M. Aldaghi, S. Massart, S. Roussel, S. Steyer, M. Lateur et al., Comparison of different techniques for inoculation of "Candidatus Phytoplasma mali" on apple and periwinkle in biological indexing procedure, Commun. Agric. Appl. Biol. Sci, vol.72, pp.779-784, 2007.

R. Baltz, C. Domon, D. T. Pillay, and A. Steinmetz, Characterization of a pollen-specific cDNA from sunflower encoding a zinc finger protein, Plant J, vol.2, pp.713-721, 1992.

M. Bendahmane, A. Dubois, O. Raymond, L. Bris, and M. , Genetics and genomics of flower initiation and development in roses, J. Exp. Bot, vol.64, pp.847-857, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02647288

R. Borner, G. Kampmann, J. Chandler, R. Gleissner, E. Wisman et al., A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression, Plant J, vol.24, pp.586-596, 2000.

I. Chmelmitsky, N. Azizbekova, E. Khayat, and N. Zieslin, Morphological development of normal and phyllody expressing Rosa hybrida cv. Motrea flowers, J. Plant Growth Regul, vol.37, pp.215-221, 2002.

E. S. Coen and E. M. Meyerowitz, The war of the whorls: genetic interactions controlling flower development, Nature, vol.353, pp.31-37, 1991.

G. N. Drews, J. L. Bowman, and E. M. Meyerowitz, Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product, Cell, vol.65, pp.90551-90560, 1991.

A. Dubois, S. Carrere, O. Raymond, B. Pouvreau, L. Cottret et al., Transcriptome database resource and gene expression atlas for the rose, BMC Genomics, vol.13, p.638, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00841830

A. Dubois, O. Raymond, M. Maene, S. Baudino, N. B. Langlade et al., Tinkering with the C-function: a molecular frame for the selection of double flowers in cultivated roses, PLoS ONE, vol.5, p.9288, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00521642

A. Dubois, A. Remay, O. Raymond, S. Balzergue, A. Chauvet et al., Genomic approach to study floral development genes in Rosa sp, PLoS ONE, vol.6, p.28455, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00753396

S. Ferrario, J. Busscher, J. Franken, T. Gerats, M. Vandenbussche et al., Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner, Plant Cell, vol.16, pp.1490-1505, 2004.

K. D. Galimba, T. R. Tolkin, A. M. Sullivan, R. Melzer, G. Theißen et al., Loss of deeply conserved C-class floral homeotic gene function and C-and E-class protein interaction in adouble-flowered ranunculid mutant, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.2267-2275, 2012.

E. E. Goldschmidt, Plant grafting: new mechanisms, evolutionary implications, Front. Plant Sci, vol.5, p.727, 2014.

D. A. Golino, G. N. Oldfield, and D. Gumpf, Experimental hosts of the beet leaf hopper-transmitted virescence agent, Plant Dis, vol.73, pp.850-854, 1989.

N. Goto and R. P. Pharris, Role of gibberellins in the development of floral organs of the gibberellin-deficient mutant ga1-1 of Arabidopsis thaliana, J. Bot, vol.77, pp.944-954, 1999.

M. G. Grabherr, B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson et al., Full-length transcriptome assembly from RNA-Seq data without a reference genome, Nat. Biotechnol, vol.29, pp.644-652, 2011.

C. Gustafson-brown, B. Savidge, and M. F. Yanofsky, Regulation of the Arabidopsis floral homeotic gene APETALA1, Cell, vol.76, pp.131-143, 1994.

K. Heijmans, P. Morel, and M. Vandenbussche, MADS-box genes and floral development: the dark side, J. Exp. Bot, vol.63, pp.5397-5404, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02648602

S. Heuer, S. Hansen, J. Bantin, R. Brettschneider, E. Kranz et al., The maize MADS box gene ZmMADS3 affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development, in egg cells, and early embryogenesis, Plant Physiol, vol.127, pp.33-45, 2001.

Y. Hibino, K. Kitahara, S. Hirai, and S. Matsumoto, Structural and functional analysis of rose class B MADS-box genes 'MASAKO BP, euB3, and B3': paleo-type AP3 homologue 'MASAKO B3' association with petal development, Plant Sci, vol.170, pp.778-785, 2006.

S. A. Hogenhout, K. Oshima, E. Ammar, S. Kakizawa, H. Kingdom et al., Phytoplasmas: bacteria that manipulate plants and insects, Mol. Plant Pathol, vol.9, pp.403-423, 2008.

P. Huijser, J. Klein, W. E. Lonnig, H. Meijer, H. Saedler et al., , 1992.

. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus, EMBO J, vol.11, pp.1239-1249

S. E. Jacobsen and N. E. Olszewski, Characterization of the arrest in anther development associated with gibberellin deficiency of the gib-1 mutant of tomato, Plant Physiol, vol.97, pp.409-414, 1991.

K. D. Jofuku, B. G. Boer, M. V. Montagu, and J. K. Okamuro, Control of Arabidopsis flower and seed development by the homeotic gene APETALA2, Plant Cell, vol.6, pp.1211-1225, 1994.

M. Kapoor, S. Tsuda, Y. Tanaka, T. Mayama, Y. Okuyama et al., Role of petunia pMADS3 in determination of floralor-gan andmeristem identity, as revealed by its loss of function, Plant J, vol.32, pp.115-127, 2002.

K. Kaufmann, J. M. Muiño, R. Jauregui, C. A. Airoldi, C. Smaczniak et al., Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower, PLoS Biol, vol.7, p.1000090, 2009.

K. Kitahara, Y. Hibino, R. Aida, and S. Matsumoto, Ectopic expression of the rose AGAMOUS-like MADS-box genes 'MASAKOC1 and D1' causes similar homeotic transformation of sepal and petal in Arabidopsis and sepal in Torenia, Plant Sci, vol.166, pp.1245-1252, 2004.

K. Kitahara and S. Matsumoto, Rose MADS-box genes 'MASAKOC1 and D1' homologous to class C floral identity genes, Plant Sci, vol.151, p.206, 2000.

B. A. Krizek and E. M. Meyerowitz, The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function, Development, vol.122, pp.11-22, 1996.

N. T. Krogan, K. Hogan, and J. A. Long, APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19, Development, vol.139, pp.4180-4190, 2012.

G. Krussman, The Complete Book of Roses, 1981.

T. C. Ku and K. R. Robertson, Rosa (Rosaceae), pp.339-380, 2003.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie, Nat. Methods, vol.9, pp.357-359, 2012.

I. M. Lee, R. W. Hammond, R. E. Davis, and D. E. Gundersen, Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms, Phytopathology, vol.83, pp.834-842, 1993.

J. Lee, M. Oh, H. Park, and I. Lee, SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY, Plant J, vol.55, pp.832-843, 2008.

Z. M. Liu, Roses of china and roses of Europe, Acta Hortic. Sin, vol.3, pp.387-394, 1964.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2 ? CT method, Methods, vol.25, pp.402-408, 2001.

N. Ma, W. Chen, T. Fan, Y. Tian, S. Zhang et al., Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida), BMC Plant Biol, vol.15, p.237, 2015.

K. Maejima, R. Iwai, M. Himeno, K. Komatsu, Y. Kitazawa et al., Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody, Plant J, vol.78, pp.541-554, 2014.

K. Maejima, Y. Kitazawa, T. Tomomitsu, A. Yusa, Y. Neriya et al., Degradation of class E MADS-domain transcription factors in Arabidopsis by a phytoplasmal effector, phyllogen. Plant Signal. Behav, vol.10, p.1042635, 2015.

M. A. Mandel, J. L. Bowman, S. A. Kempin, H. Ma, E. M. Meyerowitz et al., Manipulation of flower structure in transgenic tobacco, Cell, vol.71, pp.133-143, 1992.

M. Martin, F. Piola, D. Chessel, M. Jay, and P. Heizmann, The domestication process of the Modern Rose: genetic structure and allelic composition of the rose complex, Theor. Appl. Genet, vol.102, pp.398-404, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00427137

R. E. Mccoy, A. Caudwell, C. J. Chang, T. A. Chen, T. Y. Chen et al., Plant diseases associated with mycoplasmas, The Mycoplasmas, pp.546-640, 1989.

V. G. Meyer, Flower abnormality, Bot. Rev, vol.32, pp.165-195, 1966.

H. Mibus, D. Heckl, and M. Serek, Cloning and characterization of three APETALA1/FRUITFULL-like genes in different flower types of Rosa × hybrida L, J. Plant Growth Regul, vol.30, pp.272-285, 2011.

K. Mizumoto, H. Hatano, C. Hirabayashi, K. Murai, and S. Takumi, Characterization of wheat bell1-type homeobox genes in floral organs of alloplasmic lines with Aegilops crassa cytoplasm, BMC Plant Biol, vol.11, issue.2, 2011.

J. Moon, S. S. Suh, H. Lee, K. R. Choi, C. B. Hong et al., The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis, Plant J, vol.35, pp.613-623, 2003.

Y. Mor and N. Zieslin, Phyllody malformation in flowers of Rosa × hybrida cv. Motrea: effects of rootstocks, flower position, growth regulators and season, J. Exp. Bot, vol.43, pp.89-93, 1992.

A. Mortazavi, B. A. Williams, K. Mccue, L. Schaeffer, and B. Wold, Mapping and quantifying mammalian transcriptomes by RNA-Seq, Nat. Methods, vol.5, pp.621-628, 2008.

K. Ohkawa, Cutting-grafts as a means to propagate greenhouse roses, Sci. Hortic, vol.13, pp.191-199, 1980.

D. S. Ómaoiléidigh, S. E. Wuest, L. Rae, A. Raganelli, P. T. Ryan et al., Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS, Plant Cell, vol.25, pp.2482-2503, 2013.

S. Pelaz, G. S. Ditta, E. Baumann, E. Wisman, and M. F. Yanofsky, B and C floral organ identity functions require SEPALLATA MADS-box genes, Nature, vol.405, pp.200-203, 2000.

A. Ray, K. Robinson-beers, S. Ray, S. C. Baker, J. D. Lang et al., Arabidopsis floral homeotic gene BELL (BEL1) controls ovule development through negative regulation of AGAMOUS gene (AG), Proc. Natl. Acad. Sci. U.S.A, vol.91, pp.5761-5765, 1994.

S. Ruokolainen, Y. P. Ng, V. A. Albert, P. Elomaa, and T. H. Teeri, Large scale interaction analysis predicts that the Gerbera hybrida floral E function is provided both by general and specialized proteins, BMC Plant Biol, vol.10, p.129, 2010.

S. Ruokolainen, Y. P. Ng, V. A. Albert, P. Elomaa, and T. H. Teeri, Over-expression of the Gerbera hybrida At-SOC1-like1 gene Gh-SOC1 leads to floral organ identity deterioration, Ann. Bot, vol.107, pp.1491-1499, 2011.

A. Samach, H. Onouchi, S. E. Gold, G. S. Ditta, Z. Schwarz-sommer et al., Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis, Science, vol.288, pp.1613-1616, 2000.

P. Sharma, T. Lin, C. Grandellis, M. Yu, and D. J. Hannapel, The BEL1-like family of transcription factors in potato, J. Exp. Bot, vol.65, pp.709-723, 2014.

C. Smaczniak, R. G. Immink, G. C. Angenent, and K. Kaufmann, Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies, Development, vol.139, pp.3081-3098, 2012.

P. Smykal, J. Gennen, S. De-bodt, V. Ranganath, and S. Melzer, Flowering of strict photoperiodic Nicotiana varieties in non-inductive conditions by transgenic approaches, Plant Mol. Biol, vol.65, pp.233-242, 2007.

M. S. Szyndel, Viruses, the Encyclopedia of Rose Science, pp.180-190, 2003.

M. Tadege, C. C. Sheldon, C. A. Helliwell, N. M. Upadhyaya, E. S. Dennis et al., Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice, Plant Biotechnol. J, vol.1, pp.361-369, 2003.

K. Tandre, V. A. Albert, A. Sundas, and P. Engstrom, Conifer homologues to genes that control floral development in angiosperms, Plant Mol. Biol, vol.27, pp.69-78, 1995.

G. Toledo-ortiz, E. Huq, and P. H. Quail, The Arabidopsis basic/helixloop-helix transcription factor family, Plant Cell, vol.15, pp.1749-1770, 2003.

L. Wang, Z. Feng, X. Wang, and X. Zhang, DEGseq: an R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics, vol.26, pp.136-138, 2010.

J. M. Watson and E. M. Brill, Eucalyptus grandis has at least two functional SOC1-like floral activator genes, Funct. Plant Biol, vol.31, pp.225-234, 2004.

D. Weigel and E. M. Meyerowitz, The ABC of floral homeotic genes, Cell, vol.78, pp.203-209, 1994.

F. Wellmer, J. L. Bowman, B. Davies, C. Ferrándiz, J. C. Fletcher et al., Flower development: open questions and future directions, Methods Mol. Biol, vol.1110, pp.103-124, 2014.

K. U. Winter, A. Becker, T. Munster, J. T. Kim, H. Saedler et al., MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants, Proc. Natl. Acad. Sci. U.S.A, vol.96, pp.7342-7347, 1999.

S. E. Wuest, D. S. Ómaoiléidigh, L. Rae, K. Kwasniewska, A. Raganelli et al., Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.13452-13457, 2012.

A. P. Wylie, The history of garden roses, J. R. Hortic. Soc, vol.79, pp.555-571, 1954.

H. J. Yan, H. Zhang, M. Chen, H. J. Jian, S. Baudino et al., , 2014.

, De novo transcriptome analysis and identification of scent-related genes from Rosa chinensis 'Pallida, Gene, vol.540, pp.96-105

H. J. Yan, H. Zhang, Q. G. Wang, H. Y. Jian, X. Q. Xiu et al., Isolation and identification of a putative scent-related gene RhMYB1 from rose, Mol. Biol. Rep, vol.38, pp.4475-4482, 2011.

M. F. Yanofsky, H. Ma, J. L. Bowman, G. N. Drews, K. A. Feldmann et al., The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors, Nature, vol.346, pp.35-39, 1990.

Y. Y. Yin, K. Y. Zheng, J. H. Dong, Q. Fang, S. P. Wu et al., Identification of a new tospovirus causing necrotic ringspot on tomato in China, Virol. J, vol.11, p.213, 2014.

Z. S. Zhang and X. Z. Zhu, China Rose, 2006.