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Abstract 29 

Genomic selection is promising for plant breeding, particularly for perennial crops. Multivariate 30 

analysis, which considers several traits jointly, takes advantage of the genetic correlations to increase accuracy. 31 

The aim of this study was to empirically evaluate the potential of a univariate and multivariate genomic mixed 32 

model (G-BLUP) compared to the traditional univariate pedigree-based BLUP (T-BLUP) when analyzing 33 

progeny tests of oil palm, the world major oil crop.  34 

The dataset comprised 478 crosses between two heterotic groups A and B with 140 and 131 parents, 35 

respectively, genotyped with 313 SSR. The traits were bunch number and average bunch weight. 36 

We found that G-BLUP with a genomic matrix based on a similarity index had a higher likelihood than 37 

T-BLUP. Also, multivariate G-BLUP improved the accuracy of additive effects (breeding values or general 38 

combining abilities, GCAs), in particular for the less heritable trait, and of dominance effects (specific 39 

combining abilities, SCAs). The average increase in accuracy was 22.5% for GCAs and 18.7% for SCAs. Using 40 

160 markers in group A and 90 in group B was enough to reach maximum GCA prediction accuracy. The 41 

contrasted history of the parental groups likely explained the higher benefit of G-BLUP over T-BLUP for group 42 

A than for group B. 43 

Finally, G-BLUP should be used instead of T-BLUP to analyze oil palm progeny tests, with a 44 

multivariate approach for correlated traits. G-BLUP will allow breeders to consider SCAs in addition to GCAs 45 

when selecting among the progeny-tested parents.  46 

 47 

 48 

 49 

Keywords Elaeis guineensis, genomic selection, multivariate model, empirical data, reciprocal recurrent 50 
selection, accuracy 51 

 52 
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1. Introduction 54 

Oil palm (Elaeis guineensis Jacq.) is the main oil crop in the world. It bears fruit bunches all year long, 55 

and palm oil is extracted from the mesocarp of the fruits. Bunch production is a key component of oil yield, and 56 

results from the product of two negatively correlated traits, bunch number (BN) and average bunch weight 57 

(ABW) (Corley and Tinker 2003). Commercial oil palms are hybrids between two heterotic groups called A and 58 

B. Group A is mostly made up of the Deli population (Asia) and group B of various African populations. Group 59 

A palms have a few heavy bunches whereas group B palms have many small bunches, resulting in heterosis of 60 

bunch yield in A × B hybrids. This led to the choice of a reciprocal recurrent selection (RRS) breeding scheme in 61 

the 1950s (Gascon and de Berchoux 1964; Meunier and Gascon 1972). RRS involves progeny tests in which 62 

group A and group B parents are crossed to estimate their general combining ability (GCA), i.e. half their 63 

breeding value in hybrid crosses, for each yield component, from the phenotype of their hybrid progenies. So far, 64 

parental GCAs are obtained using an univariate mixed-model analysis (i.e. considering one trait at a time) taking 65 

pedigree information into account (Soh 1994; Purba et al. 2001). The accuracy of the GCAs (i.e. the correlation 66 

between the estimated and the true GCAs) is high, reaching around 0.9 for all yield components (Cros et al. 67 

2015b). However, the progeny tests require a long generation interval (around 20 years) and low selection 68 

intensity (less than 200 individuals tested per parental group and generation). 69 

 Genomic selection (GS) aims to predict genetic values of candidate individuals. In particular, GS can be 70 

applied on candidate individuals without data records, by using their genotype with high density molecular 71 

markers and a model calibrated with a training set made of individuals with records and marker data (Meuwissen 72 

et al. 2001). GS is then particularly promising when traditional breeding requires extensive phenotyping, like 73 

progeny tests, as in this case GS makes it possible to reduce the generation interval and to increase selection 74 

intensity. The potential of GS is particularly high for perennial crops (Grattapaglia 2014; Isik 2014; van Nocker 75 

and Gardiner 2014). In oil palm, previous studies showed that GS could allow selecting individuals without 76 

progeny tests (Wong and Bernardo 2008; Cros et al. 2015b). However, GS also has the potential to improve the 77 

analysis of progeny tests. So far, no empirical study has investigated whether GS can increase the accuracy of 78 

the GCA of progeny-tested oil palms.  79 

The GS model G-BLUP (VanRaden 2007; Habier et al. 2007) is a mixed model that makes use of 80 

molecular information through a genomic matrix (G) of realized relationships. Multivariate analysis using mixed 81 

modeling (i.e. considering several traits jointly) aims to take advantage of the genetic correlation between traits 82 

to increase accuracy (Gilmour et al. 2009). Simulations have shown that multivariate G-BLUP can yield higher 83 
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accuracy than univariate G-BLUP, depending on the heritability of the traits (h²) and their genetic correlation 84 

(Calus and Veerkamp 2011; Jia and Jannink 2012; Guo et al. 2014). When considering two traits with different 85 

h², bivariate G-BLUP led to a higher increase in accuracy for the trait with the lowest h². In addition, Jia and 86 

Jannink (2012) and Calus and Veerkamp (2011) found that the stronger the genetic correlation, the greater the 87 

benefit of using a bivariate G-BLUP. However, Jia and Jannink (2012) did not provide evidence for improved 88 

accuracy with multivariate analysis when they used empirical data. In oil palm simulations, Cros et al (2015a) 89 

used multivariate models but did not make comparisons with univariate models. 90 

The aim of the present study was to compare the potential of univariate and bivariate G-BLUP with that 91 

of the current univariate pedigree based BLUP for the analysis of BN and ABW traits in oil palm progeny tests 92 

using real data. 93 

  94 
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 95 
2. Material and methods 96 

Experimental population and phenotypes 97 

The progeny test involved 146 group A parents crossed with 155 group B parents according to an 98 

incomplete factorial design with 478 crosses. The crosses were planted between 1995 and 2000 in 26 trials 99 

located in the same area, at the Aek Loba estate (SOCFINDO, North Sumatra). All the vegetal material belonged 100 

to the PalmElit breeding program (www.palmelit.com). Annual bunch production data, i.e. bunch number (BN) 101 

and average bunch weight (ABW), were collected on 30,872 progeny palms of type tenera (thin-shelled 102 

commercial type) from 6 years old up to 11 years old. More details on the experimental design are given in Cros 103 

et al. (2015b). Phenotypic correlation between ABW and BN was -0.682. The narrow-sense heritabilities h² of 104 

ABW and BN varied with the parental population, h²BN was higher than h²ABW in A (h²BN = 0.31 ± 0.04 [s.e.], 105 

h²ABW = 0.23 ± 0.04) and lower than h²ABW in B (h²BN = 0.5 ± 0.05, h²ABW = 0.57 ± 0.04) (Cros et al. 2015b). 106 

 107 

Molecular data 108 

Among the progeny-tested parents, 140 group A and 131 group B individuals were genotyped. 109 

Supplementary Table S1 lists the distribution of these individuals among the populations constituting the 110 

parental groups. Genotyping was performed with 313 simple sequence repeat markers (SSR) (Billotte et al. 111 

2005; Tranbarger et al. 2012; Zaki et al. 2012). Phenotypic observation of the fruit type (i.e. shell thickness) was 112 

included as a two-allele marker, corresponding to the Sh gene (Singh et al 2013). Missing data (1.7% in group A 113 

and 2.9% in group B) were imputed with BEAGLE 3.3.2 (Browning and Browning 2007). Finally, group A had 114 

265 polymorphic SSR (mean 3.05 alleles ± 0.89 (standard deviation)), and group B had 289 polymorphic SSR 115 

(mean 6.25 alleles ± 2.35). For each group only the polymorphic markers were used for the genomic models. 116 

 117 

Prediction models 118 

Univariate T-BLUP 119 

The traditional pedigree-based mixed model or T-BLUP was used to predict the genetic effects, i.e. the 120 

general combining abilities (GCAs) in A x B crosses of the progeny-tested parents and the specific combining 121 

abilities (SCAs) of the crosses (dominance effects). The model was: 122 

P  = Xβ + Wb + ZAgA + ZBgB + ZDs + e  [1] 123 

where P is the vector of hybrid phenotypes (BN or ABW), X and W are incidence matrices of the experimental 124 

design effects, β and b are the vectors of fixed and random effects due to the experimental design, respectively, 125 
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ZA, ZB and ZD are incidence matrices of the genetic random effects, gA and gB are the vectors of GCA of 126 

parents A and B, respectively, s is the vector of SCA of crosses, and e is the vector of residual effects. 127 

The random genetic effects followed the model of Stuber and Cockerham (1966), with gA ~ N(0, 128 

𝜎𝜎𝑔𝑔A
2 × AA), gB ~ N(0, 𝜎𝜎𝑔𝑔B

2 × AB) and s  ~ N(0, 𝜎𝜎𝑠𝑠2× D), where σ²gA and σ²gB are the additive variances of the A and 129 

B parents in A × B hybrid crosses, respectively, and σ²s is the variance of the dominance effects in the A × B 130 

population. Given the hybrid nature of the crosses, the A matrices contain Malécot’s coefficient of coancestry f 131 

(Malécot 1948), such as Axy = { fxy } between individuals x and y. They were built from the pedigrees with the R 132 

package synbreed (Wimmer et al. 2012). The D matrix is the dominance coancestry matrix between crosses, 133 

obtained as D = AA ⊗ AB [2], i.e. with elements DAB,A’B’ = fAA’fBB’, as A and B individuals are unrelated 134 

(Stuber and Cockerham 1966; Lynch and Walsh 1998). 135 

Fixed effects were: overall mean, “trial” (26 levels), “block” (152 levels) and “age” (6 levels). Random 136 

effects associated with the experimental design were “elementary plots” (3,464 levels), “individual” (30,872 137 

levels), interaction “age*cross” (“α*s”, 2,855 levels); with “individual” nested in “elementary plots”, 138 

“elementary plots” nested in “block”, and “block” nested in “trial”. The random experimental design effects 139 

followed a normal distribution of the form N(0, σ² × I), where I is the identity matrix and σ² the associated 140 

variance, with the exception of α*s that followed N(0, 𝜎𝜎𝛼𝛼∗𝑠𝑠2  × I6×6 ⊗ D). The errors e followed N(0, σ²e × 141 

I180872×180872), where σ²e is the residual variance. 142 

Variance parameters were estimated by restricted maximum likelihood (REML) and solutions of the 143 

mixed model were obtained by resolving Henderson’s mixed model equations (Henderson 1975), using R-144 

ASReml (Gilmour et al. 2009; R Core Team 2014).  145 

 146 

Univariate G-BLUP 147 

In the genomic selection model G-BLUP, the pedigree coancestry matrices used in [1] were replaced by 148 

additive genomic coancestry matrices GA and GB for groups A and B, respectively. 149 

As some progeny-tested individuals were not genotyped, their pedigree coancestry had to be combined 150 

with the molecular coancestry of the genotyped individuals. For this purpose, we used the single-step approach 151 

with matrices HA, HB and DH designed to combine both genomic and pedigree information (Legarra et al. 2009; 152 

Christensen and Lund 2010). For each parental group, H inverse was built as follows: 153 

𝐇𝐇−𝟏𝟏 = 𝐀𝐀−𝟏𝟏 + �𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐆𝐆−𝟏𝟏 − 𝐀𝐀𝟐𝟐𝟐𝟐−𝟏𝟏

� 
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where A is the pedigree coancestry matrix including all the individuals in the group, A22 and G are the pedigree 154 

and the genomic coancestry matrices, respectively, containing only the genotyped individuals. Then HD was 155 

built in the same way as in equation [2]: 156 

DH = HA ⊗ HB 157 

This led to gA ~ N(0, σ²gA × HA), gB ~ N(0, σ²gB × HB) and s ~ N(0, σ²s × DH). 158 

 159 

Three different genomic additive coancestry matrices G were compared: GAIS, GOF and GN. GAIS used 160 

a similarity index (Lynch 1988; Li et al. 1993) and was defined as: 161 

𝐆𝐆𝐀𝐀𝐀𝐀𝐀𝐀 =
𝐙𝐙𝐙𝐙𝐭𝐭

4L
 

where Z is the genotypic matrix with as many columns as alleles, with the individuals in rows, and containing in 162 

the ith column the number of copies of the ith allele (Zxy ⋲ {0,1,2}), and L is the total number of markers. This 163 

index estimates coancestry from alike-in-state (AIS) alleles, and assumes that each allele was unique in the 164 

founder population that generated the population under study (Eding and Meuwissen 2001).  165 

GOF was obtained according to VanRaden (2007; 2008), with a modification for multiallelic markers: 166 

𝐆𝐆𝐎𝐎𝐎𝐎 =  
(𝐙𝐙 − 𝐏𝐏)(𝐙𝐙 − 𝐏𝐏)t

4∑ (1 −∑ ∑ 𝑝𝑝𝑙𝑙𝑎𝑎
2

𝑎𝑎𝑙𝑙
L
l=1 )

 

where P is a matrix containing twice the observed allelic frequency (OF) of the ith allele in the genotyped 167 

individuals in the ith column.  168 

The coancestry matrix of VanRaden (2007; 2008) normally requires the allele frequencies in the founder 169 

population. As these frequencies are usually not known, they are commonly replaced by the observed 170 

frequencies, as we did in our study. GN was derived from GOF, with normalization to provide more realistic 171 

variance and accuracy estimations (Forni et al. 2011): 172 

𝐆𝐆𝐍𝐍 =  
1
2

×
(𝐙𝐙 − 𝐏𝐏)(𝐙𝐙 − 𝐏𝐏)t

{trace[(𝐙𝐙 − 𝐏𝐏)(𝐙𝐙 − 𝐏𝐏)t]} n⁄
 

where n is the number of genotyped individuals. 173 

 174 

Multivariate models 175 

Multivariate models were built from [1], as follows (Mrode 2005): 176 
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�𝐀𝐀𝐀𝐀𝐀𝐀𝐁𝐁𝐁𝐁 � = �𝐗𝐗 𝟎𝟎
𝟎𝟎 𝐗𝐗� �

𝛃𝛃ABW
𝛃𝛃BN

� + �𝐖𝐖 𝟎𝟎
𝟎𝟎 𝐖𝐖� �𝐛𝐛ABW𝐛𝐛BN

� + �𝐙𝐙A 𝟎𝟎
𝟎𝟎 𝐙𝐙A

� �
𝐠𝐠𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀
𝐠𝐠𝐀𝐀𝐁𝐁𝐁𝐁

� + �𝐙𝐙B 𝟎𝟎
𝟎𝟎 𝐙𝐙B

� �
𝐠𝐠𝐁𝐁𝐀𝐀𝐀𝐀𝐀𝐀
𝐠𝐠𝐁𝐁𝐁𝐁𝐁𝐁

� + �𝐙𝐙D 𝟎𝟎
𝟎𝟎 𝐙𝐙D

� �
𝐬𝐬𝐀𝐀𝐀𝐀𝐀𝐀
𝐬𝐬𝐁𝐁𝐁𝐁 �

+ �
𝐞𝐞𝐀𝐀𝐀𝐀𝐀𝐀
𝐞𝐞𝐁𝐁𝐁𝐁 � 

In multivariate T-BLUP, genetic effects were structured as: 177 

�
𝐠𝐠𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀
𝐠𝐠𝐀𝐀𝐁𝐁𝐁𝐁

�~𝑁𝑁(0, �
𝜎𝜎²𝑔𝑔AABW  CgA

CgA 𝜎𝜎²𝑔𝑔ABN
� ⊗ 𝐀𝐀𝐀𝐀) 

�
𝐠𝐠𝐁𝐁𝐀𝐀𝐀𝐀𝐀𝐀
𝐠𝐠𝐁𝐁𝐁𝐁𝐁𝐁

�~𝑁𝑁(0, �
𝜎𝜎²𝑔𝑔BABW  CgB

CgB 𝜎𝜎²𝑔𝑔BBN
� ⊗ 𝐀𝐀𝐁𝐁) 

�
𝐬𝐬𝐀𝐀𝐀𝐀𝐀𝐀
𝐬𝐬𝐁𝐁𝐁𝐁 �~𝑁𝑁(0, �

𝜎𝜎²𝑠𝑠ABW  Cs
Cs 𝜎𝜎²𝑠𝑠BN

� ⊗ 𝐃𝐃) 

where CgA and CgB are additive genetic covariances and Cs is the dominance genetic covariance. Residual effects 178 

were structured as: 179 

�
𝐞𝐞𝐀𝐀𝐀𝐀𝐀𝐀
𝐞𝐞𝐁𝐁𝐁𝐁 �~𝑁𝑁(0, �

𝜎𝜎²𝑒𝑒ABW Ce
Ce 𝜎𝜎²𝑒𝑒BN

� ⊗ 𝐈𝐈) 

 180 

For multivariate G-BLUP, AA, AB and D were replaced by HA, HB and DH, respectively. 181 

Non-genetic random effects had unstructured variances-covariances. 182 

 183 

Variances and covariances of both non-genetic effects and genetic effects were estimated by REML.  184 

 185 

Comparison of models 186 

For a given type of model (i.e. univariate for ABW, univariate for BN and bivariate), the G-BLUP 187 

approaches based on the three additive genomic matrices were compared between themselves and with the T-188 

BLUP model. At this stage, for computational reasons, the SCA effects were considered uncorrelated between 189 

traits in the multivariate models. Only the additive genetic variance-covariance structure matrix varied, while the 190 

number of observations and estimated parameters remained constant. The models were consequently directly 191 

compared based on their deviance (-2LogLikelihood), which was the equivalent of comparing their Akaike 192 

information criterion and Bayesian information criterion. The convergence of REML algorithm was also 193 

considered. 194 

The univariate G-BLUP and multivariate G-BLUP models were compared based on their accuracy, 195 

which is the correlation between the predicted genetic effects (GCAs or SCAs) and their true value (unknown). 196 
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The accuracy of the genetic effect predicted for the xth level (i.e. parent for GCA or cross for SCA) was 197 

estimated from its relation with the prediction error variance (PEV) (Clark et al. 2012): 198 

r𝑥𝑥 = �1 −
PEV𝑥𝑥
𝜎𝜎2𝚺𝚺𝑥𝑥𝑥𝑥

 

where σ² is the variance of the genetic effect, Σxx is the xth term of the diagonal of the associated variance-199 

covariance matrix and PEV𝑥𝑥 =  (u� − u)𝑥𝑥2 , with u the genetic effect considered. PEVs were computed from the 200 

elements of the inverse of the mixed model equations, based on theoretical derivations from Henderson (1975) 201 

(i.e. not obtained by cross-validation). Consequently, for any progeny-tested individual x, the accuracy 202 

associated with its GCA for a given trait was: 203 

rGCA𝑥𝑥 = �1 − PEVGCA𝑥𝑥
𝐆𝐆𝑥𝑥𝑥𝑥𝜎𝜎𝑔𝑔2

  [3] 204 

where 𝜎𝜎𝑔𝑔2 is the estimated additive variance of the trait for the parental group of x. For the univariate and 205 

multivariate G-BLUP and for each trait, we computed the mean rGCA over the 140 group A parents and the 131 206 

group B parents that were genotyped. For each group and each trait, the mean rGCA of univariate and multivariate 207 

models was compared using a t-test and a Bonferroni correction. We also compared the accuracy of SCA, which 208 

for cross x × y and a given trait, was: 209 

rSCA𝑥𝑥𝑥𝑥 = �1 −
PEVSCA𝑥𝑥𝑥𝑥
𝐃𝐃𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥σ𝑠𝑠2

   [4] 210 

where 𝐃𝐃𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 = G𝑥𝑥𝑥𝑥G𝑦𝑦𝑦𝑦 and 𝜎𝜎𝑠𝑠2 the estimated dominance variance for the trait. For the univariate and 211 

multivariate G-BLUP and for each trait, we computed the mean rSCA over the 478 crosses evaluated in the 212 

progeny test and over 256 crosses that had not been evaluated. These 256 crosses were sampled from the 213 

unevaluated crosses among all possible crosses between the 140 A and 131 B parents, with a balanced 214 

representation of the parents of both groups (i.e. each parent occurred once or twice among the 256 unevaluated 215 

crosses). To obtain the PEVSCA of the 256 unevaluated crosses and compute their rSCA, these crosses were added 216 

to the 𝐃𝐃 matrix prior to analyzing the mixed models, following Henderson (1977). The mean rSCA of the 217 

univariate and multivariate models was compared using a t-test for each group and trait, and a Bonferroni 218 

correction was applied to adjust the p-values. 219 

 220 

Marker density 221 
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We studied the effect of marker density on the prediction of GCAs by the multivariate G-BLUP model. 222 

This was investigated independently in the two parental groups by varying the number of markers for one group, 223 

while keeping the maximum number of markers for the other group. The number of markers m varied from 10 to 224 

265 in group A and from 10 to 289 in group B, with a step of 10. At each density, five replicates were made, for 225 

each replicate, we used a random subset of m markers chosen among all the available polymorphic markers for 226 

the group. For each replicate, the additive coancestry matrix of the group concerned was calculated using the m 227 

markers, and the dominance matrix was calculated using the m markers for the group concerned and all the 228 

markers of the other group. To assess the effect of the number of markers on the prediction of GCAs, we 229 

calculated the prediction accuracy of the model, i.e. the correlation between the predicted GCAs (for the group 230 

whose marker density varied) and the reference GCAs. The reference GCAs were obtained from the most 231 

accurate model previously identified (actually the multivariate G-BLUP) using all the markers, so that the 232 

prediction accuracy was the best approximation of accuracy. The different levels of marker number, of replicates 233 

per level of marker number and the two parental groups meant the calculations had to be repeated many times, 234 

so, to speed up the process, no covariance was specified for the dominance effects in the multivariate G-BLUP 235 

model used here.  236 

  237 
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3. Results 238 

Coancestry matrices 239 

The distribution of coancestry estimates in group A and group B is shown in Figure 1. Coancestry 240 

estimates in GAIS and A belonged to [0, 1], as expected, as coancestry is the probability that two alleles on a 241 

random locus of two individuals are identical by descent (Wright 1922; Malécot 1948). The median value of the 242 

two VanRaden matrices (GOF, GN) was below 0, meaning that more than half the coancestry estimates were 243 

negative. The REML algorithm converged with A and GAIS matrices. The smallest deviance was obtained with 244 

GAIS (Table 1). The GOF and GN matrices were not positive definite and the REML algorithm did not converge, 245 

leading to higher deviances than with GAIS and A. Therefore, for our dataset, the GAIS matrix appeared to be 246 

more appropriate than the other genomic matrices GOF and GN, and than the genealogical matrix A. For the rest 247 

of the study, we consequently only used GAIS in the G-BLUP. 248 

For both A and B groups, coancestry estimates in GAIS were higher than in matrix A. GAIS did not 249 

contain any null coancestry estimates, whereas A contained 73.6% null coancestry estimates for group A and 250 

42.9% for group B. The coancestry estimates for group A were lower than those for group B in the A matrix, but 251 

were higher in GAIS. The variability in coancestry estimates was higher in group A than in group B. 252 

 253 

Multivariate G-BLUP 254 

The multivariate G-BLUP revealed very high additive correlations, reaching -0.997 in the parental 255 

group A and -0.917 in group B, very high dominance correlations (-0.987) and low residual correlations (-0.158). 256 

The GCA accuracy of the univariate and multivariate G-BLUP are depicted in Figure 2A. For all 257 

combinations of groups and traits, mean GCA accuracy was higher with the multivariate G-BLUP model than 258 

with the univariate G-BLUP (p<10-100). The average increase was 22.5%, ranging from 13.2% for ABW in 259 

group B to 32.1% for BN in group B. There were differences in GCA accuracy between traits within a parental 260 

group with univariate G-BLUP, but the multivariate G-BLUP model increased the GCA accuracy of both traits 261 

to the same level, i.e. 0.83 in group B and 0.88 in group A. Thus, the trait with the lowest GCA accuracy in the 262 

univariate models (ABW for group A and BN for group B) benefited the most from the multivariate model.  263 

As the multivariate G-BLUP model predicted GCAs best, we used the GCAs predicted by this model as 264 

reference GCAs. The Pearson correlation coefficients between GCAs predicted by any of the models (univariate 265 

or multivariate, T-BLUP or G-BLUP) and reference GCAs are listed for each trait and each group in Table 2, as 266 

well as the Spearman’s rank correlation of the 10% best individuals (“best” when evaluated by the reference 267 
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model). The GCAs obtained with univariate T-BLUP were generally the least correlated with the reference 268 

GCAs, with an average Pearson correlation coefficient of 0.946 and Spearman’s correlation coefficient of 0.527. 269 

According to the Pearson correlation, the GCAs obtained with the multivariate T-BLUP and univariate G-BLUP 270 

models were highly correlated with the reference GCAs (average Pearson correlation coefficient of 0.978 and 271 

0.966, respectively). However, the Spearman’s correlation coefficients computed on the top 10% individuals 272 

were not as high, with an average value of 0.595, ranging from 0.213 to 0.978. This indicated that the model 273 

impacted the selection of the progeny tested individuals, and was therefore of importance for practical breeding. 274 

In addition, the multivariate T-BLUP gave GCAs with ranks that were more correlated with the ranks of the 275 

reference GCAs than the univariate G-BLUP (Spearman’s rank correlation coefficient of 0.696 and 0.562, 276 

respectively). Therefore, the improvement obtained in the GCA estimates when using a multivariate genomic 277 

approach compared to the conventional univariate T-BLUP resulted more from the multivariate analyze than 278 

from the use of the genomic data. 279 

SCA accuracy was higher with the multivariate G-BLUP than with the univariate G-BLUP (p<10-100) 280 

(Figure 2B and C). The average increase in SCA accuracy was 18.7%, ranging from 12.9% (trait BN, 281 

unevaluated crosses) to 24.6% (trait ABW, evaluated crosses). With the multivariate G-BLUP model, SCA 282 

accuracies were on average 0.76 for evaluated crosses and 0.68 for unevaluated crosses. 283 

The h² obtained with the multivariate genomic model were h²BN = 0.53 and h²ABW = 0.35 in group A, 284 

and h²BN = 0.4 and h²ABW = 0.79 in group B (see Supplementary Table S2 for the detail of variances). 285 

 286 

Marker density 287 

Figure 3 shows the effect of marker density on the prediction accuracy of GCAs with the multivariate 288 

G-BLUP for ABW. The results obtained for BN were very similar (Supplementary Fig. S1), certainly due to the 289 

high genetic correlation between ABW and BN. As marker density increased, the prediction accuracy of 290 

multivariate G-BLUP also rapidly increased before reaching a plateau slightly above the prediction accuracy of 291 

multivariate T-BLUP. To outperform the prediction accuracy of the multivariate T-BLUP model, multivariate G-292 

BLUP required 110 markers for group A and 70 markers for group B, for both ABW and BN traits. The 293 

prediction accuracies exceeded 0.99 with 160 markers for group A for both ABW and BN, and with 80 294 

(respectively 90) markers for group B for ABW (respectively BN).  295 

 296 

4. Discussion 297 
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The general combining ability (GCA) for bunch number (BN) and average bunch weight (ABW) of 298 

progeny-tested oil palms is currently obtained with a pedigree-based univariate mixed model analysis of 299 

phenotypic data of hybrid individuals. In this study, we showed that using a multivariate model and replacing the 300 

genealogical coancestry matrices by molecular matrices of realized coancestry improved the analysis, leading to 301 

better estimated GCAs. In addition, the accuracy of the SCAs, usually neglected, reached interesting levels. We 302 

also found that this could be achieved with a reduced marker density. Indeed, the number of SSR markers that 303 

enabled G-BLUP to reach the same prediction accuracy as T-BLUP was 110 for group A and 70 for group B; 304 

while 160 markers in group A and 90 in group B were needed to achieve the maximum benefit offered by the 305 

genomic approach. 306 

 307 

Genomic versus genealogical coancestries 308 

We observed many null coancestry estimates in A, whereas all coancestry estimates in G were higher 309 

than zero. This reflected the fact that the pedigrees used to estimate the A matrices did not reach the base of the 310 

unrelated founders of the different populations. Consequently, the pedigree-based coancestries underestimated 311 

the real coancestries, whereas the genomic coancestries were able to capture these hidden relationships, which 312 

did not appear in the pedigree. However, as GAIS considered identity by state and A identity by descent, the 313 

values in GAIS were actually overestimated if several copies of some alleles were present in the founder 314 

populations (Eding and Meuwissen 2001). Nevertheless, the G-BLUP model using GAIS was more appropriate 315 

for the data than the T-BLUP model, as shown by its higher likelihood. 316 

The Deli individuals, which made up most of group A, originated from four oil palms planted in 1848 in 317 

Indonesia, while the African populations in group B can be traced back to the first half of the 20th century, with 318 

around 15 to 20 founders (Corley and Tinker 2003). The higher GAIS values found in group A than in group B is 319 

not surprising, given the longer history of inbreeding, drift and artificial selection of Deli individuals. However, 320 

the coancestry estimates for group A were lower than those for group B in the A matrix. This resulted from the 321 

depth (number of generations) of the pedigree and from the history of the populations constituting the parental 322 

groups. In group B, the data available on the pedigrees referred roughly to the initial generation, but the longer 323 

history of the Deli population was not covered by its pedigree, which did not go back far enough in time. This 324 

explained why, according to the pedigrees, there were fewer coancestries in group A than in group B. This also 325 

explained the fact that the number of relationships hidden in the pedigree but captured by the markers was higher 326 

in group A than in group B. This increased the benefit of using the genomic models more for group A than for 327 
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group B, as shown by the bigger increase in the correlation with reference GCAs in group A when the G-BLUP 328 

model was used instead of the T-BLUP, than in group B. 329 

 330 

Multivariate model 331 

This is the first study to investigate the benefit of using multivariate genomic models for oil palm 332 

breeding. Using empirical data, we demonstrated that multivariate genomic models improved the prediction 333 

accuracy of additive effects (GCAs). In addition, we showed that in each parental group, the trait with the lowest 334 

heritability (ABW in group A and BN in group B) benefited the most from the use of a multivariate model. Both 335 

findings are in agreement with the results of previous simulations (Calus and Veerkamp 2011; Jia and Jannink 336 

2012; Guo et al. 2014) but, in addition to the results of these studies, we showed that genomic multivariate 337 

models also increased the prediction accuracy of dominance effects (SCAs). 338 

In the multivariate G-BLUP model, covariance between traits is considered to be identical at each 339 

marker. This could reduce the efficiency of multivariate G-BLUP relatively to a multivariate Bayesian method 340 

that would allow marker specific covariances between traits (Guo et al. 2014). An empirical comparison of these 341 

two statistical approaches with oil palm data would thus be useful.  342 

 343 

Density and type of molecular markers 344 

In the conventional pedigree-based analysis of progeny tests, the GCA of a progeny-tested individual 345 

results from the phenotypes of its progeny and the progeny of its relatives. The measure of coancestry used in 346 

this conventional approach is an expected value, as it is based on pedigree, and may thus differ from the true 347 

coancestry. The genomic approach improves this situation as it uses the realized coancestry between progeny-348 

tested individuals. We found that even small numbers of markers (110 in group A and 70 in group B) gave 349 

GCAs similar to those obtained with a conventional pedigree-based model, which was likely a consequence of 350 

the small effective size of the parental groups of oil palm (<10) (Cros et al. 2015b). The respective history of the 351 

parental groups, with the longer history of inbreeding, drift and artificial selection in group A than group B, led 352 

to less variable realized coancestries in group A and, as we used SSR markers instead of SNPs as in the other GS 353 

studies, to fewer alleles per marker in group A. As a consequence, group A required more markers to capture the 354 

realized coancestries than group B. This difference between groups therefore resulted from their contrasted 355 

history and from the use of a multiallelic type of markers. 356 
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When all the markers were used, we achieved higher prediction accuracy than with the pedigree-based 357 

model. However, the improvement was very limited thus indicating that the phenotypic data of the hybrid 358 

progenies play a major role in the quality of the estimation of the GCAs, while the coancestry matrices used in 359 

the model play a secondary role. 360 

In the present study, the progeny-tested individuals were genotyped using SSR markers. This type of 361 

marker is suitable for genotyping a relatively small number of individuals with a low coverage of the genome, 362 

but the practical application of GS for breeding implies large scale genotyping capabilities, at reasonable cost. 363 

Therefore, future GS studies in oil palm will likely use SNP markers, as this would reduce the cost per data point 364 

and speed up the genotyping process. Although more SNPs are needed to achieve the same GS accuracy as with 365 

SSR markers (Solberg et al. 2008), the efficiency of the current genotyping technologies ensures that SNP 366 

density will not be a limiting factor to implement GS in oil palm. Thus, two SNP arrays have been developped 367 

for this species, with 4.5 K (Ting et al. 2014) and 200K SNP (Teh 2015); while Pootakham et al. (2015) 368 

identified over 20 K SNP using the genotyping-by-sequencing approach. 369 

 370 

Comparison of models 371 

We must emphasize that, as shown by formulas [3] and [4], accuracy based on prediction error 372 

variances (PEV) cannot be used to compare models that differ in their genetic variance covariance matrices, as 373 

the estimated variances refer to a different base population. Here, the base population implicitly used with the T-374 

BLUP model was made up of the individuals with no known parents in the pedigrees, while with the G-BLUP 375 

model, it was made up of genotyped individuals. In other words, even for methods that yield the same estimated 376 

breeding values, accuracies obtained from the PEVs are not invariant to parameterization (Stranden and 377 

Christensen 2011). Consequently, the fact that the accuracies we obtained from the PEVs for the G-BLUP 378 

models were lower than the accuracies of T-BLUP, which were around 0.90 (Cros et al. 2015b), was not 379 

meaningful. When evaluating the potential of GS to predict the GCA of individuals that have not been progeny-380 

tested, accuracy is often estimated using a cross-validation approach, like that used in Cros et al. (2015b) for oil 381 

palm. However, in the present study, this was not possible as we were interested in the ability of GS to predict 382 

the GCA of progeny-tested individuals, and so the approach we chose was to compare T-BLUP and G-BLUP 383 

models based on their likelihood, and to trust the best model. Similarly, when considering either G-BLUP or T-384 

BLUP, it was not possible to use likelihood to compare the univariate and multivariate versions of the model, as 385 
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the datasets (phenotypic observations) differed, but using PEV-based accuracy was relevant as the variance 386 

covariance matrices were the same for the univariate and multivariate models.  387 

 388 

 389 
Implications for breeding 390 

The choice of the model to analyze the progeny tests impacted the practical breeding work, as it affected 391 

the ranking of the evaluated individuals and therefore the set of the selected individuals. Here, we focused on BN 392 

and ABW, two major traits determining oil yield, but genomic models could be used instead of the traditional 393 

pedigree based models for all the traits recorded in progeny tests, i.e. bunch quality, height increment, disease 394 

symptoms (Corley and Tinker 2003; Durand-Gasselin et al. 2010), annual profile of bunch production measured 395 

by the Gini coefficient (Cros et al. 2013), etc. In addition, correlated traits should be analyzed jointly in a 396 

multivariate model. Here we considered two traits but a higher number of correlated traits could easily be used. 397 

In oil palm, several traits are known to be correlated including the number of fruits per bunch and the average 398 

fruit weight, the percentage of pulp and the percentage of kernel in the fruits. As indicated by the literature, the 399 

benefit of using a multivariate approach will result from the h² of the traits included in the model and from their 400 

correlation. Using the same dataset, Cros et al. (2015b) showed that GS could predict the GCA of non-progeny-401 

tested individuals for some traits in group B, in particular when the candidate individuals were highly related to 402 

the training set. Here, we showed that GS was also useful to predict the GCA of progeny-tested individuals and 403 

the SCA of crosses. GS is therefore a highly valuable method for oil palm breeding, even with low marker 404 

density.  405 

Our experimental design involved a mean number of 65 hybrid individuals per cross. It would be 406 

interesting to study the effect of decreasing the number of hybrid individuals per cross in the progeny tests, as we 407 

would expect the G- BLUP model to be less affected than the T-BLUP, thanks to the extra information provided 408 

to the G-BLUP (realized coancestries). Reducing the number of hybrid individuals per cross would also allow 409 

progeny-testing more parents, thus increasing the selection intensity without increasing the cost of the progeny 410 

tests. The importance of hybrid phenotypes in the prediction of GCAs also suggests that the number of markers 411 

required to predict the GCAs of non-progeny-tested individuals might be higher than the number required for 412 

progeny-tested individuals. However, this point requires further investigation. 413 

To our knowledge, this is the first report of accuracy of SCA for oil palm crosses. It appeared to be 414 

lower than the accuracy of the GCAs, with the mean accuracy of SCA of crosses that were not evaluated in the 415 

fields reaching 0.68 with the multivariate model. The low proportion of dominance variance in total genetic 416 
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variance (Purba et al. 2001; Cros 2014) indicates that dominance effects are much smaller than additive effects, 417 

making the number of individuals per cross insufficient to accurately estimate SCAs. Our results question the 418 

fact that oil palm breeders only use progeny-tests to select parents with the highest GCA, without taking SCAs 419 

into consideration, or only those of the crosses that were actually tested in the trials, which represents a small 420 

proportion of possible crosses. Although the first paper dealing with BLUP methodology in oil palm dates from 421 

the 1990s (Soh 1994), many breeding companies have not yet started using BLUP for practical breeding 422 

decisions and, those that have started, did so relatively recently. Without BLUP taking coancestries into account, 423 

the analysis of the progeny-tests only provides SCA estimates for the crosses that were evaluated. When the 424 

BLUP model is provided with pedigree information, most of the dominance relationship matrix D contains zero 425 

elements due to the numerous null coancestries in the A matrices. In these conditions, the BLUP model will 426 

yield no estimates of SCA at all or only very inaccurate estimates for crosses that were not evaluated in the trials. 427 

However, as markers are more efficient than pedigrees at capturing coancestries, the accuracy of SCAs obtained 428 

with GBLUP is high enough to make selection possible, particularly with multivariate analysis of correlated 429 

traits. For these reasons, oil palm breeders should also consider SCAs when selecting among progeny-tested 430 

parents, since, although relatively small, the extra genetic gain obtained compared to selection based only on 431 

GCAs, would come at no extra cost.  432 

 433 
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 444 

Tables 445 

 446 

Table 1 Deviance of the mixed model according to the coancestry matrices (GAIS¸ GOF, GN and A), for average 447 

bunch weight (ABW), bunch number (BN) and multivariate analysis 448 

  GAIS GOF GN A 
ABW univariate 401,211.2 418,110 418,997 401,355.2 
BN univariate 656,032.6 661,026.2 661,367.8 656,174.2 
Multivariate 1,053,287.4 1,053,539 1,053,471.8 1,053,557.2 

 449 

 450 

Table 2 Pearson correlation (top) and Spearman’s rank correlation of the top 10% individuals (bottom) between 451 

predicted GCAs produced by a G-BLUP or T-BLUP, univariate or multivariate model and the reference GCAs 452 

from the multivariate G-BLUP. The Pearson correlation coefficients were calculated based on the 140 group A 453 

genotyped parents and the 131 group B genotyped parents. The top 10% individuals represented 14 individuals 454 

in group A and 13 in group B 455 

Pearson correlation Group A Group B   

  
ABW BN ABW BN mean  

Multivariate 
G-BLUP 1 1 1 1 1  

T-BLUP 0.971 0.971 0.986 0.983 0.978  

Univariate 
G-BLUP 0.963 0.980 0.976 0.946 0.966  

T-BLUP 0.905 0.960 0.969 0.947 0.946  

        
Spearman’s rank correlation 
on the top 10% individuals Group A Group B   

  
ABW BN ABW BN mean  

Multivariate 
G-BLUP 1 1 1 1 1  

T-BLUP 0.732 0.424 0.978 0.648 0.696  

Univariate 
G-BLUP 0.789 0.218 0.830 0.412 0.562  

T-BLUP 0.635 0.213 0.890 0.368 0.527  
 456 

  457 
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Figure legends 577 

 578 

Figure 1 Distribution of pairwise estimates of coancestry in group A (left) and group B (right) calculated from 579 

pedigree data (A) and markers (GAIS, alike-in-state, GOF, VanRaden matrix calculated from observed frequencies 580 

and GN, normalized VanRaden matrix) 581 

 582 

Figure 2 Mean accuracy of GCA and SCA predictions obtained with univariate and multivariate G-BLUP, for 583 

bunch number (BN) and average bunch weight (ABW): (A) GCA of genotyped parents, (B) SCA of crosses 584 

evaluated in trials and (C) SCA of unevaluated crosses. All G-BLUP models used the GAIS coancestry matrix. 585 

Bars indicate standard deviation (in panel A, n=140 in group A and 131 in group B, in panel B n=478 crosses 586 

and in panel C n=256 crosses) 587 

 588 

Figure 3 Prediction accuracy of the GCAs of genotyped parents predicted with multivariate models, depending 589 

on marker density, for variable ABW in groups A (left) and B (right). The solid line shows the mean prediction 590 

accuracy of the multivariate G-BLUP, using GAIS. Dotted lines represent the standard deviation (n=5 replicates 591 

of random samples of polymorphic markers) 592 
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Figure 1 Distribution of pairwise estimates of coancestry in group A (left) and group B (right) calculated from 

pedigree data (A) and markers (GAIS, alike-in-state, GOF, VanRaden matrix calculated from observed 

frequencies and GN, normalized VanRaden matrix) 
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A 

 

Figure 2 Mean accuracy of GCA and SCA predictions 

obtained with univariate and multivariate G-BLUP, 

for bunch number (BN) and average bunch weight 

(ABW): (A) GCA of genotyped parents, (B) SCA of 

crosses evaluated in trials and (C) SCA of unevaluated 

crosses. All G-BLUP models used the GAIS 

coancestry matrix. Bars indicate standard deviation (in 

panel A, n=140 in group A and 131 in group B, in 

panel B n=478 crosses and in panel C n=256 crosses) 

B C 
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Figure 3 Prediction accuracy of the GCAs of genotyped parents predicted with multivariate models, depending 

on marker density, for variable ABW in groups A (left) and B (right). The solid line shows the mean prediction 

accuracy of the multivariate G-BLUP, using GAIS. Dotted lines represent the standard deviation (n=5 replicates 

of random samples of polymorphic markers) 

 

Group A Group B 

Number of markers Number of markers 
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Figure S1 Prediction accuracy of the GCAs of genotyped parents predicted with multivariate models, depending 

on marker density, for variable BN in groups A (panel A) and B (panel B). The solid line shows the mean 

prediction accuracy of the multivariate G-BLUP, using GAIS. Dotted lines represent standard deviation (n=5 

replicates of random samples of polymorphic markers) 
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Table S1 Details on the 271 parents used in the study, per group and population. All these individuals were 

present in the pedigree and genotyped. 

Group Population Total 
 

A   
 Deli 131 
 Angola 9 
 Total 140 
B   
 La Mé 93 
 Yangambi 24 
 Nigeria 2 
 La Mé × Yangambi 5 
 La Mé × Sibiti 7 
 Total 131 
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Table S2 Variances estimated with the multivariate genomic model for average bunch weight (ABW) 

and bunch number (BN): additive variances for parental groups A (𝜎𝜎²𝑔𝑔A) and B (𝜎𝜎²𝑔𝑔B) and dominance 

variance (𝜎𝜎²𝑠𝑠) in A x B crosses 

 𝜎𝜎²𝑔𝑔A 𝜎𝜎²𝑔𝑔B 𝜎𝜎²𝑠𝑠 

ABW 1.15 2.62 2.81 

BN 3.11 2.34 7.99 
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