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Institut National de la Recherche Agronomique & AgroParisTech, Jouy-en-Josas, France, 6 Origine, Structure et Evolution de la Biodiversité, Museum National d’Histoire
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Abstract

The diversity of populations in domestic species offers great opportunities to study genome response to selection. The
recently published Sheep HapMap dataset is a great example of characterization of the world wide genetic diversity in
sheep. In this study, we re-analyzed the Sheep HapMap dataset to identify selection signatures in worldwide sheep
populations. Compared to previous analyses, we made use of statistical methods that (i) take account of the hierarchical
structure of sheep populations, (ii) make use of linkage disequilibrium information and (iii) focus specifically on either recent
or older selection signatures. We show that this allows pinpointing several new selection signatures in the sheep genome
and distinguishing those related to modern breeding objectives and to earlier post-domestication constraints. The newly
identified regions, together with the ones previously identified, reveal the extensive genome response to selection on
morphology, color and adaptation to new environments.
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Introduction

Domestication of animals and plants has played a major role in

human history. With the advance of high-throughput genotyping

and sequencing technologies, the analysis of large datasets in

domesticated species offers great opportunities to study genome

evolution in response to phenotypic selection [1]. The sheep was

one of the first grazing animals to be domesticated [2] in part due

to its manageable size and an ability to adapt to different climates

and diets with poor nutrition. A large variety of breeds with

distinct morphology, coat color or specialized production (meat,

milk or wool) were subsequently shaped by artificial selection.

Since the release of the 50K SNP array [3], it is now possible to

scan genetic diversity in sheep in order to detect loci that have

been involved in these various adaptive selection events. The

Sheep HapMap dataset, which includes 50K genotypes for 3000

animals from 74 breeds with diverse world-wide origins, provides a

considerable resource for deciphering the genetic bases of

phenotype diversification in sheep. In the first analysis of this

dataset [4], the authors looked for selection by computing a global

FST among the 74 breeds at all SNP in the genome. They

identified 31 genome regions with extreme differentiation between

breeds, which included candidate genes related to coat pigmen-

tation, skeletal morphology, body size, growth, and reproduction.

Further studies took advantage of the Sheep HapMap resource to

detect genetic variants associated with pigmentation [5], fat

deposition [6], or microphtalmia disease [7]. An other study [8]

performed a genome scan for selection focused on American

synthetic breeds, using an FST approach similar to that in [4].

The 74 breeds of the Sheep HapMap dataset have a strong

hierarchical structure, with at least 3 distinct differentiation levels:

an inter-continental level (e.g. European breeds vs Asian breeds),

an intra-continental level (e.g. Texel vs Suffolk European breeds),

and an intra-breed level (e.g. German Texel vs Scottish Texel

flocks). Recent studies [9–12] showed that, when applied to

hierarchically structured data sets, FST based genome scans for

selection may lead to a large proportion of false positives (neutral

loci wrongly detected as under selection) and false negatives

(undetected loci under selection). Besides, the heterogeneity of

effective population size among breeds implies that some breeds

are more prone to contribute large locus-specific FST values than

others [10]. Apart from these statistical considerations, merging

populations with various degrees of shared ancestry can limit our

understanding of the selective process at detected loci. Indeed, the

regions pointed out in [4] can be related to either ancient selection,

as the poll locus which has likely been under selection for

thousands of years, or fairly recent selection, as the myostatin locus

which has been specifically selected in the Texel breed. But in

most situations the time scale of adaptation cannot be easily

determined.

Another limit of genome scans for selection based on single SNP

FST computations is that they do not sufficiently account for the

very rich linkage disequilibrium information, even when the single

SNP statistics are combined into windowed statistics. Recently, we

proposed a new strategy to evaluate the haplotype differentiation
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between populations [13]. We showed that using this approach

greatly increases the detection power of selective sweeps from SNP

chip data, and also enables to detect soft or incomplete sweeps.

These latter selection scenarios are particularly relevant in

breeding populations, where selection objectives have likely varied

along time and where the traits under selection are often

polygenic.

In this study we provide a new genome scan for selection based

on the Sheep HapMap dataset, where we distinguish selective

sweeps within and between 7 broad geographical groups. The

within group analysis aims at detecting recent selection events

related to the diversification of modern breeds. It is based on the

single marker FLK test [10] and on its haplotypic extension

hapFLK [13]. The FLK test is an extension of the Lewontin and

Krakauer (LK) test [14] that accounts for population size

heterogeneity and for the hierarchical structure between popula-

tions. As the LK test, the FLK test computes a global FST for each

SNP, but allele frequencies are first rescaled using a population

kinship matrix F . This matrix, which is estimated from the

observed genome wide data, measures the amount of genetic drift

that can be expected, under neutral evolution, along all branches

of the population tree. With this rescaling, allele frequency

differences are typically down-weighted if they are obtained with

small populations, or populations that diverged a long time ago.

The between group analysis focuses on older selection events and

is only based on FLK. Overall, we confirmed 19 of the 31 sweeps

discovered in [4], while providing more details about the past

selection process at these loci. We also identified 71 new selection

signatures, with candidate genes related to coloration, morphology

or production traits.

Results and Discussion

We detected selection signatures using methods that aim at

identifying regions of outstanding genetic differentiation between

populations, based either on single SNP, FLK [10], or haplotype,

hapFLK [13], information. These methods have optimal power

when working on closely related populations so we separately

analyzed seven groups of breeds, previously identified as sharing

recent common ancestry [4] and corresponding to geographical

origins of breeds. Before performing genome scans for selection

signatures, we studied the population structure of each group to

identify outlier animals as well as admixed and strongly

bottlenecked populations, using both PCA and model-based

approaches [15,16]. hapFLK was found to be robust to

bottlenecks or moderate levels of admixture, but these phenomena

may affect the detection power so we preferred to minimize their

influence by removing suspect animals or populations. Details of

these corrections are provided in the methods section. The final

composition of population groups are given in Table 1.

Overview of selected regions
An overview of selection signatures on the genome across the

different groups is plotted in Figure 1 and a detailed description is

provided in Table 2. Detected regions were typically a few

megabases long and included from 1 to 196 genes, with a median

of 15 genes. However, in many regions strong functional candidate

genes were found very close to the position with lowest p-value,

typically among the two closest genes from this position. These

genes are reported in Table 2, as well as a few other functional

candidates with less statistical evidence but strong prior knowledge

from the literature. We found 41 selection signatures with hapFLK

and 26 with FLK, although we allowed a slightly higher false

discovery rate for FLK than hapFLK (10% vs 5%). This result was

consistent with a higher power for hapFLK than FLK, as already

shown in [13].

Four regions were found with both the single SNP and the

haplotype test and harbor strong candidate genes: NPR2, KIT,

RXFP2 and EDN3 (Table 2). The overlap was thus small,

illustrating that the two tests tend to capture different signals. In

particular, hapFLK will fail to detect ancient selective sweeps, for

which the mutation-carrying haplotype is small and not associated

with many SNP on the chip. On the contrary, single SNP tests will

fail to capture selective sweeps when a single SNP is not in high

LD with the causal mutation. They will also fail if the selected

mutation is only at intermediate frequency but is associated to a

long haplotype, in contrast with hapFLK.

Six regions were detected in more than one group of breeds.

They all contained strong candidate genes (Table 2). Three of

these genes are related to coat color (KIT, KITLG and MC1R),

and could correspond to independent selection events (see

discussion below). One region harbors a gene (RXFP2) for which

polymorphisms have been shown to affect horn size and polledness

in the Soay [17] and Australian Merino [18]. We detected this

region in 4 different groups and in all of them the highest FLK

value was found to be very close to RXFP2 (Figure S8 in File S1).

This provides clear indication that selection in this region is related

to RXFP2, consistent with previous selection signatures detected

by comparing specifically horned and polled breeds (Figure 6 in

[4]). However, we note that the signatures of selection in this

region exhibit different patterns among groups. The signal is very

narrow in the SWE and SWA groups, and is in fact not detected

by the hapFLK test, whereas it affects a large genome region in the

CEU group where it is detected by hapFLK. In the ITA group,

the FLK statistics do not reach significance, and the hapFLK

signal is not high (minimum q-value of 0.04). Overall, the selection

signatures suggest that selection on RXFP2, most likely due to

selection on horn phenotypes, was carried out worldwide at

different times and intensities. Another region harbors the

HMGA2 gene, involved in selection for stature in dogs [19] and

associated to body size in horses [20] and height in humans [21].

The last region includes two interesting candidate genes: ABCG2,

which has been associated to a strong QTL for milk production in

cattle [22], and NCAPG, which has been associated to fetal

growth [23] and calving ease [24] in cattle and which is located in

several selection signatures in this species [25–28]. In our analysis,

populations with a selection signature in this region belong to three

European groups (SWE, ITA and CEU) and our results suggest

that selection in these different groups might imply distinct genes

(Table 2).

In the paper presenting the Sheep HapMap dataset [4], 31

selection signatures were found, corresponding to the 0.1% highest

single SNP FST . Using FLK and hapFLK, we confirmed

signatures of selection for 10 of these regions. Considering the

two analyses were performed on the same dataset, this overlap can

be considered as rather small. Two reasons can explain this.

First, the previous analysis was based on the FST statistic.

Although this statistic is commonly used for selection scans, it is

prone to produce false positives when the population tree harbors

unequal branch lengths (i.e. unequal effective population sizes)

[10]. In particular, strongly bottlenecked breeds will contribute

high FST values preferentially even under neutral evolution,

because their smaller effective population size implies a larger

variance of allele frequencies. With FLK and hapFLK , FST values

between populations are rescaled using branch lengths, so

populations with long branch lengths will not contribute more

than others [13]. In fact they will tend to contribute less, as the

Selection Signatures in Sheep
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statistical power to distinguish selective effects from drift effects is

naturally lower in populations where drift is larger.

Second, the previous analysis was performed using all breeds at

the same time. It is therefore possible that some of these regions

correspond to differentiation between groups of breeds rather than

within groups. To investigate this question, we performed a

genome scan for selection between seven virtual populations

corresponding to the ancestors of the seven population groups.

Allele frequencies in each of these ancestral populations were

estimated from those observed in modern breeds and regions with

outlying genetic differentiation between ancestral populations were

detected using the FLK statistic [10]. For this analysis, we did not

include SNP lying in regions detected within groups since selection

biases their estimated ancestral allele frequencies. The ancestral

population tree was reconstructed using SNP for which we have

unambiguous ancestral allele information (Figure S9 in File S1).

This tree is decomposed into two main lineages, one for European

breeds and one for Asian and African breeds. The African group

exhibits a slightly higher branch length. We note, however, that

this could be due to ascertainment bias of SNP on the SNP array.

This led to the identification of 23 new selection signatures

(Figure 2 and Table 3), 9 of them being common to the analysis of

[4]. Overall, combining the scans for recent and ancestral

selection, we failed to replicate 12 of the regions in [4].

Selection Signatures within population groups
Coloration. Many selection signatures are located around

genes that have been shown to be involved in hair, eye or skin

color. In particular, several detected regions include candidate

genes that are involved in the development and migration of

melanocytes and in pigmentation: EDN3, KIT, KITLG, MC1R

and MITF. For all these genes except MITF, we have quite strong

evidence that they are the genes targeted by selection in the

detected region. In the SWA group, EDN3 was included in the

detected region for both FLK and hapFLK, and in both cases it

was the closest gene to the highest test value. KIT and KITLG

were both included in a detected region (with relatively few genes)

for two different geographical groups, and were very close to the

position with the smallest p-value in one of those. MC1R was also

in a detected region for two different groups, NEU and ITA. In

the two cases it was not very close to the maximum of the signal,

but we note that the black skin or coat color is an important

characteristic of the two populations that have been found under

selection in this region, the Irish Suffolk and Sardinian Ancestral

Table 1. Population groups from the Sheep HapMap dataset used for the detection of selection signatures.

Group Abbreviation Size Populations (Abbreviations)

Africa AFR 2 Red Maasai (RMA)

Ethiopian Menz (EMZ)

Asia ASI 8 Bangladeshi BGE (BGE)

Bangladeshi Garole (BGA)

Changthangi (CHA)

Deccani (IDC)

Garut (GUR)

Indian Garole (GAR)

Sumatra (SUM)

Tibetan (TIB)

Central Europe CEU 4 Bundner Oberlander (BOS)

Engadine Red (ERS)

Valais Blacknose (VBS)

Valais Red (VRS)

Italy ITA 4 Altamurana (ALT)

Comisana (COM)

Leccese (LEC)

Sardinian Ancestral Black (SAB)

Northern Europe NEU 6 Galway (GAL)

German (GTX), New Zealand (NTX) and Scottish (STX) Texel

Irish Suffolk (ISF)

New Zealand Romney (NZR)

South West Asia SWA 4 Afshari (AFS)

Moghani (MOG)

Norduz (NDZ)

Qezel (QEZ)

South West Europe SWE 4 Autralian Merino (MER)

Churra (CHU)

Meat (LAM) and Milk (LAC) Lacaune

doi:10.1371/journal.pone.0103813.t001
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Black. This observation, together with the fact that MC1R

mutations are responsible for coat color patterns in mammals (e.g
in cattle [29]), supports the hypothesis that MC1R is a good

candidate for the signatures we observed.

Although not listed in Table 2, SOX10 and ASIP, two other

genes implied in pigmentation, also show some evidence of

selection. In the ITA group, the q-value of hapFLK near SOX10

is 6.2% and almost reaches the significance threshold of 5%.

Similarly, the two closest SNP to ASIP (s66432 and s12884)

present suggestive FLK p-values of respectively 7:510{4 and

6:810{5 in the ASI group, and one (s12884) is significantly

differentiated between the ancestral groups. All these genes have

previously been reported as being likely selection targets and/or

associated to color patterns in different mammalian species.

Finally, we found a signal for selection centered on the BNC2

gene, that has recently been associated with skin pigmentation in

humans [30]. All population groups present at least one selection

signature which is very likely related to one of the above genes,

reflecting the widespread importance of color patterns to define

sheep breeds.

Inferring a precise history of underlying causal mutations for

color patterns in this dataset is hard for several reasons: the precise

phenotypic characterizations of coat color patterns in the Sheep

HapMap breeds are not available; the 50K SNP array used does

not offer sufficient density to associate a given selection signature

to a specific set of polymorphisms; Finally, from the literature it

appears that a large number of genes and mutations can be

considered a priori as potentially causal for a given pigmentation

Figure 1. Localization of selection signatures identified in 7 groups of populations. Candidate genes are indicated above their genomic
localization. Only chromosomes harboring selection signatures are plotted.
doi:10.1371/journal.pone.0103813.g001
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pattern. In particular, mutations in different genes can give rise to

the same phenotype (e.g. in horses [31]). Also, within a gene

different mutations can give rise to different phenotypes, e.g
mutations in the MC1R gene (also named the extension locus)

have been associated to a large panel of skin or coat colors

[29,32,33]. Deciphering selection signatures related to coat color

in sheep and in particular identifying the causal variants under

selection will require sequencing these genes for individuals from

several breeds with diverging color patterns. This in turn will help

to understand the evolutionary history of the breeds and the effect

of selection [34]. To potentially help in this task, in Table S1 in

File S1 we list, for each ‘‘color gene’’, the populations that have

likely been selected for.

Morphology. Another group of genes that are found within

selection signatures have known effects on body morphology and

development. NPR2, HMGA2 and BMP2, pointed out previously

[4] are confirmed as good positional candidates by our study. We

also found strong evidence for selection on WNT5A, ALX4 or

EXT2, and two HOX gene clusters (HOXA and HOXC).

WNT5A and ALX4 are two genes involved in the development of

the limbs and skeleton. Mutations in WNT5A are causing the

dominant Human Robinow syndrome, characterized by short

stature, limb shortening, genital hypoplasia and craniofacial

abnormalities [35]. ALX4 loss of function mutations cause

polydactily in the mouse, through disregulation of the sonic

hedgehog (SHH) signaling factor [36,37]. Moreover, the ALX4

protein has been shown to bind proteins from the HOXA

(HOXA11 and HOXA3) and HOXC (HOXC4 and HOXC5)

clusters [38]. Located just besides ALX4 and corresponding to the

same selection signature, EXT2 is responsible for the development

of exostose in the mouse [39]. HOX genes are responsible for

antero-posterior development and skeletal morphology along the

anterior-posterior axis in vertebrates. The selection signature

around HOXA is a recent selection signature in the SWA group,

while that around HOXC is an ancestral signature with a high

differentiation of the ASI ancestor compared to AFR and SWA

(Table 3).

Finally, we note that an ancestral selection signature is found

near the ACAN gene, whose expression was shown to be

upregulated by BMP2 [40], another candidate gene for selection.

Three genes within the selection signature are found closer to the

maximum test value than ACAN, but these are in silico predicted

genes, whose protein coding function has not been confirmed, so

ACAN seems to be overall a better candidate for explaining

selection in the region. Mutations in the ACAN gene have been

shown to induce osteochondrosis [41] and skeletal dysplasia [42].

The ACAN region has also been shown to be associated with

height in humans [43].

Traits of agronomic importance. Sheeps have been raised

for meat, milk and wool production. Under selection signatures,

we found several genes associated with these production traits. In

addition to the selection signature in Texels on the MSTN gene

for increased muscularity [44], discussed in [13], we detected a

selection signature centered on HDAC9 and including few other

genes, which could also be linked to muscling. HDAC9 is a known

transcriptional repressor of myogenesis. Its expression has been

shown to be affected by the callypige mutation in the sheep at the

DLK1-DIO3 locus [45]. The signature around HDAC9 corre-

sponds to a selection signature in the Garut breed from Indonesia,

a breed used in ram fights. As already discussed, one selection

signature contains ABCG2, a gene underlying a QTL with large

effects on milk production (yield and composition) in cattle [22].

Also, one of the ancestral selection signatures reaches its maximum

value close to the INSIG2 gene, recently shown to be associated

with milk fatty acid composition in Holstein cattle [46]. Two

selection signatures could be related to wool characteristics, one in

the CEU group including the FGF5 gene, partly responsible for

hair type in the domestic dog [47,48], and an ancestral selection

signature on chromosome 25 in a QTL region associated to wool

quality traits in the sheep [49,50].

One of the strong outlying regions in the selection scan contains

the PITX3 gene. Further analysis revealed that this signature was

due to the German Texel population haplotype diversity differing

from the other Texel samples (results not shown). It turns out that

the German Texel sample consisted of a case/control study for

microphtalmia [7], although the case/control status information in

this sample is not given in the Sheep HapMap dataset. The

consequence of such a recruitment is to bias haplotype frequencies

Figure 2. Genome scan for selection signature in ancestral populations of the geographical groups. Significant SNP at the 5% FDR level
are plotted in darker color.
doi:10.1371/journal.pone.0103813.g002
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in the region associated with the disease, which provokes a very

strong differentiation signal between the German Texel and the

other Texel populations. Although not related to artificial or

natural selection in sheep, this signature illustrates that our method

for detecting selection has the potential to identify causal variants

in case/control studies, while using haplotype information.

Ancestral signatures of selection
For ancestral selection signatures, i.e. the regions showing

outlying genetic differentiation between population groups, it is

difficult to estimate how far back in time selection occurred. In

particular, it would be interesting to place the divergences shown

by the ancestral population tree with respect to sheep domestica-

tion. Two interesting candidate genes for ancestral selection

signatures might indicate that the selection signatures captured

could be rather old. First, we found selection near the TRPM8

gene, which has been shown to be a major determinant of cold

perception in the mouse [51]. The pattern of allele frequency at

the significant SNP (Table 3) is consistent with the climate in the

geographical origins of the population groups. AFR, ASI and ITA,

living in warm climates, have low frequency (0.04–0.16) of the A

allele, while NEU and CEU, from colder regions, have higher

frequencies (0.55–0.7), the SWE group having an intermediate

frequency of 0.38. Overall, this selection signature might be due to

an adaptation to cold climate through selection on a TRPM8

variant. Another selection signature lies close to a potential

chicken domestication gene, TSHR [52], whose signaling regu-

lates photoperiodic control of reproduction [53]. This selection

signature was identified before [4] and our analysis indicates that

selection happened before the divergence of breeds within

geographic groups, consistent with an early selection event. Given

its role, we can speculate that selection on the TSHR gene is

related to seasonality of reproduction. Under temperate climates,

sheep experience a reproductive cycle under photoperiodic

control. Furthermore, there is evidence that this control was

altered during domestication [54] so our analysis suggests genetic

mutations in TSHR may have contributed to this alteration.

As discussed above, some of the genes found underlying

ancestral selection signatures can be related to production or

morphological traits (e.g. ASIP, INSIG2, ACAN, wool QTL),

indicating that these traits have likely been important at the

beginning of sheep history. The other genes that we could identify

as likely selection targets in the ancestral population tree relate to

immune response (GATA3) and in particular to antiviral response

(TMEM154 [55], TRAF3 [56]). The most significant ancestral

selection signature is centered around the NF1 gene, encoding

neurofibromin. This gene is a negative regulator of the ras signal

transduction pathway, therefore involved in cell proliferation and

cancer, in particular neurofibromatosis. Due to this central role in

intra-cellular signaling, mutations affecting this gene can have

many phenotypic consequences so that its potential role in the

adaptation of sheep breeds remains unclear.

Conclusions

The Sheep HapMap dataset is an exceptional resource for

sheep genetics studies. In a population genomics context, our study

shows that the rich information contained in these data permits to

start unraveling the genetic history of sheep populations world-

wide. In order to fully exploit this information, we used recent

statistical approaches that account for the relationship between

populations and the linkage disequilibrium patterns (haplotype

diversity). This allowed detecting with confidence more selection

signatures and identifying for most of them the selected

populations. Among these new selection signatures detected by

our study, several result from recent selection and include good

positional candidate genes with functions related to pigmentation

(KITLG, EDN3), morphology (WNT5A, ALX4, EXT2, HOXA

cluster) or production traits (HDAC9). Two ancestral selection

signatures are also of particular interest as they harbor genes

(TRPM8 and TSHR) whose functions (cold and photoperiodic

perception respectively) seem highly relevant to the selection

response during the early history of sheep domestication.

With information on adaptive genome regions and selected

populations, we hope that our work will foster new studies to

unravel the underlying biological mechanisms involved. To this

aim, it is likely that further phenotypic and genetic data are

required. On the genetics side, even though the SNP array used in

this study was sufficient to localize genome regions harboring

adaptive mutations, its density and the SNP ascertainment bias

resulting from its design did not allow to tag the causative

mutation precisely. Elucidating the causal variation underlying

selection signatures will thus most likely require large scale

sequencing data.

Genome scans for selection, including this one, are identifying

regions that are outliers from a statistical model and do not require

to specify an alternative hypothesis based on phenotypic records.

While this can be seen as an advantage for the initial localization

of genome regions, it is a limitation for the identification of

biological processes involved. Gathering phenotypic records in

specific populations, in particular for color and morphology traits,

will be needed to go further.

Methods

Selecting populations and animals. Seventy-four breeds

are represented in the Sheep HapMap data set, but we only used a

subset of these breeds in our genome scan. We removed the breeds

with small sample size (v 20 animals), for which haplotype

diversity cannot be determined with sufficient precision. Based on

historical information, we also removed all breeds resulting from a

recent admixture or having experienced a severe recent bottle-

neck. Focusing on the remaining breeds, we then studied the

genetic structure within each population group, in order to detect

further admixture events. We performed a standardized PCA of

individual based genotype data and applied the admixture

software [16].

In two population groups (AFR and NEU) the different breeds

were clearly separated into distinct clusters of the PCA and showed

no evidence of recent admixture (Figures S1 and S2 in File S1).

These samples were left unchanged for the genome scan for

selection. A similar pattern was observed in three other groups

(ITA, SWA, ASI), except for a few outlier animals that had to be

re-attributed to a different breed or simply removed (Figures S3,

S4 and S5 in File S1). In the two last groups (CEU and SWE),

several admixed breeds were found and were consequently

removed from the genome scan analysis (Figures S6 and S7 in

File S1).

We performed a genome scan within each group of populations

listed in Table 1, with a single SNP statistic FLK [10] and its

haplotype version hapFLK [13].

Population trees. Both statistics require estimating the

population tree, with a procedure described in details in [10].

Briefly, we built a population tree for each group by first

calculating Reynolds’ distances between each population pair, and

then applying the Neighbor Joining algorithm on the distance

matrix. For each group, we rooted the tree using the Soay sheep as

an outgroup. This breed has been isolated on an island for many
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generations and exhibits a very strong differentiation with all the

breeds of the Sheep HapMap dataset, making it well suited to be

used as an outgroup.

FLK and hapFLK genome scans. The FLK statistic was

computed for each SNP within each group. The evolutionary

model underlying the FLK statistic assumes that SNP were already

polymorphic in the ancestral population. To consider only loci

that most likely match this hypothesis, we restricted our analysis

within each group to SNP for which estimated ancestral minor

allele frequency p0 was above 5%. Under neutrality, the FLK

statistic should follow a x2 distribution with n{1 degrees of

freedom (DF), where n is the number of populations in the group.

Overall, the fit of the theoretical distribution to the observed

distribution was very good (Text S1 in File S1) with the mean of

the observed distribution (FLK ) being very close to n{1 (Table S3

in File S1). Using FLK as DF for the x2 distribution provided a

better fit to the observed data than the n{1 theoretical value. We

thus computed FLK p-values using the x2(FLK) distribution. To

compute the hapFLK statistic, we used of the Scheet and Stephens

LD model [57], a mixture model for haplotypes which requires

specifying a number of haplotype clusters to be used. To choose

this number, for each group, we used the fastPHASE cross-

validation based estimation of the optimal number of clusters. The

results of this estimation are given in Table S2 in File S1. The LD

model was estimated on unphased genotype data. The hapFLK

statistic is computed as an average over 20 runs of the EM

algorithm to fit the LD model. As in [13], we found that the

hapFLK distribution could be modeled relatively well with a

normal distribution (corresponding to non outlying regions) and a

few outliers; we used robust estimation of the mean and standard

deviation of the hapFLK statistic to eliminate the influence of

outlying (i.e. potentially selected) regions. This procedure was done

within each group, the resulting mean and standard deviation

values obtained are given in Table S2 in File S1. Finally, we

computed at each SNP a p-value for the null hypothesis from the

normal distribution.

Selection in ancestral groups. The within-group FLK

analysis provides for each SNP an estimation of the allele

frequency p0 in the population ancestral to all populations of the

group. We used this information to test SNP for selection using

between group differentiation, with some adjustments. First, the

FLK model assumes tested polymorphisms are present in the

ancestral population. SNP for which the alternate allele has been

seen in only one population group are likely to have appeared after

divergence (within the ancestral tree) and were therefore removed

from the analysis. Second, regions selected within groups affect

allele frequency in some breeds and therefore bias our estimation

of the ancestral allele frequency in this group. We therefore

removed all SNP that were included in within-group selection

signatures. Finally, the FLK test requires a rooted population tree.

For the within group analysis, we could use a very distant

population to the current breeds (the Soay sheep). For the

ancestral tree, we created an outgroup homozygous for ancestral

alleles at all SNP.

Identifying selected regions and candidate genes. We

defined significant regions for each statistic and within each group

of populations. Using the neutral distribution (x2 for FLK and

Normal for hapFLK), we computed the p-value of each statistic at

each SNP. To identify selected regions, we estimated their q-value

[58] to control the FDR. For FLK, SNP with a q-value below 0.1

were considered significant, which by definition implies that we

expect 10% of false positives among our detected SNP. Since the

power of hapFLK is greater than that of FLK [13], we used a q-

value threshold of 0.05, therefore controlling FDR at the 5% level.

For the FLK analysis in ancestral populations, we used an FDR

threshold of 5%.

We then aimed at identifying genes that seem good candidates

for explaining selection signatures. We proceeded differently for

the single SNP FLK and hapFLK. For FLK, we considered that

significant SNP less than 500Kb apart were capturing the same

selection signal. Then, we considered as potential candidate genes

any gene that lies less than 1Mb of any significant SNP. For

hapFLK, the genome signal is much more continuous than single

SNP tests, because the statistic captures multipoint LD with the

selected mutations. A consequence is that the significant regions

can span large chromosome intervals. To restrict the list of

potential candidate genes, and target only the ones closest to the

most significant SNP, we restricted our search to the part of the

signal where the difference in hapFLK value with the most

significant SNP was less than 0.5s. This allowed taking into

consideration the profile of the hapFLK signal, i.e. if the profile

resembles a plateau, the candidate region will be rather broad

while very sharp hapFLK peaks will provide a narrower candidate

region. We extracted all protein coding genes present in the

significant regions using the Ensembl Biomart tool (http://www.

ensembl.org/biomart/) for Ovis Aries 3.1 genome assembly.

These full lists are provided as Supporting Information (Dataset S1

and Dataset S2). Within each candidate region, genes were ranked

according to their distance from the most significant position of the

region (the larger the rank, the larger the distance). The functional

candidate genes shown in Table 2 and discussed in the manuscript

were chosen based on this rank and/or on their implication in

previous association or sweep detection studies.
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