, by contributing to prevent global warming on one hand and supplying carbon for microalgae for the other hand.

Moreover, even though CO_2 fixation is often mentioned in literature, an accurate CO_2 mass balance taking into account the final biomass disposal is necessary to determinate the environmental impact of the overall process. In the case of fuel generation, the biomass originates from atmospheric CO_2 and will be ultimately converted back into CO_2 when the fuel is burned and, in this case, the process could be considered as carbon neutral rather than a carbon sink. More discussion about the environmental impact of biofuel products generated
 by microalgae can be found in Lardon et al., (2009).^{52,}

CO₂ consumption rates reported in literature in bubbled columns reactors varied between 0.2 3 and 27 g/m²·d, depending on the microalgae culture and operational conditions.⁵³ Traviesco et 4 al. (1993)⁵⁴ as well as Doušková et al., (2009)⁵⁵, fed microalgae with biogas produced by 5 6 anaerobic fermentation of a sugar cane distillery stillage. They observed that algae were able 7 to consume CO₂ directly from biogas as well as from other sources in a range of 8 concentrations between 2% (v/v) and 56% (v/v) of CO₂ in the mixture. Moreover, Park and Craggs (2011a; 2011b)^{56,57} showed an increase in algal/bacterial production by about 30%, 9 10 concomitantly to a significant nutrient removal enhancement due to CO₂ addition. A 11 supplement in CO₂ can also maintain the pH at a suitable value (usually 8), thus preventing inhibition of algal growth by ammonia.⁵⁸ Furthermore, a pH less than 8 can reduce nitrogen 12 13 removal by physicochemical processes such as ammonia volatilization, and may increase 14 algal nutrient assimilation.

These facts highlight the large adaptability of microalgae to different substrates, which is an important added value for a microalgae-based biorefinery. Indeed, microalgae culture can be coupled to a number of industrial chains for low cost wastewater treatment and generation of bioproducts.

19 *3.2.2 Digestate (liquid and solid phase)*

Besides biogas, anaerobic digestion processes generate liquid and solid phase effluents (digestate) that are rich in phosphorus and organic nitrogen compounds, ideal for use as organic fertilizer. Within the management process of this product (direct spreading, drying, liming) the separation between solid and liquid phases is suitable for an optimal exploitation of the different components. Many options for nutrient extraction from the digestate are nowadays explored in order to produce high quality fertilizers (e.g. ammonia stripping for ammonium sulfate production and phosphorus precipitation through struvite formation). The separation process, that can be improved by addition of organic or mineral flocculants, produces a liquid fraction, rich in mineralized elements that can be directly spread or precipitated (e.g. struvite) (Türker et Celen, 2007)⁵⁹ and a solid fraction, usually composted, dried and/or exploited as an organic supplement.⁵⁶⁰

6 The different forms of digestate are characterized by different bio availabilities. Some 7 components are absorbed on the organic fraction of suspended solids. This absorption is a 8 function of the chemical properties of the components and the physico chemical properties of 9 the solids. Generally, 40 to 86% of the organic matter is present in the solid fraction (Moller, 2012)⁶¹ while the liquid phase is characterized by a low organic matter content. The solid 10 fraction contains about 75% of phosphorus, which is directly absorbed or trapped with 11 calcium, magnesium and nitrogen.⁶¹ Similarly, complex reactions are responsible for the 12 distribution of microelements in liquid or solid phase after the post-treatment. For example, 13 14 with liquid swine manure, copper, zinc and manganese were absorbed on the smaller particles (between 1 and 60 μ m) and were preferably mobilized in the liquid phase after separation.⁷² 15 16 On the other hand, the recycling of nutrients from wastewater highlights the need for the 17 characterization of the quality of the digestate, with special attention to pathogens and heavy 18 metal concentrations. Although anaerobic digestion is classified as a process that significantly 19 reduces pathogens, their elimination strictly depends on the microbial species, digester temperature and retention time.⁶³ Likewise, pH, anaerobic conditions, nitrogen and volatile 20 fatty acids can affect some pathogens.⁶³ However, information about this aspect is still scarce, 21 22 and evidence from literature points out the necessity to consider the variability of the digestate 23 composition and the concentrations in pathogens and heavy metal as important factors. 24 Therefore, further efforts are required to determine the operating conditions able to enhance

fertilizer properties and pathogen reduction, as well as to promote the digestate nutrient
 recycling.

The use of digestate as substrate for microalgae growth is particularly interesting for the reduction of the process inputs in a biorefinery concept coupling wastewater treatment, microalgae culture and anaerobic digestion. Indeed the outlet of the anaerobic digesters fed with microalgae or other biomass contains about 50% of the initial nitrogen that can be reused as a source of nutrients and water for microalgae growth.

In a context of nutrient recycling, the liquid phase of the digestate was tested as a possible source of nitrogen for algae cultivation. In fact, the digestate liquid is characterized by low organic matter and phosphorus concentrations, counterbalanced by high potassium and nitrogen concentrations (up to 80% in the form of ammonium) (Table 3). Moreover, the micro-element composition of digestates (Table 4) can cover the nutrient requirements of a microalgae population.⁶⁶

14 Many studies report the use of digestate from urban wastewater treatment, manure, abattoir residue or swine slurry for microalgal growth.^{63,64,65,66,67} Bchir et al, (2011)⁷⁰ obtained a high 15 biomass production of $5.29 \cdot 10^6$ cell/mL associated with an important content of chlorophyll 16 17 (65.32 mg/L) after 42 days of culture of Spongiochloris sp fed with abattoir digestate. Chen et al. (2012)⁷² tested a long-term cultivation of freshwater algae in anaerobic digested manure 18 19 effluents and indicated that Chlorella and Scenedesmus were able to grow in high nutrient loads (40, 100 and 200 g/L TN). However, Bjornsson et al. (2013)⁷³ show a magnesium 20 21 limitation in Scenedesmus sp. growth with liquid swine manure digestate.

A few studies also tested the digestate of microalgal biomass as substrate for microalgal growth. Doušková et al., (2009)⁵⁵ tested a pilot scale reactor for biogas production and subsequent microalgae cultivation. The process consisted of a 50 L mesophilic reactor fed in semi-continuous mode with pure stillage. The reactor was followed by a photobioreactor constituted by a set of glass bubbled columns in a thermostatic bath continuously illuminated.
 These researchers determined experimentally that the growth rates of microalgae grown on
 digestate were similar to those obtained with urea as substrate (16gDW/L).

Several experiments also pointed out the existence of inhibitory effects on microalgal growth,
especially with manure wastewater or digestate as substrate (Table 5). Among the observed
effects, high ammonia concentrations were often responsible of microalgal growth
inhibition.^{74,80} Indeed, although ammonia can be an excellent source of nitrogen for
microalgal growth, free ammonia is toxic for most strains of microalgae due to its uncoupling
effect on photosynthetic processes in isolated chloroplasts.⁸¹

10 Another cause of microalgae growth inhibition is light limitation mainly due to mutual 11 shading caused by a high biomass density.^{67,82,83} No particular effect of digestate turbidity on 12 microalgal growth has yet been reported in literature. However, it should be noticed that the 13 digestate is diluted in almost all the experiments reported in literature.^{51,66,63}

Nevertheless, once the inhibitory factors have been identified, their effect can be easily 14 15 overcomed by substrate dilution or carbon dioxide addition (for pH and ammonia 16 concentration control) or, in the case of self-shading, a periodical harvesting could prevent high microalgal concentrations.⁶⁷ In this sense, Cho et al. (2013)⁸⁴ used urban wastewater for 17 18 microalgae growth, by testing 1) the effluent from a primary settling tank, 2) the effluent from 19 an anaerobic digestion tank and 3) a digestate dilution. According to their results, Chlorella 20 sp. showed the highest biomass production (3.01 g dry cell weight/L) when digestate was 21 diluted with wastewater rejected from a sludge concentrate tank (10:90, v/v).

It should also be taken into account that, depending on the digester performance, digestate may contain volatile fatty acids and microorganisms already present in the substrate or produced by the anaerobic flora. Similarly, in the liquid phase, it is possible to observe residue from the flocculation processes used for solid/liquid separation. Thus, the variability of digestate composition has an important potential impact that has not
 yet been carefully studied.

3 3.3 Anaerobic digestion in microalgae-based biorefinery

4 During the past recent years, different applications of microalgae anaerobic digestion have 5 been integrated in a biorefinery concept moving the role of anaerobic digestion from a waste 6 treatment to an organic matter conversion unit. Razon (2012)⁸⁵ proposed a process in which 7 ammonia sulfate from the digestate is stripped, converting the ammonia to a solid form. Thus, 8 it can be easily separated by gravity settling and processed into crystals further used as 9 fertilizer, while the liquid part (~70%) can be used in agriculture or returned to the algal 10 culture.

With similar objectives, De Schamphelaire and Verstate (2009)⁸⁶ proposed a closed loop system integrating an algal growth unit for biomass production, an anaerobic digestion unit to convert the biomass to biogas and a microbial fuel cell to treat further the effluent of the digester and produce electricity. To close the loop, nutrients from the digester are returned to the algal growth unit.

16 A recent study⁸⁷ investigated the selection of methanotrophic bacteria to produce 17 polyhydroxybutyrate (PHB), which is a biodegradable polyester. In this case, biogas was used 18 to feed microalgae and to stimulate methanotroph bacteria. Moreover, these researchers found 19 that the symbiotic cooperation between microalgae and methanotroph bacteria led to the 20 formation of harvestable bioflocs.

These studies show that it is possible to develop new interesting solution to integrate anaerobic digestion into a biorefinery concept. In this perspective, it is advisable to integrate different processes in order to generate new valuable products maximizing overall efficiency, while reducing operating costs and environmental impacts. To do this, multidisciplinary research on systems biology, strain development, systems design, modeling and biorefining is
 required.

3 3.4 Economic and environmental aspects

In spite of the increasing interest in anaerobic digestion of microalgae, little information on 4 the economic aspects of this process is available in literature. Delrue et al (2012)⁸⁸ carried out 5 6 an economic study of biodiesel production from microalgae considering anaerobic digestion 7 as a treatment of microalgae residue. According to this study, the price of 1 liter of biodiesel 8 varies between 1.94 and 3.35 €. Among the major bottlenecks identified in this study, the 9 cultivation steps and the downstream processes play an important role. This indicates that 10 more efforts are needed in order to reduce cultivation costs, optimize microalgae productivity 11 and improve technologies for biomass valorization. Overall, anaerobic digestion methane yield positively impacts the net energy ratio, contributing to 33% of the total energy 12 production. A recent study on the potential of microalgae as feedstock for methane 13 production⁸⁵ found a cost of energy in the order of magnitude of 0.087-0.170 €/kWh⁻¹. This 14 study considered the microalgae biomass cultivated in a 400 ha (4 km²) raceway pond with 15 16 inputs of fresh water, nutrients and sunlight. The harvesting step consists on a settling stage 17 with flocculants followed by a dissolved air flotation. Then an anaerobic process is carried out 18 at 30°C and the water and nutrients from the pre-concentration and anaerobic digetsion stage 19 are recirculated and the CO₂ from the flue gas is used for algae cultivation.

However, the wide range of data available in literature makes difficult an economical comparison between processes and even between units of the same process. Moreover, the economic studies available are based on theoretical models; the availability of data from real and large scale plants would certainly help to get more reliable information about the economic viability of microalgae biorefinery. An accurate economic and environmental study is especially needed for the most recent biorefinery solutions presented above.

1 From an environmental point of view, only few studies on microalgae biorefinery and anaerobic digestion have been recently published.^{52,89,40,42} Concerning the environmental 2 impact, the study carried out by Lardon et al. (2009)⁵² confirmed the potential of microalgae 3 as an energy source but emphasized on the imperative necessity of decreasing the energy and 4 fertilizer consumption. Collet et al. (2011)⁹⁰ pointed out the electricity consumption as the 5 6 main source of impacts and suggested that improvement of the efficiency of the anaerobic 7 process under controlled conditions could be a possible solution for decreasing process consumption. Benemann et al. (2012)⁹¹ found that oil production from microalgae coupled 8 9 with the anaerobic digestion of microalgae residue does not require fossil energy inputs and 10 does not produce greenhouse gas emissions.

11

12 **4.** Perspectives and further research

13 This paper has emphasized several crucial points of microalgae-based bioprocesses that need 14 to be developed in order to upgrade the potential of microalgal anaerobic digestion and to find 15 new renewable and carbon-neutral products and energy sources.

Firstly, challenges regarding microalgal culture need to be solved. In fact, in spite of the increasing interest and the number of studies conducted in this field, there are still problems related to the high building and operating costs, the difficulty in controlling and optimizing the culture conditions, contamination by bacteria or microalgae, predators, unstable light supply and weather changes.

The selection of the most valuable microalgae strains for anaerobic digestion still requires research efforts. In this context, the genetic improvement can be a tool to create microalgae strains with high productivity and high methane potential that could improve anaerobic digestion efficiency. Anaerobic digestion effectiveness could also be enhanced by the study and implementation of
 innovative pretreatments or co-digestion processes as well as reactor configurations and
 operation strategies.

Another bottleneck is the harvesting process, which is a crucial step for biomass production
with low costs and low energy requirements.

6 Moreover, the benefit in closing the loop of microalgae biorefinery would require the 7 extension of the actual limited knowledge on digestion of algal biomass residue. Another 8 interesting aspect that deserves further attention is the quality of digestate and its properties as 9 a substrate for microalgae growth and/or as fertilizer.

We report here some example of process coupling; however more biorefinery configurations incorporating a whole range of different installations should be further explored. In this context, a number of industries could combine their material flows in order to reach a complete utilization of all biomass components. In this way the residue from one industry (e.g. lignin from a lignocellulosic ethanol production plant) could become an input for other types of industry.

In line with the promising results produced from laboratory studies, a scaling-up of the technology from the laboratory to the pilot plant has now become essential in order to verify the sustainability of the process.

Finally, the increasing interest in developing industrial-scale microalgae-to-biofuel technology requires a detailed assessment of the costs and the potential environmental impacts of the entire process chain, from biomass production to the biofuel combustion. Almost all environmental and economic assessments found in literature have been indeed based on assumptions and extrapolations from laboratory experiments and small-scale outdoor systems. Last but not least, the emissions of major greenhouse gasses (e.g. nitrous dioxide and methane) during the microalgae cultivation stage have been ignored and real data
 remain necessary to improve life cycle assessment.

3

4 **5. References**

5 1. Cherubini F. The biorefinery concept: Using biomass instead of oil for producing energy
6 and chemicals. *Energ Convers Manag* 51: 1412–1421 (2010).

7 2. Singh J and Gu S. Commercialization potential of microalgae for biofuels production. Sust

8 Energy Rev 14: 2596–610 (2010).3. Dismukes GC, Carrieri D, Bennette N, Ananyev GM and

9 Posewitz MC. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels.

- 10 *Currt Opinion Biotechnol* **19**: 235–240 (2008).
- 4. Becker EW. Microalgae Biotechnology and microbiology. Cambridge Press University
 293p, (1994).5. Williams PJLB and Laurens LML. Microalgae as biodiesel & biomass
 feedstocks: Review & analysis of the biochemistry, energetics & economics. *Energ Env Sci* 3:
 554-590 (2010).

6. Harun R, Singh M, Forde Gareth M and Danquah MK. Bioprocess engineering of
microalgae to produce a variety of consumer products. *Renew Sust Ener Rev* 14: 1037–1047
(2010).

7. Belarbi EH, Molina E and Chisti Y. A process for high yield and scaleable recovery of high
purity eicosapentaenoic acid esters from microalgae and fish oil. *Process Biochem* 35: 951–
969 (2000).

8. Skjånes K, Rebours C and Lindblad P. Potential for green microalgae to produce hydrogen,
pharmaceuticals and other high value products in a combined process. *Critical Reviews Biotechnol* 33: 172–215 (2013).

9. Mendesa RL, Nobrea BP, Cardosoa MT, Pereirab PA and Palavrab AF. Supercritical
 carbon dioxide extraction of compounds with pharmaceutical importance from microalgae.
 Inorganica Chimica Acta 356: 328–334 (2003).

10. Pieber S, Schober S and Mittelbach M. Pressurized fluid extraction of polyunsaturated
fatty acids from the microalga Nannochloropsis oculata. *Biomass Bioenergy* 47: 474–482
(2012).11. Dhargalkar VK and Verlecar XN. Southern Ocean seaweeds: a resource for
exploration in food and drugs. *Aquacult* 287:229–242 (2009).

8 12. Amaro HM, Guedes AC and Malcata FX. Advances and perspectives in using microalgae
9 to produce biodiesel. *Appl Energ* 88: 3402–3410 (2011).

10 13. Harun R, Davidson M, Doyle M, Gopiraj R, Danquah M and Forde G. Technoeconomic

analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. *Biomass Bioenerg* 35: 741–747 (2011).

13 14. Wi SG, Kim HJ, Mahadevan SA, Yang DJ and Bae HJ. The potential value of the
14 seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. *Biores*15 *Technol* 100: 6658-6660 (2009).

- 17 15. Singh NK and Dhar DW. Microalgae as second generation biofuel. A review *Agronomy* 18 *for Sustainable Development* **31**:605-629 (2011).
- 19 16. Wijffels RH, Barbosa MJ, Eppin MHM. Microalgae for the production of bulk chemicals
 20 and biofuels. *Biofuel, Bioprod Biorefin.* 4: 287–295 (2010).

17. Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P and Willats WGT. The
cell walls of green algae: a journey through evolution and diversity. *Frontiers Plant Sci.* 3: 82
(2012).

¹⁶

- 1 18. Richmond, Handbook of Microalgal Culture: Biotechnology and Applied Phycology.
 2 Blackwell Science, Oxford, OX, UK, Ames, Iowa, USA (2004).
- 3 19. Nguyen THM and Vu VH. Bioethanol production from marine algae biomass: prospect
 4 and troubles. J. Viet. Env. 3: 25-29 (2012).
- 5 20. Harun R, Danquah MK and Forde G.M. Microalgal biomass as a fermentation feedstock
 6 for bioethanol production. *J Chem Technol Biotechnol.* 85: 199–203 (2009).
- 7 21. Naim R, Muhammad SUR, Sheeraz M, Zia URa, Kisay L, Jong-In H. Current status,
 8 barriers and developments in biohydrogen production by microalgae. *Ren Sust Energ Rev* 22
 9 571–579 (2013).
- 10

21

- 22. Ferreira AF, Marques AC, Batista AP, Marques PASS, Gouveia L, Silva CM. Biological
 hydrogen production by Anabaena sp. e Yield, energy and CO2 analysis including
 fermentative biomass recovery. Int J Hydrog En 37 179-190 (2012).
- 14 23. Meuser JE, Anayev G, Wittig LE, Kosourov S, Ghirardi ML, Seibert M, et al. Phenotypic
 15 diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic
 16 metabolisms. *J Bacteriol* 142: 21-30 (2009).
- 17 24. Yacoby I, Pochekailov S,. Topotrik H, Ghirardi ML, King PW and Zhang S.
 18 Photosynthetic electron partitioning between [FeFe]- hydrogenase and ferredoxin:NADP+19 oxidoreductase (FNR) enzymes in vitro. *Proc Natl Acad Sci* 108: 9396-9401 (2011).
- 20 25. Hidayet A, Fikret K. Bio-hydrogen production by different operational modes of dark and

photo-fermentation: An overview. Int J Hydrog En 36: 7443-7459 (2011).

- 22 26. Lakaniemi AM, Tuovinen OH and Puhakka JA. Anaerobic conversion of microalgal
- biomass to sustainable energy carriers A review. *Bioresource Technol* **135**: 222–31. (2013).

27. Guo XM, Trably E, Latrille E, Carrère H, Steyer JP. Hydrogen production from
 agricultural waste by dark fermentation: A review. *Int J Hydrogen Energ* 35: 10660-10673
 (2010).

28. Cheng CL, Lo YC, Lee KS, Lee DJ, Lin CJ, Chang JS. Biohydrogen production from
lignocellulosic feedstock. *Biores Technol* 102: 8514–8523(2011).

6 29. Yang ZM, Guo RB, Xu XH, Fan XL, Li XP, Enhanced hydrogen production from lipid7 extracted microalgal biomass residues through pretreatment. *Int. J. Hyd Energ* 35: 9618–9623
8 (2010).

9 30. González-Fernández C, Sialve B, Bernet N and Steyer JP. Impact of microalgae
10 characteristics on their conversion to biofuel. Part II: Focus on biomethane production.
11 *Biofuel, Bioprod Biorefin* 6: 205–18 (2012).

12 31. Mussgnug LH, Klassen V, Schlüter A, Kruse O. Microalgae as substrates for fermentative

13 biogas production in a combined biorefinery concept. *J Biotechnol.* **150**: 51–56 (2010).

14 32. Sialve B, Bernet N, and Bernard O. Anaerobic digestion of microalgae as a necessary step

15 to make microalgal biodiesel sustainable. *Biotechnol Adv* 27:409–416 (2009).

16 33. Frigon JC, Matteau-Lebrun F, Abdou RH, McGinn PJ, O'Leary SJB and Guiot SR.

17 Screening microalgae strains for their productivity in methane following anaerobic digestion.

18 Appl Energ **108**:100-107, (2013).

34. Chen Y, Cheng JJ and Creamer KS. Inhibition of anaerobic digestion process: a review. *Biores Technol* 99: 4044-4064 (2008).

21 35. Olguín EJ. The cleaner production strategy applied to animal production. In: Olguín EJ,

22 Sánchez G, Hernández E, editors. Environmental biotechnology an cleaner bioprocesses.

23 London: Taylor and Francis. p. 227-243 (2000).

36. Phang SM, Miah MS Yeoh BG and Hashim MA. Spirulina cultivation in digested sago
 starch factory wastewater. *J Appl Phycol* 12: 395-400 (2000).

3 37. Kayhanian M and Tchobanoglous G. Computation of C/N ratios for various organic
4 fractions. *Biocycle* 33:58-60 (1992).

5 38. Yen Hw and Brune DE. Anaerobic co-digestion of algal sludge and waste paper to
6 produce methane. *Bioresource Technol* 98:130–134 (2007).

39. González-Fernández C, Molinuevo-Salces B and García-González MC, Evaluation of
anaerobic codigestion of microalgal biomass and swine manure via response surface
methodology. *App. Energ* 88:3448–3453 (2011b).

40. Subhadra BG and Edwards M. Coproduct market analysis and water footprint of
simulated commercial algal biorefineries. *Appl. Energ* 88:3515–3523 (2011).

12 41. Chisti Y. Biodiesel from microalgae. *Biotechnol Adv* 25: 294–306 (2007).

42. Chisti Y. Biodiesel from microalgae beats bioethanol. *Trends Biotechnol* 26:126-131
(2008).

43. Yang Z, Guo R, Xu X, Fan X and Luo S. Hydrogen and methane production from lipidextracted microalgal biomass residues. *Int J Hydrogen Energ* 36:3465–3470 (2011).

44. Park S and Li Y. Evaluation of methane production and macronutrient degradation in the
anaerobic co-digestion of algae biomass residue and lipid waste. *Bioresource Technol.*111:42–48 (2012).

45. Ehimen EA, Connaughton S, Sun Z and Carrington GC. Energy recovery from lipid
extracted, transesterified and glycerol codigested microalgae biomass. GCB Bioenergy 1:71381 (2009).

46. Coombs J. The present and future of anaerobic digestion. In: Aanerobic Digestion: a
 Waste Treatment Techonolgy. Elsevier Science Publisher LTD, Essex, 229 p. (1991).

47. Passos F, Garcia J and Ferrer I. Impact of low temperature pretreatment on the anaerobic
digestion of microalgal biomass. *Biores technol* 138:79-86.

48. Passos F, Garcia J and Ferrer I. Biogas production from microalgae grown in wastewater:
Effect of microwave pretreatment. *Appl energ* 108:168-175.

49. Zamalloa C, Boon N. and Verstraete W. Anaerobic digestibility of Scenedesmus obliquus
and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. *Appl Energ*,
92:733–738 (2012).

50. Markou G, Angelidaki I and Georgakakis D. Carbohydrate-enriched cyanobacterial
biomass as feedstock for bio-methane production through anaerobic digestion. *Fuel*, (April).
doi:10.1016/j.fuel.2013.04.013 (2013).

13 51. Becker EW. Micro-algae as a source of protein. *Biotechnol Adv* 25:207-210 (2007).

52. Lardon L, Helias A, Sialve B, Steyer JP and Bernard, O. Lifecycle assessment of biodiesel
production from microalgae. *Environ Sci Technol* 43:6475–6481 (2009).

53. Pires LCM, Alvim-Ferraz MCM, Martins FG and Simões M. Carbon dioxide capture
from flue gases using microalgae: Engineering aspects and biorefinery concept. *Renew Sust Energ Rev* 16: 3043–3053 (2012).

19 54. Travieso L, Sanchez EP, Benitez F. and Conde JL. Arthrospira sp. intensive cultures for
20 food and biogas purification. *Biotechnoly Letts* 15: 1091-1094 (1993).

55. Doušková I, Kaštánek F, Maléterová Y, Kaštánek P, Doucha J and Zachleder V.
Utilization of distillery stillage for energy generation and concurrent production of valuable

- microalgal biomass in the sequence: Biogas-cogeneration-microalgae-products. *Energ Convers Manag* 51:606-611 (2010).
- 56. Park JBK and Craggs RJ Nutrient removal in wastewater treatment high rate algal ponds
 with carbon dioxide addition. *Water Sci. Technol* 63:1758-1764 (2011a).
- 5 57. Park JBK and Craggs RJ. Algal production in wastewater treatment high rate algal ponds
- 6 for potential biofuel use. *Water Sci. Technol* **63**:2403-2410 (2011b).
- 58. Azov Y and Goldman JC. Free Ammonia Inhibition of Algal Photosynthesis in Intensive
 cultures. *Appl Environ Microbiol* 43:735–739 (1982).
- 9 59. Türker M and Çelen I. Removal of ammonia as struvite from anaerobic digester effluents
- 10 and recycling of magnesium and phosphate. *Biores Technol* **98:**1529-1534 (2007).
- 11 60. Al Seadi T and Lukerhurst C. Quality management of digestate from biogas plants used as
- 12 fertiliser. IEA Bioenergy. Task 37- Energy from Biogas (2012).
- 13 61. Möller K. and Müller T. Effects of anaerobic digestion on digestate nutrient availability
 14 and crop growth: A review. *Eng Life Sci* 12: 242–257. (2012).
- 62. Marcato CE, Pinelli E, Pouech P, Winterton P and Guiresse M. Particle size and metal
 distributions in anaerobically digested pig. *Bioresource Technol* 99:2340-2348 (2008).
- 17 63. Godfree A and Farrell J. Processes for managing pathogens. J. Environ. Qual. 34:105–
 113 (2005).
- 64. Sahlström L. A review of survival of pathogenic bacteria in organic waste used in biogas
 plants. *Biores Technol* 87:161-166 (2003).
- 21 65. Cai T, Park SY and Li Y. Nutrient recovery from wastewater streams by microalgae:
- 22 Status and prospects. *Renew Sust Energ Rev* **19:**360–369 (2013).

66. Wu JF and Pond WG. Amino acid composition and microbial contamination of Spirulina
 maxima, a blue-green alga, grown on the effluent of different fermented animal wastes.
 Bulletin of Environmental Contamination and Toxicology, 27: 151–159 (1981).

4 67. Uggetti E, Sialve B, Latrille E, Steyer JP. Anaerobic digestate as substrate for microalgae
5 culture: the role of ammonium concentration on the microalgae productivity. *Biores technol*6 In press. http://dx.doi.org/10.1016/j.biortech.2013.11.036.

68. Molinuevo-Salces B, García-González MC and González-Fernández C. Performance
comparison of two photobioreactors configurations (open and closed to the atmosphere)
treating anaerobically degraded swine slurry. *Bioresource Technol* 101:5144–5149 (2010).

69. González-Fernández C, Molinuevo-Salces B and García-González MC. Nitrogen
transformations under different conditions in open ponds by means of microalgae-bacteria
consortium treating pig slurry. *Bioresouce Technol* 102:960–6 (2011a).

70. Bchir FS, Gannoun H, El Herry S and Hamdi M. Optimization of Spongiochloris sp.
biomass production in the abattoir digestate. *Bioresource Technol* 102:3869-3876 (2011).

71. Coats ER, Searcy E, Ferin K, Shrestha D, McDonald AG and Briones A. An integrated
two-stage anaerobic digestion and biofuel production process to reduce life cycle GHG
emissions from US dairies. *Biofuels, Bioprod Biorefin* DOI: 10.1002/bbb.1408 (2013).

18 72. Chen R, Li R, Deitz L, Liu Y, Stevenson RJ and Liao W. Freshwater algal cultivation
19 with animal waste for nutrient removal and biomass production. *Biomass Bioenerg* 39:128–
20 138 (2012).

73. Bjornsson WJ, Nicol RW, Dickinson KE and McGinn, PJ. Anaerobic digestates are useful
nutrient sources for microalgae cultivation: functional coupling of energy and biomass
production. Journal of Applied Phycology. DOI 10.1007/s10811-012-9968-0 (2013).

1	74. Kallqvist T and Svenson A. Assessment of ammonia toxicity in tests with the microalga,
2	Nephroselmis pyriformis, Chlorophyta. Water Res. 37:477-484 (2003).

- 3 75. Ogbonna JC, Yoshizawa H and Tanaka, H. Treatment of high strength organic wastewater
- 4 by a mixed culture of photosynthetic microorganisms. *J Applied Phycol*, **12:** 277–284 (2000).
- 5 76. Perez-Garcia O, Escalante FME, De-Bashan LE and Bashan Y. Heterotrophic cultures of
- 6 microalgae: metabolism and potential products. *Water res*, **45:** 11–36 (2011).
- 7 77. Wu JT, Chiang YR, Huang WY and Jane WN. Cytotoxic effects of free fatty acids on
 8 phytoplankton algae and cyanobacteria. *Aquatic toxicol*, 80: 338–345 (2006).
- 9 78. Monteiro CM, Castro PML and Malcata FX. Metal uptake by microalgae: underlying
 10 mechanisms and practical applications. *Biotechnol progress*, 28: 299–311 (2012).
- 79. Muñoz R and Guieysse B. Algal–bacterial processes for the treatment of hazardous
 contaminants: A review. *Water Res*, 40: 2799-2815 (2006).
- 80. Li Y, Horsman M, Wang B, Wu N and Lan CQ Effects of nitrogen sources on cell growth
 and lipid accumulation of green alga Neochloris oleoabundans. *Appl. Microbial. Biotechnol.*81:629-636 (2008).
- 16 81. Crofts AR, Uptake of ammonium ion by chloroplasts, and the mechanism of amine
 17 uncoupling. *Biochem. Biophys. Res. Comm.* 24:127–134 (1966).

18 82. Guieysse B, Borde X, Munoz R, Hatti-Kaul R and Nugier-Chauvin C. Influence of the
19 initial composition of algal bacterial microcosms on the degradation of salicylate in fed batch
20 culture. *Biotechnol Lett* 24: 531–538 (2002).

- 21 83. Yuan X, Kumar A, Sahu AK and Ergas SJ. Impact of ammonia concentration on Spirulina
- 22 platensis growth in an airlift photobioreactor. Biores Technol 102:3234–9 (2011).

84. Cho S, Lee N, Park S, Yu J, Luong TT, Oh YK. and Lee T. (2013) Microalgae cultivation
 for bioenergy production using wastewaters from a municipal WWTP as nutritional sources.
 Bioresource Technol 131:515-520 (2013).

4 85. Razon LF. Life cycle energy and greenhouse gas profile of a process for the production of
5 ammonium sulfate from nitrogen-fixing photosynthetic cyanobacteria. *Biores Technol*6 107:339-346 (2012).

7 86. De Schamphelaire L and Verstraete W. Revival of the biological sunlight to biogas energy

8 conversion system. *Biotechnol Bioeng* **103**:296–304 (2009).

9 87. Van der Ha D, Nachtergaele L, Kerckhof FM, Rameiyanti D, Bossier P et al. Conversion
10 of Biogas to Bioproducts by Algae and Methane Oxidizing Bacteria. Env Sci Technol
11 46:13425-13431 (2012).

12 88. Delruea F, Setiera PA, Sahutb C, Cournacb L, Roubauda A, Peltierb G and Fromenta AK.

An economic, sustainability, and energetic model of biodiesel production from microalgae. *Biores Technol* 111 :191-200 (2012).

15 89. Zamalloa C, Vulsteke E, Albrecht J, Verstraete W. The techno-economic potential of
16 renewable energy through the anaerobic digestion of microalgae. *Biores Technol* 102: 114917 1158 (2011).

- 18 90. Collet P, Hélias A, Lardon L, Ras M, Goy RA, and Steyer JP. Life-cycle assessment of
- 19 microalgae culture coupled to biogas production. *Biores Technol* **102:** 207–214 (2011). 91.
- Benemann J, Woertz I and Lundquist T. Life Cycle Assessment for Microalgae Oil
 Production. *Disruptive Sci Technol* 1: 68–78 (2012).
- 22

23

2 **6. Tables and Figures**

Table 1. Biomass and raw energy productivities of land-based plants and microalgae culture (adapted from Dismukes et al. 2008).³

	Biomass productivity	Raw energy productivity
	(dry tons/ha·y)	(GJ/ha·y)*
Corn grain	7	120
Sugarcane	73-87	1230-1460
Woody biomass	10-22	
Mixed grasses	3.6-15	61-255
Rapa seeds	2.7	73
MicroalgaeTetraselmis suecica	10-22	700-1550
Microalgae Arthrospira (Spirulina)	27, 60-70	550, 1230-1435

3 * Assuming heat of combustion, theoretical maximum energy content

Biochemical compartment	Function	Mass concentration (%)
Proteins	Structure and metabolism	40-60
Lipids	Structure and energetic reservoir	5-60
Carbohydrates	Structure et energetic reservoir	8-30
Nucleic acids	Support, vector and regulator of the genetic information	5-10

Table 2. Distribution of the biochemical fractioning of a microalgae cell.⁴

Owigin	Total	Total
Origin	Nitrogen	Phosphorus
-	15-90	5-20
Dairy manure	125-3456	18-250
Poultry manure	1380-1580	370-382
Sewage sludge	427-467	134-321
Food waste and dairy manure	1640-1885	296-302
	Origin - Dairy manure Poultry manure Sewage sludge Food waste and dairy manure	OriginTotal-15-90-125-3456Dairy manure125-3456Poultry manure1380-1580Sewage sludge427-467Food waste and dairy manure1640-1885

Table 3. Comparison between total nitrogen and phosphorus concentrations (mg/L) for different effluents (adapted from Cai et al., 2013)⁶⁴.

Element	Bovine manure	Activated sludge	Pig manure	Poultry manure
K	116	12	366	592
Na	38	31	111	214
Mg	60	32	225	54
Ca	171	267	174	42
Fe	9.1	3	38	2.5
Cu	0.04	0.02	0.02	0.04
Zn	0.44	0.16	0.08	0.1
Co	0.02	0.12	0.09	0.12
Mn	0.12	0.26	1.15	0.1
Cr	0.002	0.012	0.05	0.047

Table 4. Comparison of macro and micro element concentrations (mg/L) from different digestates.⁶⁵

Component	Potential effect	Reference
Turbidity	Partial absorption of light energy	
Nitrogen concentration	Toxicity of the ammoniac form is pH is not	74
	regulated	75
Volatile fatty acids	Impact on the population equilibrium due to the	76
concentration	stimulation of heterotrophic bacteria growth. Long	77
	chain fatty acids (>C14) can be toxic for some	
	species.	
Flocculants	Coagulation effect leading to biomass	
	sedimentation and performance limitation but also	
	the bioavailability of essential nutrients such as	
	phosphorus	
Microorganisms	Potential ecological impact (competition) and	
	sanitary (depending on the microalgal exploitation	
	industry)	
Heavy metals	Cellular toxicity, accumulation and potential	78
	sanitary impact (depending on the microalgal	
	exploitation industry)	
Organic trace elements	Potential cellular toxicity	79

Table 5. Potential effects of the liquid digestate phase to microalgal growth

Figure 1. Flux of materials in anaerobic digestion of microalgae biomass