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Multivariate genomic model improves analysis of oil palm (Elaeis guineensis Jacq.) progeny tests

Keywords: Elaeis guineensis, genomic selection, multivariate model, empirical data, reciprocal recurrent selection, accuracy

Genomic selection is promising for plant breeding, particularly for perennial crops. Multivariate analysis, which considers several traits jointly, takes advantage of the genetic correlations to increase accuracy.

The aim of this study was to empirically evaluate the potential of a univariate and multivariate genomic mixed model (G-BLUP) compared to the traditional univariate pedigree-based BLUP (T-BLUP) when analyzing progeny tests of oil palm, the world major oil crop.

The dataset comprised 478 crosses between two heterotic groups A and B with 140 and 131 parents, respectively, genotyped with 313 SSR. The traits were bunch number and average bunch weight.

We found that G-BLUP with a genomic matrix based on a similarity index had a higher likelihood than T-BLUP. Also, multivariate G-BLUP improved the accuracy of additive effects (breeding values or general combining abilities, GCAs), in particular for the less heritable trait, and of dominance effects (specific combining abilities, SCAs). The average increase in accuracy was 22.5% for GCAs and 18.7% for SCAs. Using 160 markers in group A and 90 in group B was enough to reach maximum GCA prediction accuracy. The contrasted history of the parental groups likely explained the higher benefit of G-BLUP over T-BLUP for group A than for group B.

Finally, G-BLUP should be used instead of T-BLUP to analyze oil palm progeny tests, with a multivariate approach for correlated traits. G-BLUP will allow breeders to consider SCAs in addition to GCAs when selecting among the progeny-tested parents.

Introduction

Oil palm (Elaeis guineensis Jacq.) is the main oil crop in the world. It bears fruit bunches all year long, and palm oil is extracted from the mesocarp of the fruits. Bunch production is a key component of oil yield, and results from the product of two negatively correlated traits, bunch number (BN) and average bunch weight (ABW) [START_REF] Corley | Selection and breeding[END_REF]. Commercial oil palms are hybrids between two heterotic groups called A and B. Group A is mostly made up of the Deli population (Asia) and group B of various African populations. Group A palms have a few heavy bunches whereas group B palms have many small bunches, resulting in heterosis of bunch yield in A × B hybrids. This led to the choice of a reciprocal recurrent selection (RRS) breeding scheme in the 1950s [START_REF] Gascon | Caractéristique de la production d'Elaeis guineensis (Jacq.) de diverses origines et de leurs croisements. Application à la sélection du palmier à huile[END_REF][START_REF] Meunier | Le schéma général d'amélioration du palmier à huile à l'IRHO[END_REF]. RRS involves progeny tests in which group A and group B parents are crossed to estimate their general combining ability (GCA), i.e. half their breeding value in hybrid crosses, for each yield component, from the phenotype of their hybrid progenies. So far, parental GCAs are obtained using an univariate mixed-model analysis (i.e. considering one trait at a time) taking pedigree information into account [START_REF] Soh | Ranking parents by best linear unbiased prediction (BLUP) breeding values in oil palm[END_REF][START_REF] Purba | Prediction of oil palm (Elaeis guineensis, Jacq.) agronomic performances using the best linear unbiased predictor (BLUP)[END_REF]. The accuracy of the GCAs (i.e. the correlation between the estimated and the true GCAs) is high, reaching around 0.9 for all yield components (Cros et al. 2015b). However, the progeny tests require a long generation interval (around 20 years) and low selection intensity (less than 200 individuals tested per parental group and generation).

Genomic selection (GS) aims to predict genetic values of candidate individuals. In particular, GS can be applied on candidate individuals without data records, by using their genotype with high density molecular markers and a model calibrated with a training set made of individuals with records and marker data [START_REF] Meuwissen | Prediction of total genetic value using genome-wide dense marker maps[END_REF]. GS is then particularly promising when traditional breeding requires extensive phenotyping, like progeny tests, as in this case GS makes it possible to reduce the generation interval and to increase selection intensity. The potential of GS is particularly high for perennial crops [START_REF] Grattapaglia | Breeding forest trees by genomic selection: current progress and the way forward[END_REF][START_REF] Isik | Genomic selection in forest tree breeding: the concept and an outlook to the future[END_REF][START_REF] Van Nocker | Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops[END_REF]. In oil palm, previous studies showed that GS could allow selecting individuals without progeny tests [START_REF] Wong | Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations[END_REF]Cros et al. 2015b). However, GS also has the potential to improve the analysis of progeny tests. So far, no empirical study has investigated whether GS can increase the accuracy of the GCA of progeny-tested oil palms.

The GS model G-BLUP [START_REF] Vanraden | Genomic measures of relationship and inbreeding[END_REF][START_REF] Habier | The impact of genetic relationship information on genome-assisted breeding values[END_REF]) is a mixed model that makes use of molecular information through a genomic matrix (G) of realized relationships. Multivariate analysis using mixed modeling (i.e. considering several traits jointly) aims to take advantage of the genetic correlation between traits to increase accuracy [START_REF] Gilmour | ASReml user guide release 3[END_REF]. Simulations have shown that multivariate G-BLUP can yield higher accuracy than univariate G-BLUP, depending on the heritability of the traits (h²) and their genetic correlation [START_REF] Calus | Accuracy of multi-trait genomic selection using different methods[END_REF][START_REF] Jia | Multiple Trait Genomic Selection Methods Increase Genetic Value Prediction Accuracy[END_REF][START_REF] Guo | Comparison of single-trait and multiple-trait genomic prediction models[END_REF]. When considering two traits with different h², bivariate G-BLUP led to a higher increase in accuracy for the trait with the lowest h². In addition, [START_REF] Jia | Multiple Trait Genomic Selection Methods Increase Genetic Value Prediction Accuracy[END_REF] and [START_REF] Calus | Accuracy of multi-trait genomic selection using different methods[END_REF] found that the stronger the genetic correlation, the greater the benefit of using a bivariate G-BLUP. However, [START_REF] Jia | Multiple Trait Genomic Selection Methods Increase Genetic Value Prediction Accuracy[END_REF] did not provide evidence for improved accuracy with multivariate analysis when they used empirical data. In oil palm simulations, Cros et al (2015a) used multivariate models but did not make comparisons with univariate models.

The aim of the present study was to compare the potential of univariate and bivariate G-BLUP with that of the current univariate pedigree based BLUP for the analysis of BN and ABW traits in oil palm progeny tests using real data.
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Molecular data

Among the progeny-tested parents, 140 group A and 131 group B individuals were genotyped.

Supplementary Table S1 lists the distribution of these individuals among the populations constituting the parental groups. Genotyping was performed with 313 simple sequence repeat markers (SSR) [START_REF] Billotte | Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.)[END_REF][START_REF] Tranbarger | SSR markers in transcripts of genes linked to post-transcriptional and transcriptional regulatory functions during vegetative and reproductive development of Elaeis guineensis[END_REF][START_REF] Zaki | Elaeis oleifera Genomic-SSR Markers: Exploitation in Oil Palm Germplasm Diversity and Cross-Amplification in Arecaceae[END_REF]. Phenotypic observation of the fruit type (i.e. shell thickness) was included as a two-allele marker, corresponding to the Sh gene (Singh et al 2013). Missing data (1.7% in group A and 2.9% in group B) were imputed with BEAGLE 3.3.2 [START_REF] Browning | Rapid and Accurate Haplotype Phasing and Missing-Data Inference for Whole-Genome Association Studies By Use of Localized Haplotype Clustering[END_REF]. Finally, group A had 265 polymorphic SSR (mean 3.05 alleles ± 0.89 (standard deviation)), and group B had 289 polymorphic SSR (mean 6.25 alleles ± 2.35). For each group only the polymorphic markers were used for the genomic models.

Prediction models

Univariate T-BLUP

The traditional pedigree-based mixed model or T-BLUP was used to predict the genetic effects, i.e. the general combining abilities (GCAs) in A x B crosses of the progeny-tested parents and the specific combining abilities (SCAs) of the crosses (dominance effects). The model was:

P = Xβ + Wb + Z A g A + Z B g B + Z D s + e [1]
where P is the vector of hybrid phenotypes (BN or ABW), X and W are incidence matrices of the experimental design effects, β and b are the vectors of fixed and random effects due to the experimental design, respectively,
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𝜎𝜎 𝑔𝑔 A 2 × A A ), g B ~ N(0, 𝜎𝜎 𝑔𝑔 B 2 × A B )
Fixed effects were: overall mean, "trial" (26 levels), "block" (152 levels) and "age" (6 levels). Random effects associated with the experimental design were "elementary plots" (3,464 levels), "individual" (30,872 levels), interaction "age*cross" ("α*s", 2,855 levels); with "individual" nested in "elementary plots", "elementary plots" nested in "block", and "block" nested in "trial". The random experimental design effects followed a normal distribution of the form N(0, σ² × I), where I is the identity matrix and σ² the associated variance, with the exception of α*s that followed N(0, 𝜎𝜎 𝛼𝛼 * 𝑠𝑠 2 × I 6×6 ⊗ D). The errors e followed N(0, σ² e × I 180872×180872 ), where σ² e is the residual variance.

Variance parameters were estimated by restricted maximum likelihood (REML) and solutions of the mixed model were obtained by resolving Henderson's mixed model equations [START_REF] Henderson | Best Linear Unbiased Estimation and Prediction under a Selection Model[END_REF], using R-ASReml [START_REF] Gilmour | ASReml user guide release 3[END_REF][START_REF] Core | R: a language and environment for statistical computing[END_REF].

Univariate G-BLUP

In the genomic selection model G-BLUP, the pedigree coancestry matrices used in [1] were replaced by additive genomic coancestry matrices G A and G B for groups A and B, respectively.

As some progeny-tested individuals were not genotyped, their pedigree coancestry had to be combined with the molecular coancestry of the genotyped individuals. For this purpose, we used the single-step approach with matrices H A , H B and D H designed to combine both genomic and pedigree information [START_REF] Legarra | A relationship matrix including full pedigree and genomic information[END_REF][START_REF] Christensen | Genomic prediction when some animals are not genotyped[END_REF]. For each parental group, H inverse was built as follows:

𝐇𝐇 -𝟏𝟏 = 𝐀𝐀 -𝟏𝟏 + � 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝐆𝐆 -𝟏𝟏 -𝐀𝐀 𝟐𝟐𝟐𝟐 -𝟏𝟏 �
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𝐆𝐆 𝐀𝐀𝐀𝐀𝐀𝐀 = 𝐙𝐙𝐙𝐙 𝐭𝐭 4L
where Z is the genotypic matrix with as many columns as alleles, with the individuals in rows, and containing in the i th column the number of copies of the i th allele (Z xy ⋲ {0,1,2}), and L is the total number of markers. This index estimates coancestry from alike-in-state (AIS) alleles, and assumes that each allele was unique in the founder population that generated the population under study [START_REF] Eding | Marker-based estimates of between and within population kinships for the conservation of genetic diversity[END_REF].

G OF was obtained according to [START_REF] Vanraden | Genomic measures of relationship and inbreeding[END_REF][START_REF] Vanraden | Efficient methods to compute genomic predictions[END_REF], with a modification for multiallelic markers:

𝐆𝐆 𝐎𝐎𝐎𝐎 = (𝐙𝐙 -𝐏𝐏)(𝐙𝐙 -𝐏𝐏) t 4 ∑ (1 -∑ ∑ 𝑝𝑝 𝑙𝑙 𝑎𝑎 2 𝑎𝑎 𝑙𝑙 L l=1
) where P is a matrix containing twice the observed allelic frequency (OF) of the i th allele in the genotyped individuals in the i th column.

The coancestry matrix of [START_REF] Vanraden | Genomic measures of relationship and inbreeding[END_REF][START_REF] Vanraden | Efficient methods to compute genomic predictions[END_REF] normally requires the allele frequencies in the founder population. As these frequencies are usually not known, they are commonly replaced by the observed frequencies, as we did in our study. G N was derived from G OF , with normalization to provide more realistic variance and accuracy estimations [START_REF] Forni | Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information[END_REF]:

𝐆𝐆 𝐍𝐍 = 1 2 × (𝐙𝐙 -𝐏𝐏)(𝐙𝐙 -𝐏𝐏) t {trace[(𝐙𝐙 -𝐏𝐏)(𝐙𝐙 -𝐏𝐏) t ]} n ⁄
where n is the number of genotyped individuals.

Multivariate models

Multivariate models were built from [1], as follows (Mrode 2005):
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In multivariate T-BLUP, genetic effects were structured as:
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where C gA and C gB are additive genetic covariances and C s is the dominance genetic covariance. Residual effects were structured as:

� 𝐞𝐞 𝐀𝐀𝐀𝐀𝐀𝐀 𝐞𝐞 𝐀𝐀𝐍𝐍 � ~𝑁𝑁(0, � 𝜎𝜎² 𝑒𝑒 ABW C e C e 𝜎𝜎² 𝑒𝑒 BN � ⊗ 𝐀𝐀)
For multivariate G-BLUP, A A , A B and D were replaced by H A , H B and D H , respectively.

Non-genetic random effects had unstructured variances-covariances.

Variances and covariances of both non-genetic effects and genetic effects were estimated by REML.

Comparison of models

For a given type of model (i.e. univariate for ABW, univariate for BN and bivariate), the G-BLUP approaches based on the three additive genomic matrices were compared between themselves and with the T-BLUP model. At this stage, for computational reasons, the SCA effects were considered uncorrelated between traits in the multivariate models. Only the additive genetic variance-covariance structure matrix varied, while the number of observations and estimated parameters remained constant. The models were consequently directly compared based on their deviance (-2LogLikelihood), which was the equivalent of comparing their Akaike information criterion and Bayesian information criterion. The convergence of REML algorithm was also considered.

The univariate G-BLUP and multivariate G-BLUP models were compared based on their accuracy, which is the correlation between the predicted genetic effects (GCAs or SCAs) and their true value (unknown).
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r 𝑥𝑥 = �1 - PEV 𝑥𝑥 𝜎𝜎 2 𝚺𝚺 𝑥𝑥𝑥𝑥
where σ² is the variance of the genetic effect, Σ xx is the x th term of the diagonal of the associated variancecovariance matrix and PEV 𝑥𝑥 = (u � -u) 𝑥𝑥 2 , with u the genetic effect considered. PEVs were computed from the elements of the inverse of the mixed model equations, based on theoretical derivations from [START_REF] Henderson | Best Linear Unbiased Estimation and Prediction under a Selection Model[END_REF] (i.e. not obtained by cross-validation). Consequently, for any progeny-tested individual x, the accuracy associated with its GCA for a given trait was:

r GCA 𝑥𝑥 = � 1 - PEV GCA 𝑥𝑥 𝐆𝐆 𝑥𝑥𝑥𝑥 𝜎𝜎 𝑔𝑔 2 [3]
where 𝜎𝜎 𝑔𝑔 2 is the estimated additive variance of the trait for the parental group of x. For the univariate and multivariate G-BLUP and for each trait, we computed the mean r GCA over the 140 group A parents and the 131 group B parents that were genotyped. For each group and each trait, the mean r GCA of univariate and multivariate models was compared using a t-test and a Bonferroni correction. We also compared the accuracy of SCA, which for cross x × y and a given trait, was:

r SCA 𝑥𝑥𝑥𝑥 = �1 - PEV SCA 𝑥𝑥𝑥𝑥 𝐃𝐃 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 σ 𝑠𝑠 2 [4]
where 𝐃𝐃 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 = G 𝑥𝑥𝑥𝑥 G 𝑥𝑥𝑥𝑥 and 𝜎𝜎 𝑠𝑠 2 the estimated dominance variance for the trait. For the univariate and multivariate G-BLUP and for each trait, we computed the mean r SCA over the 478 crosses evaluated in the progeny test and over 256 crosses that had not been evaluated. These 256 crosses were sampled from the unevaluated crosses among all possible crosses between the 140 A and 131 B parents, with a balanced representation of the parents of both groups (i.e. each parent occurred once or twice among the 256 unevaluated crosses). To obtain the PEV SCA of the 256 unevaluated crosses and compute their r SCA , these crosses were added to the 𝐃𝐃 matrix prior to analyzing the mixed models, following [START_REF] Henderson | Best linear unbiased prediction of breeding values not in the model for records[END_REF]. The mean r SCA of the univariate and multivariate models was compared using a t-test for each group and trait, and a Bonferroni correction was applied to adjust the p-values.

Marker density
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This was investigated independently in the two parental groups by varying the number of markers for one group, while keeping the maximum number of markers for the other group. The number of markers m varied from 10 to 265 in group A and from 10 to 289 in group B, with a step of 10. At each density, five replicates were made, for each replicate, we used a random subset of m markers chosen among all the available polymorphic markers for the group. For each replicate, the additive coancestry matrix of the group concerned was calculated using the m markers, and the dominance matrix was calculated using the m markers for the group concerned and all the markers of the other group. To assess the effect of the number of markers on the prediction of GCAs, we calculated the prediction accuracy of the model, i.e. the correlation between the predicted GCAs (for the group whose marker density varied) and the reference GCAs. The reference GCAs were obtained from the most accurate model previously identified (actually the multivariate G-BLUP) using all the markers, so that the prediction accuracy was the best approximation of accuracy. The different levels of marker number, of replicates per level of marker number and the two parental groups meant the calculations had to be repeated many times, so, to speed up the process, no covariance was specified for the dominance effects in the multivariate G-BLUP model used here.
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Coancestry matrices

The distribution of coancestry estimates in group A and group B is shown in Figure 1. Coancestry estimates in G AIS and A belonged to [START_REF] Grattapaglia | Breeding forest trees by genomic selection: current progress and the way forward[END_REF]1], as expected, as coancestry is the probability that two alleles on a random locus of two individuals are identical by descent [START_REF] Wright | Coefficients of inbreeding and relationship[END_REF][START_REF] Malécot | Les mathématiques de l'hérédité[END_REF]. The median value of the two VanRaden matrices (G OF , G N ) was below 0, meaning that more than half the coancestry estimates were negative. The REML algorithm converged with A and G AIS matrices. The smallest deviance was obtained with G AIS (Table 1). The G OF and G N matrices were not positive definite and the REML algorithm did not converge, leading to higher deviances than with G AIS and A. Therefore, for our dataset, the G AIS matrix appeared to be more appropriate than the other genomic matrices G OF and G N , and than the genealogical matrix A. For the rest of the study, we consequently only used G AIS in the G-BLUP.

For both A and B groups, coancestry estimates in G AIS were higher than in matrix A. G AIS did not contain any null coancestry estimates, whereas A contained 73.6% null coancestry estimates for group A and 42.9% for group B. The coancestry estimates for group A were lower than those for group B in the A matrix, but were higher in G AIS . The variability in coancestry estimates was higher in group A than in group B.

Multivariate G-BLUP

The multivariate G-BLUP revealed very high additive correlations, reaching -0.997 in the parental group A and -0.917 in group B, very high dominance correlations (-0.987) and low residual correlations (-0.158).

The GCA accuracy of the univariate and multivariate G-BLUP are depicted in Figure 2A. For all combinations of groups and traits, mean GCA accuracy was higher with the multivariate G-BLUP model than with the univariate G-BLUP (p<10 -100 ). According to the Pearson correlation, the GCAs obtained with the multivariate T-BLUP and univariate G-BLUP models were highly correlated with the reference GCAs (average Pearson correlation coefficient of 0.978 and 0.966, respectively). However, the Spearman's correlation coefficients computed on the top 10% individuals

were not as high, with an average value of 0.595, ranging from 0.213 to 0.978. This indicated that the model impacted the selection of the progeny tested individuals, and was therefore of importance for practical breeding.

In addition, the multivariate T-BLUP gave GCAs with ranks that were more correlated with the ranks of the reference GCAs than the univariate G-BLUP (Spearman's rank correlation coefficient of 0.696 and 0.562, respectively). Therefore, the improvement obtained in the GCA estimates when using a multivariate genomic approach compared to the conventional univariate T-BLUP resulted more from the multivariate analyze than from the use of the genomic data.

SCA accuracy was higher with the multivariate G-BLUP than with the univariate G-BLUP (p<10 -100 ) (Figure 2B andC). The average increase in SCA accuracy was 18.7%, ranging from 12.9% (trait BN, unevaluated crosses) to 24.6% (trait ABW, evaluated crosses). With the multivariate G-BLUP model, SCA accuracies were on average 0.76 for evaluated crosses and 0.68 for unevaluated crosses.

The h² obtained with the multivariate genomic model were h² BN = 0.53 and h² ABW = 0.35 in group A, and h² BN = 0.4 and h² ABW = 0.79 in group B (see Supplementary Table S2 for the detail of variances).

Marker density

Figure 3 shows the effect of marker density on the prediction accuracy of GCAs with the multivariate G-BLUP for ABW. The results obtained for BN were very similar (Supplementary Fig. S1), certainly due to the high genetic correlation between ABW and BN. As marker density increased, the prediction accuracy of multivariate G-BLUP also rapidly increased before reaching a plateau slightly above the prediction accuracy of multivariate T-BLUP. To outperform the prediction accuracy of the multivariate T-BLUP model, multivariate G-BLUP required 110 markers for group A and 70 markers for group B, for both ABW and BN traits. The prediction accuracies exceeded 0.99 with 160 markers for group A for both ABW and BN, and with 80 (respectively 90) markers for group B for ABW (respectively BN).

Discussion

Comment citer ce document : Marchal, A., Legarra , A., Tisne, S., Carasco-Lacombe, C., Manez, A., Suryana, E., Omoré, A., Nouy, B., Durand-Gasselin, T., Sanchez, L., Bouvet, J.-M., Cros, D. (2016) The general combining ability (GCA) for bunch number (BN) and average bunch weight (ABW) of progeny-tested oil palms is currently obtained with a pedigree-based univariate mixed model analysis of phenotypic data of hybrid individuals. In this study, we showed that using a multivariate model and replacing the genealogical coancestry matrices by molecular matrices of realized coancestry improved the analysis, leading to better estimated GCAs. In addition, the accuracy of the SCAs, usually neglected, reached interesting levels. We also found that this could be achieved with a reduced marker density. Indeed, the number of SSR markers that enabled G-BLUP to reach the same prediction accuracy as T-BLUP was 110 for group A and 70 for group B;

while 160 markers in group A and 90 in group B were needed to achieve the maximum benefit offered by the genomic approach.

Genomic versus genealogical coancestries

We observed many null coancestry estimates in A, whereas all coancestry estimates in G were higher than zero. This reflected the fact that the pedigrees used to estimate the A matrices did not reach the base of the unrelated founders of the different populations. Consequently, the pedigree-based coancestries underestimated the real coancestries, whereas the genomic coancestries were able to capture these hidden relationships, which did not appear in the pedigree. However, as G AIS considered identity by state and A identity by descent, the values in G AIS were actually overestimated if several copies of some alleles were present in the founder populations [START_REF] Eding | Marker-based estimates of between and within population kinships for the conservation of genetic diversity[END_REF]. Nevertheless, the G-BLUP model using G AIS was more appropriate for the data than the T-BLUP model, as shown by its higher likelihood.

The Deli individuals, which made up most of group A, originated from four oil palms planted in 1848 in Indonesia, while the African populations in group B can be traced back to the first half of the 20 th century, with around 15 to 20 founders [START_REF] Corley | Selection and breeding[END_REF]. The higher G AIS values found in group A than in group B is not surprising, given the longer history of inbreeding, drift and artificial selection of Deli individuals. However, the coancestry estimates for group A were lower than those for group B in the A matrix. This resulted from the depth (number of generations) of the pedigree and from the history of the populations constituting the parental groups. In group B, the data available on the pedigrees referred roughly to the initial generation, but the longer history of the Deli population was not covered by its pedigree, which did not go back far enough in time. This explained why, according to the pedigrees, there were fewer coancestries in group A than in group B. This also explained the fact that the number of relationships hidden in the pedigree but captured by the markers was higher in group A than in group B. This increased the benefit of using the genomic models more for group A than for
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Multivariate model

This is the first study to investigate the benefit of using multivariate genomic models for oil palm breeding. Using empirical data, we demonstrated that multivariate genomic models improved the prediction accuracy of additive effects (GCAs). In addition, we showed that in each parental group, the trait with the lowest heritability (ABW in group A and BN in group B) benefited the most from the use of a multivariate model. Both findings are in agreement with the results of previous simulations [START_REF] Calus | Accuracy of multi-trait genomic selection using different methods[END_REF][START_REF] Jia | Multiple Trait Genomic Selection Methods Increase Genetic Value Prediction Accuracy[END_REF][START_REF] Guo | Comparison of single-trait and multiple-trait genomic prediction models[END_REF] but, in addition to the results of these studies, we showed that genomic multivariate models also increased the prediction accuracy of dominance effects (SCAs).

In the multivariate G-BLUP model, covariance between traits is considered to be identical at each marker. This could reduce the efficiency of multivariate G-BLUP relatively to a multivariate Bayesian method that would allow marker specific covariances between traits [START_REF] Guo | Comparison of single-trait and multiple-trait genomic prediction models[END_REF]). An empirical comparison of these two statistical approaches with oil palm data would thus be useful.

Density and type of molecular markers

In the conventional pedigree-based analysis of progeny tests, the GCA of a progeny-tested individual results from the phenotypes of its progeny and the progeny of its relatives. The measure of coancestry used in this conventional approach is an expected value, as it is based on pedigree, and may thus differ from the true coancestry. The genomic approach improves this situation as it uses the realized coancestry between progenytested individuals. We found that even small numbers of markers (110 in group A and 70 in group B) gave

GCAs similar to those obtained with a conventional pedigree-based model, which was likely a consequence of the small effective size of the parental groups of oil palm (<10) (Cros et al. 2015b). The respective history of the parental groups, with the longer history of inbreeding, drift and artificial selection in group A than group B, led to less variable realized coancestries in group A and, as we used SSR markers instead of SNPs as in the other GS studies, to fewer alleles per marker in group A. As a consequence, group A required more markers to capture the realized coancestries than group B. This difference between groups therefore resulted from their contrasted history and from the use of a multiallelic type of markers.

Comment citer ce document : Marchal, A., Legarra , A., Tisne, S., Carasco-Lacombe, C., Manez, A., Suryana, E., Omoré, A., Nouy, B., Durand-Gasselin, T., Sanchez, L., Bouvet, J.-M., Cros, D. (2016) When all the markers were used, we achieved higher prediction accuracy than with the pedigree-based model. However, the improvement was very limited thus indicating that the phenotypic data of the hybrid progenies play a major role in the quality of the estimation of the GCAs, while the coancestry matrices used in the model play a secondary role.

In the present study, the progeny-tested individuals were genotyped using SSR markers. This type of marker is suitable for genotyping a relatively small number of individuals with a low coverage of the genome, but the practical application of GS for breeding implies large scale genotyping capabilities, at reasonable cost.

Therefore, future GS studies in oil palm will likely use SNP markers, as this would reduce the cost per data point and speed up the genotyping process. Although more SNPs are needed to achieve the same GS accuracy as with SSR markers [START_REF] Solberg | Genomic selection using different marker types and densities[END_REF], the efficiency of the current genotyping technologies ensures that SNP density will not be a limiting factor to implement GS in oil palm. Thus, two SNP arrays have been developped

for this species, with 4.5 K [START_REF] Ting | High density SNP and SSR-based genetic maps of two independent oil palm hybrids[END_REF]) and 200K SNP [START_REF] Teh | Genome-wide association study of oil palm mesocarp oil yield content and its application for marker selection[END_REF]; while [START_REF] Pootakham | Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotypingby-sequencing (GBS)[END_REF] identified over 20 K SNP using the genotyping-by-sequencing approach.

Comparison of models

We must emphasize that, as shown by formulas [3] and [4], accuracy based on prediction error variances (PEV) cannot be used to compare models that differ in their genetic variance covariance matrices, as the estimated variances refer to a different base population. Here, the base population implicitly used with the T-BLUP model was made up of the individuals with no known parents in the pedigrees, while with the G-BLUP model, it was made up of genotyped individuals. In other words, even for methods that yield the same estimated breeding values, accuracies obtained from the PEVs are not invariant to parameterization [START_REF] Stranden | Allele coding in genomic evaluation[END_REF]. Consequently, the fact that the accuracies we obtained from the PEVs for the G-BLUP models were lower than the accuracies of T-BLUP, which were around 0.90 (Cros et al. 2015b), was not meaningful. When evaluating the potential of GS to predict the GCA of individuals that have not been progenytested, accuracy is often estimated using a cross-validation approach, like that used in Cros et al. (2015b) for oil palm. However, in the present study, this was not possible as we were interested in the ability of GS to predict the GCA of progeny-tested individuals, and so the approach we chose was to compare T-BLUP and G-BLUP models based on their likelihood, and to trust the best model. Similarly, when considering either G-BLUP or T-BLUP, it was not possible to use likelihood to compare the univariate and multivariate versions of the model, as
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Implications for breeding

The choice of the model to analyze the progeny tests impacted the practical breeding work, as it affected the ranking of the evaluated individuals and therefore the set of the selected individuals. Here, we focused on BN and ABW, two major traits determining oil yield, but genomic models could be used instead of the traditional pedigree based models for all the traits recorded in progeny tests, i.e. bunch quality, height increment, disease symptoms [START_REF] Corley | Selection and breeding[END_REF][START_REF] Durand-Gasselin | Sélection du palmier à huile pour une huile de palme durable et responsabilité sociale[END_REF], annual profile of bunch production measured by the Gini coefficient [START_REF] Cros | Differential response to water balance and bunch load generates diversity of bunch production profiles among oil palm crosses (Elaeis guineensis)[END_REF], etc. In addition, correlated traits should be analyzed jointly in a multivariate model. Here we considered two traits but a higher number of correlated traits could easily be used.

In oil palm, several traits are known to be correlated including the number of fruits per bunch and the average fruit weight, the percentage of pulp and the percentage of kernel in the fruits. As indicated by the literature, the benefit of using a multivariate approach will result from the h² of the traits included in the model and from their correlation. Using the same dataset, Cros et al. (2015b) showed that GS could predict the GCA of non-progenytested individuals for some traits in group B, in particular when the candidate individuals were highly related to the training set. Here, we showed that GS was also useful to predict the GCA of progeny-tested individuals and the SCA of crosses. GS is therefore a highly valuable method for oil palm breeding, even with low marker density.

Our experimental design involved a mean number of 65 hybrid individuals per cross. It would be interesting to study the effect of decreasing the number of hybrid individuals per cross in the progeny tests, as we would expect the G-BLUP model to be less affected than the T-BLUP, thanks to the extra information provided to the G-BLUP (realized coancestries). Reducing the number of hybrid individuals per cross would also allow progeny-testing more parents, thus increasing the selection intensity without increasing the cost of the progeny tests. The importance of hybrid phenotypes in the prediction of GCAs also suggests that the number of markers required to predict the GCAs of non-progeny-tested individuals might be higher than the number required for progeny-tested individuals. However, this point requires further investigation.

To our knowledge, this is the first report of accuracy of SCA for oil palm crosses. It appeared to be lower than the accuracy of the GCAs, with the mean accuracy of SCA of crosses that were not evaluated in the fields reaching 0.68 with the multivariate model. The low proportion of dominance variance in total genetic
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  and s ~ N(0, 𝜎𝜎 𝑠𝑠 2 × D), where σ² gA and σ² gB are the additive variances of the A and B parents in A × B hybrid crosses, respectively, and σ² s is the variance of the dominance effects in the A × B population. Given the hybrid nature of the crosses, the A matrices contain Malécot's coefficient of coancestry f (Malécot 1948), such as A xy = { f xy } between individuals x and y. They were built from the pedigrees with the R package synbreed (Wimmer et al. 2012). The D matrix is the dominance coancestry matrix between crosses, obtained as D = A A ⊗ A B [2], i.e. with elements D AB,A'B' = f AA' f BB' , as A and B individuals are unrelated
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Table 2

 2 Pearson correlation (top) and Spearman's rank correlation of the top 10% individuals (bottom) between predicted GCAs produced by a G-BLUP or T-BLUP, univariate or multivariate model and the reference GCAs from the multivariate G-BLUP. The Pearson correlation coefficients were calculated based on the 140 group A genotyped parents and the 131 group B genotyped parents. The top 10% individuals represented 14 individuals Version définitive du manuscrit publié dans / Final version of the manuscript published in : Version définitive du manuscrit publié dans / Final version of the manuscript published in :

	in group A and 13 in group B				
	Pearson correlation		Group A	Group B
			ABW	BN	ABW	BN	mean
	Multivariate	G-BLUP T-BLUP	1 0.971	1 0.971	1 0.986	1 0.983 0.978 1
	Univariate	G-BLUP T-BLUP	0.963 0.905	0.980 0.960	0.976 0.969	0.946 0.966 0.947 0.946
	Spearman's rank correlation on the top 10% individuals	Group A	Group B
			ABW	BN	ABW	BN	mean
	Multivariate	G-BLUP T-BLUP	1 0.732	1 0.424	1 0.978	1 0.648 0.696 1
	Univariate	G-BLUP T-BLUP	0.789 0.635	0.218 0.213	0.830 0.890	0.412 0.562 0.368 0.527
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Table S1
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Table S2

 S2 Variances estimated with the multivariate genomic model for average bunch weight (ABW) and bunch number (BN): additive variances for parental groups A (𝜎𝜎² 𝑔𝑔 A ) and B (𝜎𝜎² 𝑔𝑔 B ) and dominance variance (𝜎𝜎² 𝑠𝑠 ) in A x B crosses

		𝜎𝜎² 𝑔𝑔 A	𝜎𝜎² 𝑔𝑔 B	𝜎𝜎² 𝑠𝑠
	ABW	1.15	2.62	2.81
	BN	3.11	2.34	7.99
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However, as markers are more efficient than pedigrees at capturing coancestries, the accuracy of SCAs obtained with GBLUP is high enough to make selection possible, particularly with multivariate analysis of correlated traits. For these reasons, oil palm breeders should also consider SCAs when selecting among progeny-tested parents, since, although relatively small, the extra genetic gain obtained compared to selection based only on GCAs, would come at no extra cost.
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