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Abstract

A long-standing question in biology and economics is whether individual organisms

evolve to behave as if they were striving to maximize some goal function. We here

formalize the “as if” question in a patch-structured population in which individuals

obtain material payoffs from (perhaps very complex) multimove social interactions.

These material payoffs determine personal fitness and, ultimately, invasion fitness. We

ask what goal function, if any, individuals will appear to be maximizing, in uninvadable

population states, when what is really being maximized is invasion fitness at the genetic

level. We reach two broad conclusions. First, no simple and general individual-based

goal function emerges from the analysis. This stems from the fact that invasion fitness is

a complex multi-generational measure of evolutionary success. Second, when selection

is weak, all multi-generational effects of selection can be summarized in a neutral type-

distribution quantifying identity-by-descent within patches. Individuals then behave as

if they were striving to maximize a weighted sum of material payoffs (own and others).

At an uninvadable state it is as if individuals choose their actions and play a Nash

equilibrium of a game with a goal function that combines selfishness (own material

payoff), Kantian morality (group material payoff if everyone does the same), and local

rivalry (material payoff differences).

Keywords: maximizing behavior, game theory, inclusive fitness, invadability, Nash equilib-

rium.
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Individuals do not consciously

strive to maximize anything;

they behave as if maximizing

something. It is exactly the

same “as if” logic that we apply

to “intelligent genes”. Genes

manipulate the world as if

striving to maximize their own

survival. They do not really

“strive”, but in this respect they

do not differ from individuals.

Dawkins, 1982, p. 189

Introduction

The fundamental unit of behavior in the life and social sciences is the action. In decision

theory (e.g., Binmore, 2011), an individual’s behavior is determined by the individual’s choice

of action or sequence of (conditional) actions from a set of feasible actions, and this choice is

guided by the strife to maximize some goal function, such as, for instance, own material well-

being, or some spiteful, altruistic or moral objective. The outcome of an individual’s choice

in general also depends on (random) events in the individual’s environment, in which case the

individual is assumed to strive to maximize the expected value of her goal function. In many,

if not most cases, the environment in turn consists of other decision makers, equipped with

their feasible action sets and goal functions. Then, the expectation is also taken with respect

to others’ choice of action, which in turn may depend on those other individuals’ expectations

about“our”decision-maker’s choice. Such interdependent decision problems are called games,

and an individual’s plan for what action to take under each and every circumstance that can

arise in the interaction is then called a strategy for that player. A profile of strategies, one

for each player in a population, is a (Nash) equilibrium if no individual decision maker can

increase her goal-function value by a unilateral change of her strategy.
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A long-standing question in evolutionary biology is the extent to which natural selection

leads individual organisms to behave as if they were maximizing some goal function. Because

resources are limited, the material consequences for, and hence fitness of, one individual

usually depends not only on the individual’s own actions but also on the actions of others.

It is thus as if the organisms were caught in a game. If the resulting behaviors can be

interpreted as if each individual was choosing a strategy to maximize a goal function, this

will be of importance for the understanding and prediction of behavior. This is not only of

interest to biology but to the social sciences as well, and in particular to economics, which

is largely built on the supposition that individual behavior can be explained as the outcome

from maximization of the expected value of some goal function.

In early evolutionary biology the question of maximizing behavior was addressed by way

of investigating optimality properties of mean fitness (defined as mean fertility or survival)

under allele frequency change (Fisher, 1930; Wright, 1942; Kingman, 1961). The underlying

scheme is that natural selection invariably increases mean fitness and thus evolves individuals

to express optimal actions given current environmental conditions. This has typically been

investigated in settings with no social interactions (Wright, 1942; Kingman, 1961). Even in

these simplest cases of no interdependence the idea that natural selection always leads to an

increase in mean fitness has been proven invalid under a multilocus genetic basis (Moran,

1964; Ewens, 2004, 2011). This suggests that individuals are unlikely to behave as if they

maximize fitness.

Still for social interactions (interdependence in decision making), Hamilton (1964) proved

that mean inclusive fitness increases under additive gene action in a population under allele

frequency change. Organisms should thus evolve to behave in such a way that their inclusive

fitness is maximized. Hamilton’s (1964) concept of inclusive fitness is based, as is the work

from which he took inspiration (in particular Kingman, 1961), on a measure of fitness that is

ascribed to a genotype or an allele (Hamilton, 1964, p. 6). The inclusive fitness of an allele at

a particular gene locus is the heritable part of the fitness of an average carrier of that allele,

but where the source of variation of that fitness is decomposed into the effect of the allele

in the carrier and that in other individuals from the population; hence the term “inclusive”.
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Inclusive fitness is frequency independent under additive gene action and weak selection

(although Hamilton’s (1964) model captures strategic interactions arising from phenotypic

interactions). But this will generally not obtain as selection can be frequency-dependent at

the genetic level at a given locus. Hence, even in the one-locus case it is not a conclusion that

natural selection results in individuals behaving as if they maximize their inclusive fitness

(sensu Hamilton, 1964).

One fundamental take-home message of the population-genetic assessment of optimiza-

tion under allele frequency change (Moran, 1964; Ewens, 2004, 2011) is that ideas of fitness

maximization are generally not revealing much about maximizing behavior under short-term

evolution. However, concepts of fitness maximization can nevertheless be illuminating un-

der long-term evolution because they then allow to characterize evolutionarily stable states

(Eshel, 1996; Eshel et al., 1998). It is indeed well-established that the maximization of the

growth rate of a non-recombining heritable trait (here taken to be a gene) when rare—

invasion fitness—provides a condition of uninvadability of a mutant allele in a resident pop-

ulation, and this is a defining property of an evolutionarily stable state (Eshel, 1983; Ferrière

and Gatto, 1995; Eshel et al., 1998; Rousset, 2004; Metz, 2011).

Because different alleles have different phenotypic effects, the range of such effects can

be conceived as the effective strategy space of the “strategic gene” (Haig, 1997, 2012). In a

gene’s perspective (Dawkins, 1978), invasion fitness can be regarded as the goal function a

gene is striving to maximize. This is quite distinct from the goal function (if any such exists)

that is to explain an individual’s behavior, and where this individual can potentially interact

with all others in the population. In order to answer the question of what goal function an

individual is trying to maximize it is necessary to establish a link between invasion fitness

and individual behavior.

We are certainly not the first to explore these links (e.g., Grafen, 2008, in biology and

Alger and Weibull, 2013, in economics). However, we feel that no previous study in this

area has integrated and is fully consistent with the fields of behavioral ecology, evolutionary

population dynamics, and game theory. In particular, sufficient dynamic conditions under

which strategically interacting individual organisms in spatially structured populations be-
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have as if they were maximizing some goal function appear to be lacking. The aim of this

paper is to fill this gap, and to provide connections between (i) explicit population-dynamic

evolutionary stability, (ii) game-theoretic equilibrium in strategic interactions between in-

dividuals, and (iii) behavioral ecology formulation of behavior under different constraints.

To that aim, we develop a mathematical model of strategic interactions and evolution in a

spatially structured population, within which we formalize notions of personal fitness and

invasion fitness, and derive from them goal functions that individual organisms will, through

their behavior, appear to be maximizing (the “proximate” cause of action), while what is in

fact being maximized is invasion fitness (the “ultimate” cause of action).

The rest of the paper is organized as follows. First, we present an evolutionary model

of a patch-structured population and define uninvadability. Second, we present a model of

behavior and social interactions, and we formulate a game-theoretic concept of strategy and

goal functions for such interactions. We then we bring together these elements and postulate

two goal functions that are well anchored in the evolutionary biology literature. We show

that none of the two goal functions leads to general equivalence between uninvadability

and equilibrium behavior. Then, we turn to the analytically less forbidding case of weak

selection, and suggest a third goal function, which has not been studied before, and show

that maximizing behavior under this goal function is equivalent with uninvadability under

general conditions. Finally, we discuss the interpretation of our maximizing behavior under

behavioral constraints and provide a general discussion of our results.

Evolutionary model

In this section we describe the evolutionary component of our model along established lines

on biological evolution and population genetics (see, for instance, Frank, 1998; Rousset, 2004;

and Metz, 2011 for an introduction to the concepts used here), but we sometimes make slight

generalizations and reformulations to better suit our aims.
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Life cycle and phenotypes

We consider a population of haploid individuals structured into an infinite number of patches

(or islands), each subject to exactly the same environmental conditions and consisting of

exactly N adult individuals (i.e., Wright’s 1931 infinite island model of dispersal). The

life-cycle of individuals in this population consists of the following events that occur over

one demographic time period. (1) As an outcome of interactions with others, each adult

individual produces (asexually) a very large number of offspring and then either survives

into the next demographic time period or dies with a probability independent of age. (2)

Each offspring either disperses or remains in its natal patch, and each migrant disperses

to a (uniformly) randomly chosen non-natal patch. (3) In each patch the random number

of aspiring offspring, some native and some immigrants from other patches, compete for

the breeding spots vacated by the death of adults. As a result, in each patch exactly N

individuals survive this density-dependent competition.

We assume that the probability for an offspring to migrate is always positive. No other

assumption about fecundity, survival, migration, or competition is made at this stage of the

analysis. In particular, the demography allows for exactly one, several, or all adults to die

per demographic time unit (overlapping and non-overlapping generation models).

Each individual in the population is assumed to inherit faithfully from its parent a type,

which may affect any phenotype of the individual and thus possibly any event in the indi-

vidual’s life cycle. Our generic notation for a type will be θ and the set of all admissible

types will be denoted Θ. Because interactions, in general, may occur between individuals

from the same or different patches, any phenotype of an individual may actually depend not

only on its own type, but also on the types of its patch neighbors, and the types of individ-

uals taken at large from the population. A fundamental feature of the infinite island model

is that the phenotypic effects of individuals in other patches on a given individual is, by

the law of large numbers, non-stochastic, however, and depends only on averages (Chesson,

1981). This implies that a given phenotype of an individual can be expressed as a function

of the individual’s own type, the type profile of her patch neighbors, the distribution of type-

profiles across all patches in the population at large, and some random environmental effect
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(by following quantitative genetics, see Lynch and Walsh, 1998). In our analysis, we will not

consider such random effects (such as developmental noise), and we write generically a given

phenotype (such as height, number of offspring produced, resource transferred to others),

of a given individual i ∈ {1, 2, ..., N} on a given island as z(θi,θ−i, φ), where θi ∈ Θ is the

individual’s type, θ−i = (θ1, ..θi−1, θi+1, ..θN) ∈ ΘN−1 is the type profile of patch neighbors,

and φ ∈ ∆
(
ΘN
)

is the population distribution of patch type-profiles, where ∆
(
ΘN
)

is the set

of probability measures on the set ΘN of patch type-profiles (formally z : ΘN×∆
(
ΘN
)
→ Z,

where Z is the set of phenotypes).

We will assume, for analytical tractability, that any phenotype of an individual is ex-

pressed unconditionally on age (neither their own nor others’) and does thus not vary with

demographic time. Recalling that all individuals are subject to the same environmental con-

ditions (i.e., there is no class structure, Taylor, 1990), any phenotype z(θi,θ−i, φ) of a given

individual i can be considered to be invariant under permutation of the elements of the type

profile θ−i of its patch neighbors, and this will be assumed throughout.

Personal fitness

One phenotype that will play a fundamental role in our analysis is the personal fitness of

an individual, which we define as an individual’s expected number of surviving descendants

(possibly including the individual herself, for demographics where adults may survive) after

each demographic time period. We denote by w(θi,θ−i, φ) this fitness of individual i. Due to

migration and competition for breeding spots, an individual’s fitness will in general depend

on the vital rates (fecundity and survival) and migration rates among its patch neighbors

and in the population at large (e.g., Frank, 1998; Rousset, 2004).

An example of a fitness for the island model can be obtained by assuming a Moran

process (Ewens, 2004), where exactly one randomly sampled adult on each patch dies per

demographic time period. Then, assuming that all offspring have the same migration prob-
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ability m (for simplicity of presentation), the fitness of individual i is given by

w(θi,θ−i, φ) = 1− h(θi,θ−i, φ)∑N
j=1 h(θj,θ−j, φ)

+
1

N

[
(1−m)

f(θi,θ−i, φ)

(1−m) 1
N

∑N
j=1 f(θj,θ−j, φ) +mf̄(φ)

+m
f(θi,θ−i, φ)

f̄(φ)

]
. (1)

The right-hand side of the first line is the part of fitness stemming from own survival; it

is the probability of survival, where survival is a random variable that takes the value one

if the individual survives and zero if it dies. We assume the death probability to be of

the form h(θi,θ−i, φ)/
[∑N

j=1 h(θj,θ−j, φ)
]
, where h(θi,θ−i, φ) is the risk-factor for death of

individual i.

The second line in eq. 1 is the fitness through settlement of offspring in vacated breeding

spots. This depends on the fecundity f(θi,θ−i, φ) of individual i, which is defined as its

expected number of offspring produced in a demographic time unit, and also on the average

fecundity in the population as a whole,

f̄(φ) =

∫ [
1

N

N∑
i=1

f(θi,θ−i, φ)

]
dφ(θ), (2)

where, for any patch-profile θ = (θ1, .., θN), the expression in square brackets is the average

fecundity of the N individuals in the patch. The first term inside the square brackets in

eq. 1 is the individual’s fitness through her philopatric offspring, each of whom competes

for the local vacated breeding spot with all philopatric offspring from the same patch and

with all migrating offspring from other patches who also aspire for this breeding spot. The

second term inside the square brackets is the component of the focal individual’s fitness that

stems from its dispersing progeny to other patches. We note that since the total population

is constant in size, average fitness in the population at large is always one. In particular, in a

monomorphic population—irrespective of what is the resident type—all individuals’ personal

fitness is unity.
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Uninvadability

Suppose that initially the population is monomorphic for some resident type θ and that a sin-

gle individual mutates to some new type τ . Will this mutant type“invade”the population? If

the resident type θ is such that any mutant type τ ∈ Θ goes extinct with probability one, we

will say that θ is uninvadable. We denote by ΘU the set of types that are uninvadable. Unin-

vadability could also informally be thought of as evolutionary stability. But this terminology

will not be used here, since it is slightly weaker than the strict definition of evolutionary

stability (Maynard Smith and Price, 1973), which subsumes that an evolutionarily stable

state should be an attractor of the evolutionary dynamics (in particular, our notion of un-

invadability is weaker than evolutionary stability in that we consider demographic processes

in which migrating mutants never meet each other).

In order to get a hold on uninvadability, consider a single individual i0, of type θ′ ∈ {τ, θ}

in one patch, to be called the focal patch, in a population that is otherwise monomorphic for

type θ. Through reproduction, this individual may found a lineage with local descendants as

well as descendants reaching adulthood in other patches. Owing to our assumption that the

number of patches is infinite, the probability that a descendant of the individual founding

the lineage will migrate back to the focal patch is zero, as long as the lineage is small in the

population so that the population can be considered as being (almost) monomorphic for θ.

This implies that the time-varying size of the subpopulation of descendants (including the

founder i0) in the focal patch can be represented as a (time-) homogeneous Markov chain on

the finite state space K = {0, 1, .., N}. The state of this process in any demographic time

period ` = 0, 1, 2, .. thus specifies the size k ∈ K of the local lineage in the demographic time

period `.

This Markov chain has exactly one absorbing state, namely, the extinction of the local

lineage (k = 0). Moreover, since the migration probability is positive, and patch populations

are finite and constant, this extinction will with probability one occur in finite time. Let

tk(θ
′, θ) denote the expected finite sojourn time (number of demographic time periods) spent

in state k ∈ {1, .., N} of the Markov chain. Since the local lineage goes extinct within finite

time, the expected total size of the local lineage, t̄(θ′, θ) =
∑N

k=1 ktk(θ
′, θ), is finite, and this
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fact allows us to define

pk(θ
′, θ) =

ktk(θ
′, θ)

t̄(θ′, θ)
for k = 1, .., N. (3)

This is the probability, for a randomly drawn local lineage member, to co-exist with k − 1

other local lineage members. Overall, then, (p1(θ
′, θ), .., pN(θ′, θ)) is the experienced lineage-

size distribution; the probability distribution of lineage size—the number of individuals who

are identical-by-descent—as experienced by a randomly drawn lineage member. A standard

statistic describing the magnitude of identity-by-descent is the relatedness between patch

members (Wright, 1931; Frank, 1998; Rousset, 2004). Let the coefficient of pairwise related-

ness be defined as

r(θ′, θ) =
N∑
k=1

k − 1

N − 1
pk(θ

′, θ). (4)

This coefficient is the probability that a randomly drawn neighbor of a local lineage member

will also be a local lineage member, that is, that they both descend from i0, the founder of

the local lineage.

For θ′ = θ, the expression on the right-hand side of (4) boils down to the standard

coefficient of relatedness evaluated in the neutral process—that is, when every individual has

exactly the same fitness (e.g., Crow and Kimura, 1970). For instance, for the Moran island

model one obtains

r(θ, θ) =
1−m

1−m+Nm
, (5)

which displays the canonical feature that relatedness is decreasing in the migration proba-

bility and in patch size (calculations for the Moran process are given in the Appendix).

We now turn to defining the lineage fitness of a type θ′ ∈ {τ, θ}, i.e., the expected personal

fitness of members of the local lineage founded by some individual i0 of this type, during

the lifespan of this local lineage, and assuming the population is otherwise monomorphic for

type θ. For this purpose we first note that the personal fitness of a member i of the local

lineage, and whose type is therefore θ′, is w(θ′,θ−i, 1θ), where θ−i ∈ {τ, θ}N−1, and 1θ is

the type-profile distribution that places unit probability on the homogeneous type profile

(θ, .., θ) ∈ ΘN . Letting Sk−1 (θ′, θ) denote the set of neighbor type-profiles θ−i ∈ {τ, θ}N−1

such that exactly k − 1 neighbors are also members of the local lineage, the lineage fitness
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of type θ′ ∈ {τ, θ} in a resident θ-population writes

W (θ′, θ) =
N∑
k=1

∑
θ−i∈Sk−1(θ′,θ)

qk(θ
′, θ)w(θ′,θ−i, 1θ), (6)

where, for each k = 1, ..., N ,

qk(θ
′, θ) =

(
N − 1

k − 1

)−1
pk(θ

′, θ) (7)

is the probability that a particular neighbor type-profile θ−i with exactly k− 1 local lineage

members realizes. The factorial in eq. 7 accounts for all the ways that a profile of length

N − 1 can contain k − 1 such members. In particular, then, for θ′ = θ, we have W (θ, θ) =

w
(
θ,θ(N−1), 1θ

)
= 1, where θ(N−1) is the (N − 1)-dimensional type vector whose components

all equal θ.

A necessary and sufficient condition for a type to be , θ ∈ ΘU, is that no other type has

a mutant lineage-fitness above that of the resident lineage:

Result 1 A type θ ∈ Θ is uninvadable if and only if

W (τ, θ) ≤ W (θ, θ) ∀τ ∈ Θ. (8)

(Proofs of all results are given in the Appendix). This shows that lineage fitness is a

measure of invasion fitness, and that W (τ, θ)−W (θ, θ) has the same sign as the growth rate

of a mutant when rare in the population (Appendix Result 1), which is the usual and general

measure of invasion fitness (Ferrière and Gatto, 1995; Caswell, 2000; Metz, 2011).

Behavioral model

In this section we describe the behavioral component of our model. We begin with a dis-

cussion of the notion of “behavior” along established lines in behavioral ecology and the

neurosciences (see for instance McFarland and Houston, 1981; Leimar, 1997; Enquist and

Ghirlanda, 2005; and Haykin, 1999), and then show how this can be translated into the no-

tion of “behavior” in game theory (see for instance Fudenberg and Tirole, 1991 and Osborne

12



and Rubinstein, 1994), which will finally allow us to formulate an unambiguous concept of

maximizing behavior.

Due to the notational complexity involved in describing behavior throughout the whole

lifespan of an individual, we will focus on behavior affecting interactions between individuals

leading to reproduction and survival, and eventually migration (stage (1) in the life cycle

until (2) starts). We envision these interactions as being extended over T social time periods,

although they take place within a single unit of the demographic time period. We thus

deal with two time scales, one (slow) for the demographic period and one (fast) for social

interactions taking place over a possibly infinite number of time periods (T is either finite

or infinite). For instance, one-shot interactions will be covered as the special case when the

social time scale has only one time period, T = 1, and repeated interactions are obtained

when T > 1. (These can be thought of as the stages of a multi-stage game form, which

is a special but broad class of extensive-form games that includes all one-shot game forms,

finitely and infinitely repeated game forms, see Fudenberg and Tirole, 1991, chapter 4 or

Osborne and Rubinstein, 1994).

Behavior rules and strategies

We take the action (e.g., a motor pattern, a signal, or a transfer of resources to a neighbor)

as the fundamental behavioral unit by which an individual interacts in each social period

with others. We assume, for simplicity, that the set of feasible actions, A, is the same for

all individuals at all times (and thus do not depend on type) and that this includes the

possibility of taking no action so that actions can be taken asynchronously in the social

interaction setting. The action taken by individual i at social time t ∈ T ,

ai(t) = di(si(t)), (9)

is assumed to be determined by the individual’s internal state si(t) ∈ S at t, where S is the

set of internal states that an individual can be in and di is the decision rule of individual i, and

which can result in the randomization of action [formally di : S → ∆(A)]. An individual’s

(internal) state changes (possibly randomly) over time and the state of individual i at any

13



time t > 1,

si(t) = gi(si(t− 1), ei(t− 1)), (10)

is assumed to be determined by the individual’s state si(t − 1) in the previous social time

period and the information ei(t − 1) obtained during that time period, where E the set of

information [formally gi : S ×E → ∆(S)]. This information could consist of any more or less

noisy private or public signals about the individual’s own action and/or that of others. A

simple example is the (public) profile of actions ei(t) = (a1(t− 1), .., aN (t− 1)) taken by all

individuals in individual i’s patch, which entails the perfect monitoring of patch members

actions.

We call the triplet bi = (di, gi, si(1)) the behavior rule of individual i. This rule defines

how the individual will act and react to others during the whole social interaction period.

When the set of states S is finite (infinite), a behavior rule is a finite (infinite) state machine

(Minsky, 1967), and as such neural networks can be implemented by a behavior rule (Haykin,

1999). We assume that the behavior rule of an individual is fixed at birth and is thus

determined only by its own type (i.e., bi = bi(θi), which does not depend on θ−i nor φ).

Our definition of a behavior rule entails that it can implement a behavior strategy as

defined in non-cooperative game theory. To see this connection, suppose that gi concatenates

the most recent information to all previous information (by setting si(1) = ∅ and si(t) =

(si(t − 1), ei(t − 1)) for all t > 1). Then an individual’s internal state si(t) in social time

period t > 1 depends on the whole history of information up to time t − 1, that is, si(t) =

(ei(1), ..., ei(t− 1)) for t > 1 [the whole history of actions if ei(t) = (a1(t− 1), .., aN (t− 1))].

In this case, the set of internal states is given by the set H of all possible histories of

information [all possible histories of actions if ei(t) = (a1(t − 1), .., aN (t− 1))]. We denote

by xi the decision rule of individual i in this specific case where the internal state records the

whole history of information until the time point where a decision has to be taken [formally

xi : H → ∆(A)]. In game-theoretic terminology xi is a behavior strategy (see, e.g., Fudenberg

and Tirole, 1991 or Osborne and Rubinstein, 1994).
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Goal functions and games

With this precise concept of a strategy (xi) in hand, we can formally represent interactions

in the population at large as a game with infinitely many players, where all players on each

patch use strategies from the same strategy set, denoted X. A strategy profile is the vector

consisting of the strategies played by all the players. To complete the definition of such a

game, it is necessary to define each player’s utility or goal function, i.e., the function that

describes the value that the player attaches to every possible strategy profile. In the present

setting, let u(xi,x−i, φ) represent how individual i values that particular strategy constellation

(xi,x−i, φ), where xi ∈ X is her own strategy, x−i ∈ XN−1 is the strategy profile for her

patch neighbors, and φ ∈ ∆
(
XN
)

is the patch-profile distribution in the population at large.

The interpretation is simple. Consider two alternative strategy constellations, (xi,x−i, φ)

and
(
x′i,x

′
−i, φ

′); u(xi,x−i, φ) > u(x′i,x
′
−i, φ

′) holds if individual i strictly prefers (xi,x−i, φ)

to
(
x′i,x

′
−i, φ

′), while u(xi,x−i, φ) = u(x′i,x
′
−i, φ

′) holds if she is indifferent between the two

constellations. Thus, u is a goal function for individual i (formally, u : XN ×∆
(
XN
)
→ R).

We here assume that the function u is symmetric in the same way as the fitness and fecundity

functions are, i.e., u is invariant under permutation of the elements of the strategy profile

x−i of the individual’s patch neighbors.

Since individual i can only choose her strategy xi ∈ X, but not the others’, her choice

problem, in the social interaction, is to choose the strategy xi ∈ X that she prefers, given

the strategies of her patch neighbors and the patch-profile distribution in the population at

large. Mathematically, this boils down to solving the maximization program

max
xi∈X

u(xi,x−i, φ). (11)

This set-up then defines a symmetric normal-form game with infinitely many players, a

game we will denote G = (N, X, u), where the first item is the set of players, the second

item the strategy set for each player, and the third item is each player’s payoff function, the

goal (or utility) function u. A concept that is a canonical prediction for behavior in such a

game is that of a Nash equilibrium, a strategy profile in which no individual can get a higher

utility by a unilateral deviation. For our purposes it is sufficient to consider symmetric Nash
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equilibria, i.e., equilibria in which all players use the same strategy. Such a strategy x ∈ X

satisfies

u(x,x(N−1), 1x) ≥ u(xi,x
(N−1), 1x) ∀xi ∈ X, (12)

where x(N−1) denotes the (N − 1)-dimensional vector whose components all equal x. Letting

XE (u) ⊆ X denote the (potentially empty) set of symmetric Nash equilibrium strategies,

we thus have x ∈ XE (u) if and only if

x ∈ arg max
x′∈X

u
(
x′,x(N−1), 1x

)
. (13)

In other words: if all other individuals in the population use strategy x ∈ XE(u) and individ-

ual i was free to choose her strategy xi from the strategy set X, and her goal was to maximize

u(xi,x−i, φ), then she would find it optimal to do the same as the others, that is, to choose

xi = x. Thus, the strategies in the set XE(u) are precisely those that are compatible with

all individuals behaving identically and as though each of them was choosing the strategy

that maximizes her goal function.

The “as if” question

To state the “as if” question, and to make a link with the evolutionary model presented in the

previous section, suppose that there is a one-to-one correspondence between an individual’s

type and his or her strategy, i.e., an individual’s type uniquely determines his or her strategy,

and it affects nothing beyond the strategy. Formally, let the set of types Θ, on which natural

selection operates, be the same as the set X of strategies, from which individuals make their

choices.

Then, the personal fitness writes w(xi,x−i, φ), where xi ∈ X is individual i’s own strategy,

x−i ∈ XN−1 is the strategy profile among that individual’s patch neighbors, and φ ∈ ∆
(
XN
)

is the distribution of patch strategy-profiles in the population at large. In force of Result 1,

a strategy x ∈ X is then uninvadable if and only if

W (y, x) ≤ W (x, x) ∀y ∈ X. (14)

Let XU ⊆ X denote the set of uninvadable strategies.
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The “as if” question that we address in this paper is as follows. Does there exist a goal

function u for which the set XE (u) of (symmetric) Nash equilibrium strategies is the same

as, or at least closely related to, the set XU of uninvadable strategies?

At first sight, it may seem that the lineage fitness function, W (x′, x) (see eq. 6), would

fit the bill. However, this is not true since lineage fitness is a multi-generational measure of

fitness and is a function of only two strategies, x and x′, whereas the “as if” question requires

a goal function that depends on the whole population strategy-profile in a given generation.

In fact, lineage fitness W (x′, x) can be thought of as the goal function of a focal “strategic

gene” (Dawkins, 1978; Haig, 1997, 2012); that is, a gene attempting to maximize its own

transmission across generations in a population where individuals behave according to the

strategy of another gene, the focal’s gene co-player. To see this, note that inequality 14 can

be written as

x ∈ arg max
x′∈X

W (x′, x). (15)

Strategy x is thus uninvadable if and only if the type pair (x, x) constitutes a Nash equilibrium

in the symmetric two-player game in which strategies are elements of X and the game payoff

to a strategy x′, when played against a strategy x, is lineage fitness W (x′, x). This shows that

we need to go beyond lineage fitness to establish a candidate individual-based goal function

who’s maximization will display uninvadability.

Uninvadability and maximizing behavior

We will start our analysis by considering two apparently natural individual-based goal func-

tions. As will be seen presently, neither induces behavior that closely matches behavior that

is uninvadable. To establish this negative result, it is sufficient to consider a canonical but

simple case. In this section we thus assume that strategies x can be represented as real

numbers in some open set X, and that all functions are twice continuously differentiable.

First, we consider individuals i with the goal function uA defined by

uA(xi,x−i, φ) = w(xi,x−i, φ) + r(x̄, x̄)
∑
j 6=i

w(xj,x−j, φ), (16)
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where x̄ = 1
N

∫ (∑N
i=1 xi

)
dφ(x) is the average strategy used in the population. This goal

function is reminiscent of textbook interpretations of “inclusive fitness”; the individual’s own

personal fitness plus the personal fitness of all other individuals in the population weighted

by their relatedness to the individual in question (e.g., Alcock, 2005). Note, however that this

is different from the (population genetic) concept of inclusive fitness described in Hamilton

(1964), which is the heritable part of the fitness of an average carrier of a particular allele

and is thus identically transmitted from parent to offspring. This discrepancy emanates

from the fact that uA does also not take a population-statistical form like the lineage-fitness

function W (see eq. 6), which characterizes uninvadability. We therefore introduce another

individual-based goal function, which is closer to the lineage-fitness function.

To define this second goal function one needs an additional piece of notation. For any

focal individual i consider the subset XN (i) ⊂ XN of patch strategy-profiles x in which, for

each patch neighbor j, the strategy is either xi or xj (for j = i this leaves but one choice):

XN(i) =
{
x ∈ XN : xj ∈ {xi, xj} ∀j ∈ I

}
. (17)

For each k = 1, .., N write Pik for the subset of XN (i) where strategy xi appears exactly k

times. Equipped with this notation, we turn to individuals with the goal function

uB(xi,x−i, φ) =
N∑
k=1

∑
x−i∈Pik

qk (x̄, x̄)w(xi,x−i, φ), (18)

where the qk’s are as defined in eq. 7. This goal function is the average personal fitness of

individual i, where the weight attached to the event that k−1 neighbors use the same strategy

as the individual herself is the probability that k−1 of a focal individual’s neighbors belong to

i’s lineage, according to the experienced type-profile distribution in the evolutionary model.

Does maximizing behavior lead to uninvadability?

We are now in a position to relate the set of (symmetric) Nash equilibrium strategies, under

each one of the two goal functions, to the set of strategies that are uninvadable. Since X is

an open set and W is differentiable, Result 1 implies that any uninvadable strategy x ∈ X
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must satisfy the first-order condition

∂W (y, x)

∂y

∣∣∣∣
y=x

= 0, (19)

where ∂W (y, x)/∂y is the usual selection gradient, that is, a first-order effect of selection on

the fitness of an average carrier of the mutant “type” (here “strategy”). In the proof of Result

2 below, we show that

∂W (y, x)

∂y

∣∣∣∣
y=x

= w1

(
x,x(N−1), 1x

)
+ r(x, x)(N − 1)wN

(
x,x(N−1), 1x

)
, (20)

where wj
(
x,x(N−1), 1x

)
is the (first-order) partial derivative of w(xi,x−i, φ) with respect to

its jth argument, for j = 1, ..., N . Note that owing to permutation invariance, wj = wh

for all j, h > 1. The expression in eq. 20 is standard (Rousset, 2004, chapter 7) and is

Hamilton’s (1964) inclusive fitness effect: the first term represents the (direct) effect on a

focal individual’s personal fitness from an infinitesimal change of his or her own strategy,

while the second term represents the (indirect) effect on the same focal individual’s personal

fitness from an infinitesimal change of the strategy of all her N−1 patch neighbors, weighted

by pairwise relatedness in the neutral process.

We denote by XD ⊆ X the set of strategies x that satisfy eq. 19. The next result estab-

lishes that the set XD contains not only all uninvadable strategies, but also all strategies that

meet the necessary first-order condition for symmetric Nash equilibrium in the population

game GA = (N, X, uA) (see eq. 16), as well as in the population game GB = (N, X, uB) (see

eq. 18):

Result 2 For a strategy x ∈ X to be uninvadable, or to be a symmetric Nash equilibrium

strategy under any one of the two goal functions, uA or uB, it must satisfy (19). Formally:

XU ∪XE(uA) ∪XE(uB) ⊆ XD. (21)

If XD is the empty set, no strategy is uninvadable and there exists no symmetric Nash

equilibrium in GA or GB. Turning to the more interesting case in which XD is non-empty,

consider some strategy x ∈ XD. All we then know is that x may (but need not) be uninvad-

able, a symmetric Nash equilibrium strategy in GA, and/or a symmetric Nash equilibrium
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strategy in GB, or neither. As we show next, if a strategy is uninvadable it does not neces-

sarily mean that it is also a Nash equilibrium strategy of GA or GB, or vice versa. Hence,

it is not generally true that “evolution leads to maximizing behavior” in terms of the goal

functions uA and uB. To establish this negative result, it is sufficient to focus on the simplest

case, namely when XD is a singleton set.

Writing x for the unique element of XD, the second-order condition

∂2W (y, x)

∂y2

∣∣∣∣
y=x

< 0 (22)

is sufficient for x ∈ XD to satisfy eq. 15. Comparing this second-order condition with that

for symmetric Nash equilibrium, under uA or uB, one obtains conditions under which the

sets on the left-hand side of eq. 21 indeed are nested. To state this result, we use the

following definition: the strategies are (local) strategic substitutes, strategically neutral or

strategic complements in terms of (personal) fitness at x, if wij
(
x,x(N−1), 1x

)
is negative,

zero, or positive, respectively, for all i, j ∈ {1, .., N} with i 6= j. Here, wjh
(
x,x(N−1), 1x

)
is

the second-order partial derivative of w(xi,x−i, φ) with respect to its jth and hth arguments,

evaluated at the monomorphic resident strategy-profile where all individuals play x (owing

again to permutation invariance, w1j = w1h for all j, h > 1, and wjh = wkl for all j, h, k, l > 1

whenever j 6= h and k 6= l).

The next result is divided into three parts, depending on the strategic character of the in-

teraction at hand, as well as on the signs of wN
(
x,x(N−1), 1x

)
and r1(x, x) = ∂r(y, x)/∂y|y=x,

where the latter is the derivative of relatedness with respect to its first argument.

Result 3 Suppose that x is the unique element of XD.

(a) If r1(x, x)wN
(
x,x(N−1), 1x

)
≥ 0 and the strategies are strategic complements at x in

terms of fitness, or r1(x, x)wN
(
x,x(N−1), 1x

)
> 0 and the strategies are strategically neutral

at x in terms of fitness, then XU ⊆ XE(uA).

(b) If r1(x, x)wN
(
x,x(N−1), 1x

)
≤ 0 and the strategies are strategic substitutes at x in terms

of fitness, or r1(x, x)wN
(
x,x(N−1), 1x

)
≥ 0 and the strategies are strategically neutral at x in

terms of fitness, or r1(x, x)wN
(
x,x(N−1), 1x

)
> 0 and the strategies are strategically neutral

at x in terms of fitness, then XE(uA) ⊆ XU.
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(c) If r1(x, x)wN
(
x,x(N−1), 1x

)
= 0 and the strategies are strategically neutral at x in terms

of fitness, then XE(uA) = XU.

Let us consider this result when XU = XD, that is, when the unique element x of XD is

uninvadable. If either of the two conditions in (a) is satisfied, then x is also a (symmetric)

equilibrium strategy in the game GA. In other words, under either condition in (a) an outside

observer may interpret the behavior of the individuals in the population as maximizing with

respect to the goal function uA. Turning now to (b), if either of the two conditions therein is

satisfied, then either x is a (symmetric) equilibrium strategy in GA or else this game has no

(symmetric) equilibrium strategy. In other words, under (b) an outsider who knows that GA

has at least one symmetric Nash equilibrium (and such existence may be proved from first

principles for a wide class of games) may again interpret the evolutionarily selected behavior

of the individuals in the population as maximizing behavior with respect to the goal function

uA. By contrast, if GA has no equilibrium, then the outsider observing a strategy that is

uninvadable cannot interpret it as being the outcome of maximizing uA. Note that under (a)

there may be other equilibrium behaviors than the unique strategy x, while under (b) there

is no other equilibrium behavior.

Finally, we also note that Result 3 (c) establishes that the two sets XE(uA) and XU

are identical in the special case when r1(x, x)wN
(
x,x(N−1), 1x

)
= 0 and the strategies are

strategically neutral in terms of fitness. In particular, uninvadability is the same thing as

maximizing behavior under the goal function uA in pure decision problems, interactions in

which the personal fitness only depends on the individual’s own action (then wN = 0 and

strategies are strategically neutral).

Our next result shows that maximizing behavior with respect to the goal function uB

has a closer tie than uA with uninvadability. In particular, the strategic character of the

interaction plays no role.

Result 4 Suppose that x is the unique element of XD.

(a) If r1(x, x)wN
(
x,x(N−1), 1x

)
> 0, then XU ⊆ XE(uB).

(b) If r1(x, x)wN
(
x,x(N−1), 1x

)
< 0, then XE(uB) ⊆ XU.
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(c) If r1(x, x)wN
(
x,x(N−1), 1x

)
= 0, then XE(uB) = XU.

The same comments applying to condition (a) and (b) under Result 3 (see paragraph

following this result) also apply to Result 4, but comparing the conditions in Results 3

and 4, we see that an uninvadable strategy can be an equilibrium strategy in the game

GB without being an equilibrium strategy in the game GA. By contrast, an uninvadable

strategy cannot be an equilibrium strategy in GA without also being an equilibrium strategy

in GB. Similarly, there are situations in which an equilibrium strategy in the game GB is

also uninvadable while not being an equilibrium strategy in the game GA, while the reverse

case cannot arise. Strategically neutral interactions constitute an important special case;

then the set of equilibrium strategies in games GA and GB are related in the same way

to uninvadability. Strategic neutrality means that the effect of an individual’s action upon

another individual’s personal fitness is independent of what strategy the other takes. This

is, arguably, a rare case in practice.

The link between natural selection, as expressed by uninvadability, and“as if”maximizing

behavior, as expressed by symmetric Nash equilibrium, is hence in general tighter for the goal

function uB than for the goal function uA. However, also the link between natural selection

and the goal function uB is, in general, not clear-cut, except when neutral pairwise relatedness

is independent of the resident strategy, r1(x, x) = 0, or when an individual’s personal fitness

does not depend on the strategies of other individuals, wN
(
x,x(N−1), 1x

)
= 0. In force of

Result 4 one then has XE(uB) = XU. In other words, then the result of natural selection is

identical with individual “as if” maximization under goal function uB.

Finally, note that if m = 1 (the population is panmictic), then qk(θ
′, θ) = 1 for k = 1

(hence zero for all other k), and r (x, x) = 0, in which case uA and uB reduce to w(xi,x−i, φ).

Maximizing personal fitness is then equivalent to maximizing lineage fitness (eq. 6). We

conclude that in a panmictic population XE(uB) = XE(uA) = XU (and this actually holds

for general type spaces).
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Example

As an illustration of the results, consider a simple example with fecundity effects and without

survival effects. Suppose that N = 2 under a Moran reproductive process (eq. 1) with

constant death rate and with fecundity linear-quadratic in the two players’ strategies, x ∈ R

(own strategy) and y ∈ R on a patch (and independent of strategies in other patches):

f(x, y) = fb
[
1 + αx− βxy − γx2

]
, (23)

for parameters α, β, γ ∈ R and for some (large) baseline fecundity fb > 0 common to every

individual in the population. This fecundity function can be thought of as special case of

the Cournot duopoly model (e.g., Fudenberg and Tirole, 1991). Substituting it into eq. 1

and then into eq. 20 along with eq. 5 shows that XD is a singleton set with unique element

x∗ =
α(3−m)

2 [γ(3−m) + β(m− 2)]
. (24)

For α = β = γ = 1, this strategy x∗ is uninvadable, x∗ ∈ XU, and is also a symmetric

Nash equilibrium strategy with respect to goal function uA, x∗ ∈ XE(uA), whereby {x∗} =

XE(uA) = XU = XD (see Fig. 1). In other words, maximizing behavior is equivalent with

uninvadability for these parameter values. Suppose now that α = 1, β = 2, and γ = 0.01.

Then it is still true that x∗ is uninvadable, x∗ ∈ XU. However, for low values of m > 0,

x∗ is no longer a Nash equilibrium strategy (Fig. 1). One can then find a threshold value

for m ∈ (0, 1), above which XE(uA) = XU and below which x∗ /∈ XE(uA) (in which case

XE(uA) = ∅). Thus, relatedness-weighted fitness maximizing behavior is not equivalent

to behavior that is uninvadable when m is small. Finally, let us consider the case α = 1,

β = −1, and γ = 0.5. Then x∗ is a Nash equilibrium strategy, but for low values of m

(low migration rates) it is not uninvadable (Fig. 1). One can then find a threshold value for

m ∈ (0, 1), above which XE(uA) = XU and below which x∗ /∈ XU (in which case XU = ∅).

Thus, again, maximizing behavior with respect to the goal function uA is not equivalent

to behavior that is uninvadable when m is small, that is, when the population structure is

strong.
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Weak selection

We now turn to the study of uninvadability under weak selection and assume that types can

only affect fecundity or survival, but not both simultaneously and also do not affect individ-

uals’ migration rate, which henceforth is constant. We further assume that the fecundity of

any individual i can be written under the form

f(θi,θ−i, φ) = fb [1 + δπ(θi,θ−i, φ)] , (25)

for some δ ≥ 0, and some function π : ΘN × ∆
(
ΘN
)
→ R+. The parameter δ measures

the intensity of selection and if δ = 0 every individual has exactly the same fecundity and

hence same fitness, which entails that the evolutionary process is neutral. The function

π can be thought of as the expected material payoff obtained during the stage of social

interactions (stage (1) of the life cycle). The assumption behind eq. 25 is that fecundity

can be normalized and expressed in terms of material payoff such that the outcome of the

interaction affect reproduction only weakly, which can be justified by noting that fitness can

depend on many other phenotypes such as morphology and physiology (which under the

time span considered are taken to be fixed in the population).

If types affect the survival of adult individuals (e.g., eq. 1), one can posit a relationship be-

tween material payoff and individual survival in the same vein as in eq. 25, while if types affect

the death risk like in eq. 1 (in which case we can write h(θi,θ−i, φ) = hb [1 + δπ(θi,θ−i, φ)]),

one must set δ ≤ 0. Irrespective of specification, most standard models of evolutionary

population dynamics (e.g., Frank, 1998; Ewens, 2004; Rousset, 2004 and eq. 1) exhibit the

following three canonical properties: (a) fitness is monotonically increasing in the fecundity

(or survival) payoff to the individual, and therefore increasing in π(xi,x−i, φ); (b) fitness is

monotonically decreasing in the fecundity (or survival) to the individual’s patch neighbors,

and therefore the fitness of i is decreasing in π(xj,x−j, φ) for j 6= i; (c) an individual’s fit-

ness is more sensitive to changes in own fecundity (or survival) payoff than to changes in any

(individual) neighbor’s material fecundity (or survival). In the subsequent analysis we will

focus on the class of evolutionary dynamics that yield fitness functions with these properties.
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Given these assumptions, a Taylor expansion of lineage fitness in δ, for δ near zero, yields

W (θ′, θ) = 1 + δη
[
Π(θ′, θ)− (1− λ)π(θ,θ(N−1), 1θ)

]
+O(δ2), (26)

where η > 0 and λ ∈ [0, 1] (see eq. A-46), and

Π(θ′, θ) =
N∑
k=1

∑
θ−i∈Sk−1(θ′,θ)

q◦k

[
π(θ′,θ−i, 1θ)−

λ

N − 1

∑
j 6=i

π(θj,θ−i, 1θ)

]
(27)

is the lineage payoff to type θ′ in a resident θ-population. Here, the profile distribution q◦k

is eq. 7 evaluated under δ = 0, which entails that the evolutionary process is neutral and is

further independent of trait values. The coefficient λ is“the spatial scale of density-dependent

competition” (Frank, 1998, p. 115), which quantifies the intensity of local competition for

breeding spots between patch members. As shown in the Appendix (see eq.A-40), λ ∈ [0, 1].

In other words, an increase in the average payoff to the focal individual’s patch neighbors

by a small amount δ > 0 increases the local density-dependent competition experienced by

the focal individual (during stage (4) of the life cycle) by δλ. We show in the Appendix

(eq. A-42) that in the Moran island model

λ =
(N − 1) (1−m)2

N − (1−m)2
(28)

for effects of types on fecundity (and λ = 1 for effects of types on death).

We will call a type θ ∈ Θ uninvadable under weak selection if there exists a δ0 > 0 such

that inequality (8) holds for all δ ∈ (0, δ0). Let ΘUW ⊆ ΘU be the set of types that are

uninvadable under weak selection.

Result 5 A type θ ∈ Θ is uninvadable under weak selection if and only if

Π(τ, θ) ≤ Π(θ, θ) ∀τ ∈ Θ. (29)

The fact that attention may be restricted to a function that depends only on material

payoffs (and not on fitness) is a consequence of the assumptions that fitness is monotonically

increasing in material payoff, and that the migration probability is the same for all indi-

viduals. Indeed, under the latter assumption fitness depends on strategy only through the
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material payoff. Second, the fact that the weights in eq. 27 reflect the neutral population

process is a consequence of weak selection: indeed, in the limit when δ = 0, fitness is the

same for everyone. Given these insights, it is straightforward to understand Result 5: any

uninvadable type preempts entry by ensuring that there exists no mutant type that would

beat carriers of the resident strategy in the competition for breeding spots in its own patch

(by obtaining a higher material payoff).

Maximizing behavior

Turning now to maximizing behavior and the “as if” question, we focus on the case Θ = X,

as under strong selection. However, by contrast to the analysis under strong selection, here

we do not make any structural assumption about the set X, or about differentiability. Let

XUW denote the set of uninvadable strategies under weak selection.

We now consider the goal function uC defined by

uC(xi,x−i, φ) =
N∑
k=1

∑
x−i∈Pik

q◦k

[
π(xi,x−i, φ)− λ

N − 1

∑
j 6=i

π(xj,x−j, φ)

]
, (30)

which has a close resemblance with the function Π in eq. 27. The only difference is the

set of type profiles over which summation takes place. We show in the Appendix that

uninvadability is equivalent with maximizing behavior with respect to this goal function.

Formally:

Result 6 XE(uC) = XUW.

In sum, we have shown in a model with minimal assumptions on the specifics of the social

interaction, that under weak selection evolution selects behaviors that are “as if” individuals

strived to maximize their expected relatedness-weighted payoff advantage over their patch

neighbors, where the expectation is taken with respect to their experienced local lineage

distribution, and where the payoff advantages is based on a comparison of own material

payoff to the average material payoff of others in the patch depends on the degree of local

competition, λ, which in turn depends on patch size and the migration rate.
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Our analysis permits the fecundity (or survival) of an individual to depend not only on

his or her own type/strategy but also on the types/strategies of the other individuals in

the patch and the population at large. The special case when fecundity is independent of

others’ types (or strategies), one may view material payoff as a function of the individual’s

own strategy only. In that special case, behavior driven by maximization of uC is identical

with behavior driven by maximization of own material payoff, π (xi), irrespective of y, the

patch neighbor’s strategy. Hence, in this special case, Result 6 takes a particularly simple

and stark form; natural selection (as expressed by uninvadability) will drive individuals to

behave as if their goal always was to maximize their own material payoff.

Example

Consider again the Moran process with N = 2. For an individual i who plays xi = y while

her patch neighbor plays x−i = x, eq. 30 can be written as

uC(y, x, φ) = (1−λ) [(1− r) π(y, x, φ) + rπ(y, y, φ)]+λ (1− r) [π(y, x, φ)− π(x, y, φ)] . (31)

where (from eq. 5), we have r = (1−m)/(1+m) and (from eq. 28) λ = (1−m)2 /
[
2− (1−m)2

]
.

In other words, the goal function uC is then the weighted sum of two terms, with weight

λ (1− r) to the individual’s “payoff advantage” over her patch neighbor, and weight 1−λ to

a convex combination of own payoff and the payoff that both individuals would obtain had

the other individual used the same strategy. When the material payoff does not depend on

the behavior of individuals in other patches, this convex combination is the goal function of

a homo moralis individual (Alger and Weibull, 2013) with degree of morality r ∈ [0, 1].

Returning to the example in eq. 23, let the material payoff be

π(y, x, φ) = αy − βxy − γy2. (32)

Then, substituting into eq. 31 shows that a unique strategy satisfies the first-order condition

∂uC(y, x, φ)/∂y|y=x = 0 and that it is given by eq. 24. Hence, if this strategy also satisfies the

second-order condition ∂2uC(y, x, φ)/∂y2|y=x < 0, then this strategy is the unique symmetric

Nash equilibrium strategy in the game GA = (N, X, uA). Hence, by Result 6, this strategy is
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then also the unique uninvadable strategy. In this example, the above second-order condition

boils down to

(1−m) (2−m) β + (3−m)γ > 0. (33)

Constrained behavior

We formulated the relationship between maximizing behavior and uninvadability in terms of

individuals (freely) choosing their strategies, where a strategy is a complete plan of action

for all possible contingencies (see section 2.2). As is well-known in game-theory (see e.g., van

Damme, 1987), a (behavior) strategy profile is a Nash equilibrium if and only if it prescribes

optimal (in terms of the player’s goal function) continuation play from every information set

that is reached with positive probability (while actions, or continuation play, at unreached

information sets need not be optimal).

Consider a social interaction in which each participant has a behavior rule that imple-

ments a behavior strategy for that individual. A situation in which each action in the

continuation play from any information set onwards can evolve to optimality entails that the

set S of states of an individual is very large. This has been used in models without social

interactions in behavioral ecology (i.e., decision problems where individuals interact with

their exogenous environment, e.g., McNamara and Houston, 1999). But it is rarely (if ever)

considered in biological models of social interactions, as the set S of states is usually taken

to be of small dimension, a modeling choice often following from the observation that most

animal (including human) decision-making is cognitively bounded (Fawcett et al., 2012). A

low-dimensional state space cannot represent the whole history of actions H, and the behav-

ior rule itself is further usually assumed to depend only a low-dimensional evolvable type θ.

A low-dimensional behavior rule can thus fundamentally constrain the flexibility of behavior

in social interactions, and this curtails the possibility to have actions that are all optimal

along the path of play.

We will now discuss how such mechanistic constraints change the interpretation of maxi-

mizing behavior. To that end, we will consider a multi-move game where individuals have a
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memory of step one, and stay with the Moran process under N = 2. A typical example is a

infinitely repeated prisoner’s dilemma where individuals can only react to the past action of

their partner (e.g., McNamara et al., 1999; Killingback and Doebeli, 2002; Taylor and Day,

2004; André and Day, 2007). The simplest setting therein is maybe provided by the so-called

continuous prisoner’s dilemma with linear reactive “strategies,” where ai(t) ≥ 0 is the level

of investment in cooperation by individual i in social period t of the repeated game, and is

given by  a1(t) = α + θ1a2(t− 1)

a2(t) = α + θ2a1(t− 1)
for t = 1, 2, ..., (34)

where α > 0 is an exogenous initial donation, and a1(0) = a2(0) = α. Here θi ∈ Θ = (0, 1)

represents the evolvable response slope of individual i on the level of investment of its partner

in the previous round. For this model, the decision rule is

di(si(t)) = α + θisi(t) with si(t) = a−i(t− 1) and si(0) = 0. (35)

Given some material payoffs in each round t = 0, 1, 2, ... uninvadability of θ can be

evaluated, for example, in terms of the long-run average material payoff. This average

is well-defined, since both individuals’ actions increase monotonically over social time and

converge to the within-period action pair a∗1 = α(1 + θ1)/(1− θ1θ2)

a∗2 = α(1 + θ2)/(1− θ1θ2).
(36)

Hence, if the material payoffs in each time period of the repeated interaction are given by

ψ (a, a′), where z is own action and z′ the other individual’s action, then the long-run average

material payoff within the demographic time period to an individual with trait θ′ interacting

with an individual with trait θ is

π(θ′, θ, φ) = ψ

[
α + αθ′

1− θ′θ
,
α + αθ

1− θ′θ

]
. (37)

For the sake of illustration, suppose the function ψ is linear-quadratic: ψ (a, a′) = βaa′−

γa2 for some β, γ > 0. Substituting the resulting payoff function into lineage payoff (eq. 27)

and computing the first-order condition for a type θ ∈ (0, 1) to be a locally uninvadable
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shows that XUW is a singleton set with unique element

θ∗ =
1− (2−m) (β/γ − 1)

1 + (2−m) (β/γ − 1)
. (38)

The necessary second-order condition for uninvadability is γ ≤ β for a panmictic population

(m = 1), and m(2β−γ)5/(β−γ)3 ≤ 0 for m close to zero (see Appendix). The second-order

condition is complicated for intermediate values of m. But since a necessary condition for

θ∗ ∈ (0, 1) is that γ < β, the two boundary cases are sufficient to illustrate the fact that

limited dispersal tends to destabilize the candidate uninvadable point; θ∗ is uninvadable in

a panmictic population, while for strong population structures θ∗ is invadable.

By Result 6, the locally uninvadable type θ∗ is also the unique symmetric Nash equi-

librium strategy x∗ when individuals’ goal function is uC and X = Θ = (0, 1). But is it

behaviorally/biologically reasonable to interpret the reaction slope as a strategy x∗, chosen

by individuals? Under the infinitely repeated prisoners’ dilemma (eqs. 34–37), the reaction

slope θ determines the decision rule of individuals (eq. 35). From a game-theoretic viewpoint,

this constrained repeated prisoners’ dilemma is a one-shot game, where each player only has

one choice, namely what reaction slope x ∈ X = Θ = (0, 1) to use throughout the whole

social interaction. Hence, the reaction slope is now the player’s strategy in a simultaneous-

move one-shot game with material payoff from playing strategy x′ against strategy x given by

eq. 37 with θ′ replaced by x′ and θ by x. The interpretation in terms of maximizing behavior

is then that individuals choose how strongly to react to the other player’s last action, within

the given class of affine functions.

In other words, the parameters determining the mechanism that generates actions (the

behavior rule) are optimal for each individual, in terms of the goal function uC when these

parameters take the values that are uninvadable, and can thus be interpreted as being the re-

sults of maximizing behavior. This reasoning applies to any trait affecting any behavior rule,

such as traits affecting cognitive properties such as memory size, learning speed, or internal

reward systems involved in decision making. In sum, the interpretation in terms of maxi-

mizing behavior can be applied to both flexible and constrained behavior, and any evolvable

phenotype determining a proximate mechanism that generates actions can be interpreted as

a strategy in a corresponding game.
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Discussion

We have examined the question whether in a patch structured population strategies that

are uninvadable can be interpreted as chosen by each individual in order to maximize some

goal function for the individual (a proximate cause), while what is really being maximized is

the strategy’s lineage fitness (the ultimate cause). For the purpose of analyzing this “as if”

question, we have examined goal functions that are linear combinations of personal fitness or

personal material payoff. These are goal functions of a form often used in evolutionary biology

and economics. They are analytically relatively simple and transparent in the sense that they

explicitly depend on the fitnesses of, or material payoffs to, the individual and (potentially) its

partners engaged in the social interaction at hand, weighted by some “population-structural”

coefficients.

We analyzed the connection between uninvadability and such individual goal functions

under two different selective regimes. Our results can be summarized as follows.

• Arbitrary selection strength. Individual goal functions producing “as if” behavior with

population-structural coefficients independent of selection and/or given by relatedness ob-

tains only for certain classes of social interactions, in particular, it obtains for strategically

neutral interactions. In other words, although lineage fitness is maximized by natural selec-

tion, individuals can in general not be regarded as if they would maximize their individual

or inclusive fitness, with “inclusive fitness” taking the textbook interpretation.

• Weak selection. Regardless of the complexity and strategic nature of the social inter-

action, an individual goal function producing “as if” behavior with weights independent of

selection can be found. This turns out to be a function (eq. 30) that represents a certain

weighted average of material payoff, which can be interpreted as a combination of selfishness

(own material payoff), Kantian morality or righteousness (what the individual would like all

individuals to do), and rivalry or local competitiveness (material payoff differences).

We will now discuss more in detail the scope of these results, the interpretation of our

model of strategy evolution, and how this relates to previous formalization of maximizing

behavior in evolutionary biology.

31



Patches, families, and panmictic populations

Without any assumptions on the strength of selection, we found no individual-based goal

function whose maximization lead to the behavior favored by natural selection, with population-

structural coefficients independent of selection, not even when the trait space is one-dimensional

(see Result 3 and 4). Hence, even in situations in which a concept of invasion fitness max-

imization applies (lineage fitness in our formalization), the “as if” notion of individuals as

maximizing agents, equipped with goal functions such as “inclusive fitness” does not gen-

erally obtain. This stems from the fact that lineage fitness, generally depends on the full

distribution of types that a carrier of the mutant trait is exposed to, and this distribution

in turn depends on the expression of the mutant and resident type in past generations.

Hence, lineage fitness is a complex multi-generational measure of invasion fitness, where the

distribution of types is endogenously determined and thus depends on selection. Since this

dependency is endogenous by nature, a goal function representing lineage fitness cannot in

general be written as a linear combination of personal fitness functions, with coefficients that

are independent of the fitness of the different types and thus of selection.

This argument applies regardless of the dimensionality of the type space. Hence, our

Result 3 and Result 4 establish the fact that, in general, no full correspondence between the

set of Nash equilibria induced by maximizing behavior and the set of uninvadable strategies

exists. But there are exceptions to these negative results. For instance, in evolutionary

biology and evolutionary game theory the canonical model of social interactions is symmetric

pairwise interactions in a panmictic population (e.g., Maynard Smith, 1982; Eshel, 1983),

which, by definition, is a situation where there is no local competition. In this case, lineage

fitness is proportional to personal fitness, which in turn is an affine increasing function of

material payoff. Then, an individual-based goal function that produces “as if maximizing”

behavior can be readily found, and is directly given by the material payoff function of the

social interaction, which implies that uninvadability is equivalent with equilibrium play in

the social interaction. Our model allows for a direct extension of this case to multi-player

interactions within groups of any size N > 1 in a panmictic population, a case that has been

extensively studied in evolutionary biology (e.g., the “haystack” model, Maynard Smith,
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1964, or the “group-selection” and “founder effect” models, Wilson, 1975; Cohen and Eshel,

1976). This is a general result, regardless of the game being played between group members.

Other general cases of maximizing behavior can be found by considering interactions

among family members in a panmictic population, like for instance interactions among sib-

lings (or parent-offspring interactions) before the round of complete dispersal, and where

the kinship structure is determined in a single episode of reproduction and does not de-

pend on the type distribution when mutants are rare. For this case, invasion fitness is

W (y, x) ∝ rπ(y, y) + (1 − r)π(y, x) for a constant pairwise relatedness r ∈ [0, 1] (Day and

Taylor, 1998), which does thus not depend on the types. In this case, the individual-based

goal function uF (y, x) = rπ(y, y) + (1 − r)π(y, x) (introduced in Alger and Weibull, 2013)

results in “as if” maximizing behavior since XE (uF ) = XU. Hence, in family-structured pop-

ulations maximizing behavior can obtain for all games under the condition that relatedness

is not affected by selection. More generally, it is due to the fact that population’s genetic

structure generally depends on selection (in our model the qk(y, x)-distribution depends on

both mutant and residents types, and is different from the distribution qk(x, x) evaluated

under the neutral process), that a general “as if maximizing” representation is unlikely. It

would thus be useful in future research to delineate the instances of family (or spatially)

structured populations where invasion fitness depends on population-structural coefficients

that are independent of selection.

Weak selection

Under weak selection, all earlier events of selection can be summarized by a neutral dis-

tribution of types, which quantifies the effects of the kinship structure induced by limited

dispersal on an individual’s goal function [the distribution qk(θ, θ) is independent of the mu-

tant, see eq. 27]. Hence, an individual goal function, with population-structural coefficients

independent of selection, can be found. We showed that, regardless of the complexity of

social interactions, individuals who maximize their average scaled payoff would choose, in

equilibrium, strategies that are uninvadable (our Result 6). We note that this result is nev-

ertheless not fully general as it applies only to traits affecting survival or reproduction, but
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not migration rates or other trait modifying the genetic system (i.e., modifier traits).

While we rule out modifier traits by assumption, we impose virtually no restrictions

on the games individuals play. Our weak-selection result covers maximizing behavior for

games with strategic substitutes, complements, and the special case of strategically neutral

games. A special case of strategically neutral games are those in which the payoff function is

additive separable in the strategies used by different group members. In such games, a goal

function that takes the same form as the relatedness-weighted fitness goal function (eq. 16),

but were fitness is replaced by payoff, would also produce “as if maximizing” behavior. This

is analogous to the situation considered in Grafen (2006), so our results matches his results

about “optimization of inclusive fitness” with constant environmental states. Strategically

neutral games can be viewed as independent decision problems, one for each player, and so

the concept of Nash equilibrium to characterize maximizing behavior is not needed in this

special situation. This is probably the reason why this fundamental concept does not appear

previously in the literature in evolutionary biology on maximizing behavior in the context of

interactions between relatives, a literature that usually deals only with strategically neutral

games (e.g., Grafen, 2006; Gardner and Welch, 2011). This previous work also endorses a

concept of stability of a resident type evaluated from the action of natural selection over only

a single demographic time period, the initial period where the mutant arises (e.g., Grafen,

2006, p. 553), and which is in general dynamically insufficient to ascertain the stability of

a resident type when interactions occur between relatives (Lehmann and Rousset, 2014).

By contrast, uninvadability in our analysis is ascertained from a multi-generational measure

of invasion fitness (lineage fitness), which is consistent with standard evolutionary analysis

(Ferrière and Gatto, 1995; Rousset, 2004; Metz and Gyllenberg, 2001).

Finally, it is worth noting that since different goal functions can produce the same be-

havior, the goal functions introduced in the “as if” approach are not uniquely defined. For

instance, any strictly increasing transformation of a given goal function returns a new goal

function with the same set of maximands. Nevertheless, the goal function producing “as if”

behavior that we have identified (uC, eq. 30) combines three features, which are likely to be

generic and general. These are (i) “selfishness”, which ultimately results from fitness depend-
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ing on the individual’s own material payoff; (ii) “Kantian morality”, whereby individuals do

what they would like everybody to do, which results from identity-by-descent within patches

and cause individuals to express identical strategies and; (iii) “competitiveness” or “rivalry”,

which results from local competition in a spatially structured population, which makes the

fitness of an individual decrease in the others’ material payoffs. These last two features are

direct consequences of limited dispersal and can in general not be separated from each other.

They are the goal-oriented behavioral consequences of kin-selected benefits (or costs) and

kin competition, the two fundamental and general additional components of the selection

pressure on any social behavior induced by limited dispersal (e.g., Grafen, 1984; Queller,

1994; West et al., 2002; Rousset, 2004). As such we conjecture that the three qualitative

features of the uC goal function will also emerge under more realistic demographics, like class

or demographically structured populations, something that could be detailed in future work.

Evolutionary selection of goal functions

Our “as if” question led us to posit three alternative goal functions, and to compare the

strategies that would result from maximization of these goal functions to those being selected

for by way of natural selection. However, in cognitively sophisticated organisms selection

may act directly at the level of goal functions, and so to speak delegate the (free) choice of

action(s) to the organism. One may then ask which goal functions will be selected for (hence

the goal function itself becomes an evolving “strategy”). This question is distinct from the

“as if” question addressed here and has been analyzed previously by economists (Alger and

Weibull, 2012, 2013 and references therein) and biologists (Akçay and Van Cleve, 2009, 2012).

The present modeling framework could be applied to such an analysis, in which case each

type would define a goal function, and the set of types would be all the goal functions that

the organism’s cognition and physiology could implement. In such an analysis it will matter

if organisms can recognize each others’ type or not, and we conjecture (by extrapolating

from the analysis in Alger and Weibull, 2013) that the uC goal function (eq. 30) will be

uninvadable under weak selection when goal function evolution occurs and organisms cannot

recognize each others’ type.
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Conclusion

Since in our model there are no genetic constraints, evolvable traits can be thought of as

being coded by a one-locus genetic basis (i.e., our set of alternative alleles). Our model

thus provides a setting where the conditions are ideal for identifying maximizing behavior

under evolutionary dynamics. Our results show that when social interactions are modeled

as games between population members, lineage fitness can in general not be translated into

individual fitness, and this in turn suggest that lineage fitness maximization will in general

not make individuals appear as if they were maximizing an individual-based goal function.

But individuals can still be the instruments of the gene’s goal, and our model is consistent

with the view that this is the level at which adaptation and thus maximizing behavior can

be conceived in complete generality (Dawkins, 1978; Haig, 2012).
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Appendix A: proof of Results 1–6

Result 1

We here prove that a mutant type τ appearing initially as a single copy on a single focal

island of the population, which is otherwise fixed for the resident θ, will go extinct with

probability one if, and only if, W (τ, θ) ≤ W (θ, θ). Our proof below follows the line of

arguments developed in Mullon et al. (in preparation) and that builds on Wild (2011).

Denote byMi(t) the random number of patches in the population with i ∈ I = {1, 2, ..., N}

mutants at demographic time t, and let M(t) = (M1(t), . . . ,MN(t)) be the associated ran-

dom vector. Starting with a single initial mutant in the focal patch at time t = 0, i.e.,

M(0) = (1, 0, . . . , 0), we are interested in finding an operational necessary and sufficient

condition for the mutant type to go extinct in finite time with probability one; formally, a

condition for Pr [M(t) = 0 for some t ∈ N |M(0) = (1, 0, . . . , 0)] = 1. To that end, we first

note that our assumption that there is an infinite number of islands implies that the stochas-

tic process {M(t)}t∈N is a multi-type branching process (Wild, 2011), which is equivalent to

assuming that only residents immigrate to the focal patch when the mutant is globally rare.

Such a process can be summarized by a matrix A(τ, θ) whose (i, j) entry is the expected num-

ber of patches with i ∈ I mutants (of type τ) that are produced over one demographic time

period by the focal patch when this has j ∈ I mutants and when the population is otherwise

monomorphic for type θ. It follows from standard results on multi-type branching processes

(Karlin and Taylor, 1975, p. 412) that Pr [M(t) = 0 for some t |M(0) = (1, 0, . . . , 0)] = 1

if and only if the leading eigenvalue of A(τ, θ) is less than or equal to 1, i.e., if, and only

if ρ(A(τ, θ)) ≤ 1 where ρ(A(τ, θ)) denotes the spectral radius of A(τ, θ). It thus remains

to (a) find an expression for A(τ, θ) under our biological assumptions, and (b) show that

ρ(A(τ, θ)) ≤ 1 is equivalent to W (τ, θ) ≤ W (θ, θ).

Following our life-cycle assumptions, one can write

A(τ, θ) = Q(τ, θ) + E(τ, θ), (A-1)

where Q(τ, θ) is the matrix for which the component in row i and column j is the probability
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that the focal patch with j ∈ I mutants turns into a patch with i ∈ I mutants, and where

the transition probabilities are independent of the state M. Thus, Q(τ, θ) is the transient

matrix of the Markov chain, describing the subpopulation of mutants in the focal patch, with

state space {0, 1, 2, ..., N}. This Markov chain has the local extinction of the mutant type

as its unique absorbing state. We also have that,

E(τ, θ) =


ε1(τ, θ) ε2(τ, θ) . . . εN(τ, θ)

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

 , (A-2)

where εj(τ, θ) is the expected number of patches with one mutant that are produced by

mutant emigration from the focal patch, when the focal patch is in state j. All other entries

of matrix E(τ, θ) equal zero since when the number of islands is infinite, the probability that

two or more offspring from the same patch settle on the same island through dispersal is

zero. To see this, note that if the number of patches would be finite, then the probability

that a given breeding spot on a given patch is settled through dispersal by an offspring

of an individual from the focal patch is of order O(m/(ND)), where D is the number of

patches. The probability that two or more such offspring settle in the same patch is of

order O(m2/(ND)2) or smaller. Summing over all patches, the probability that two or more

offspring from the same individual settle on the same patch through dispersal is thus at most

of order m2/(N2D), and hence goes to zero as D → ∞. Therefore, the focal patch with j

mutants can only turn a patch with zero mutants into one with a single mutant.

Since

ρ(A(τ, θ)) ≤ 1 ⇐⇒ ρ(A(τ, θ)− I) ≤ 0. (A-3)

Using eq. (A-1), we have

ρ(A(τ, θ)− I) ≤ 0 ⇐⇒ ρ (E(τ, θ)− (I−Q(τ, θ))) ≤ 0. (A-4)

The matrix I−Q(τ, θ) is non-negative, since all components of Q are between zero and one.

In addition, A(τ, θ) − I has non-negative off-diagonal entries, and E(τ, θ) is non-negative.

Therefore, we can apply the first-generation-theorem (Thieme, 2009, Theorem 2.1) to obtain
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the equivalence

ρ(A(τ, θ)− I) ≤ 0 ⇐⇒ ρ
(
E(τ, θ)(I−Q(τ, θ))−1

)
≤ 1. (A-5)

By construction of E(τ, θ), the matrix E(τ, θ)(I − Q(τ, θ))−1 is upper triangular, and

all its diagonal elements except the first are zero. Since the eigenvalues of a triangular

matrix equal its diagonal entries, the leading eigenvalue of E(τ, θ)(I −Q(τ, θ))−1 equals its

first diagonal element. This is given by
∑N

k=1 εk(τ, θ)tk(τ, θ), where tk(τ, θ) is the expected

number of time steps that a patch that started with a single mutant spends with k mutants

(owing to the fact that the component (i, j) of matrix (I−Q(τ, θ))−1 corresponds to the

expected sojourn time of the Markov chain in state i when initially starting the process in

state j and excluding mutant immigration, Grinstead and Snell, 1997). Therefore,

ρ(A(τ, θ)) ≤ 1 ⇐⇒
N∑
k=1

εk(τ, θ)tk(τ, θ) ≤ 1. (A-6)

We now proceed to re-write condition (A-6) in terms of fitness. The expected number

of descendants of a single mutant (τ) individual in the focal patch in state k ∈ K (that is,

the personal fitness of a mutant in a patch with k mutants), conditional on the rest of the

population being monomorphic for θ, can be written as

wk(τ, θ) = φk(τ, θ) + εk(τ, θ)/k, (A-7)

where φk(τ, θ) denotes the expected number of descendants in the focal patch produced

through philopatry by a single mutant in the focal patch in state k ∈ K, conditional on

the rest of the population being monomorphic for θ, while εk(τ, θ)/k is the correspond-

ing expected number of emigrant offspring produced by a single mutant. Then, because∑N
k=1 ktk(τ, θ) counts the total local number of mutants during the lifespan of the lineage,

and this is equal to 1 +
∑N

k=1 φk(τ, θ)ktk(τ, θ) (the founding mutant plus the total number

of local descendants, Mullon and Lehmann, 2014), we have, from eq. (A-7), the equality

N∑
k=1

εk(τ, θ)tk(τ, θ)− 1 =
N∑
k=1

[wk(τ, θ)− 1] ktk(τ, θ). (A-8)

Setting

Λ(τ, θ) =
N∑
k=1

[wk(τ, θ)− 1] ktk(τ, θ), (A-9)
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we have

ρ(A(τ, θ)) ≤ 1 ⇐⇒ Λ(τ, θ) ≤ 0. (A-10)

Since we assume no class structure (no roles) within patches, individuals of a given type

are exchangeable within patches and types can be allocated randomly to neighbors of a focal

individual. Because of the symmetry of the personal fitness function w(θi,θ−i, 1θ), we can

write

wk(τ, θ) =
∑

θ−i∈Sk−1(τ,θ)

(
N − 1

k − 1

)−1
w(τ,θ−i, 1θ), (A-11)

where Sk−1 is the set of all subsets of {τ, θ}N−1 with exactly k − 1 individuals having type

τ . Substituting into eq. A-9, and recalling the notation t̄(θ′, θ) =
∑N

k=1 ktk (θ′, θ), we have

Λ(τ, θ) =
N∑
k=1

 ∑
θ−i∈Sk−1(τ,θ)

w(τ,θ−i, 1θ)(
N−1
k−1

) − 1

 ktk(τ, θ)
=

N∑
k=1

∑
θ−i∈Sk−1(τ,θ)

[
w(τ,θ−i, 1θ)

ktk(τ, θ)(
N−1
k−1

) ]− N∑
k=1

ktk(τ, θ)

= t̄(τ, θ)

 N∑
k=1

∑
θ−i∈Sk−1(τ,θ)

w(τ,θ−i, 1θ)qk(τ, θ)− 1

 . (A-12)

Using (6), we finally obtain

Λ(τ, θ) = t̄(τ, θ) [W (τ, θ)− 1] . (A-13)

Since W (θ, θ) = 1, and since t̄(τ, θ) ≥ 1, it follows that

Λ(τ, θ) ≤ 0 ⇐⇒ W (τ, θ) ≤ W (θ, θ). (A-14)

Result 2

As noted in the main text, Result 1 implies that for x to be uninvadable it must be that,

given x, y = x is a local maximum of

W (y, x) =
N∑
k=1

∑
x−i∈Sk−1(y,x)

qk(y, x)w(y,x−i, 1x). (A-15)
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The first step of the proof consists in showing that the expression for ∂W (y, x)/∂y|y=x in (20)

obtains. We begin by noting that thanks to the permutation invariance of w with respect

to the components of x−i, for any x−i ∈ Sk−1 (y, x) we can write x−i =
(
y(k−1),x(N−k)),

where y(k−1) is the (k − 1)-dimensional vector whose components all equal y, and x(N−k) is

the (N − k)-dimensional vector whose components all equal x. By a slight abuse of notation,

we drop the parentheses around y(k−1),x(N−k), and write

w(y,x−i, 1x) = w
(
y,y(k−1),x(N−k), 1x

)
. (A-16)

Using this notation,

W (y, x) =
N∑
k=1

(
N − 1

k − 1

)
qk (y, x)w

(
y,y(k−1),x(N−k), 1x

)
. (A-17)

Writing wj for the partial derivative of w with respect to its j-th argument, where j =

1, ..., N , we have

∂W (y, x)

∂y
=

N∑
k=1

[(
N − 1

k − 1

)
∂qk(y, x)

∂y
w
(
y,y(k−1),x(N−k), 1x

)]
+

N∑
k=1

[(
N − 1

k − 1

)
qk(y, x)

k∑
j=1

wj
(
y,y(k−1),x(N−k), 1x

)]
. (A-18)

Noting that for y = x, w
(
y,y(k−1),x(N−k), 1x

)
= w

(
x,x(N−1), 1x

)
, which is independent

of k so that it can be factored out in the first term, and using the definition of pk(y, x), we

obtain

∂W (y, x)

∂y

∣∣∣∣
y=x

= w
(
x,x(N−1), 1x

) N∑
k=1

[
∂pk(y, x)

∂y

∣∣∣∣
y=x

]
+

N∑
k=1

[
pk(y, x)

k∑
j=1

wj
(
y,y(k−1),x(N−k), 1x

)]∣∣∣∣∣
y=x

. (A-19)

This expression can be further simplified by noting that

N∑
k=1

[
∂pk(y, x)

∂y

∣∣∣∣
y=x

]
=
∂
[∑N

k=1 pk(y, x)
]

∂y

∣∣∣∣∣∣
y=x

=
∂

∂y
(1)

∣∣∣∣
y=x

= 0. (A-20)

Hence,

∂W (y, x)

∂y

∣∣∣∣
y=x

=
N∑
k=1

[
pk(y, x)

k∑
j=1

wj
(
y,y(k−1),x(N−k), 1x

)]∣∣∣∣∣
y=x

. (A-21)
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Permutation invariance further implies that for any j ≥ 2, wj
(
x,x(N−1), 1x

)
= wN

(
x,x(N−1), 1x

)
(it’s as if the individual whose marginal type change is under consideration were systemat-

ically labeled to appear as the last component in the vector x(N−1)). Noticing also that∑N
k=1

[
pk(y, x)w1

(
y,y(k−1),x(N−k), 1x

)]∣∣
y=x

= w1

(
x,x(N−1), 1x

)
, we can write:

∂W (y, x)

∂y

∣∣∣∣
y=x

= w1

(
x,x(N−1), 1x

)
+

N∑
k=2

[
pk(y, x)

k∑
j=2

wj
(
y,y(k−1),x(N−k), 1x

)]∣∣∣∣∣
y=x

= w1

(
x,x(N−1), 1x

)
+

N∑
k=2

[
pk(x, x) (k − 1)wN

(
x,x(N−1), 1x

)]
= w1

(
x,x(N−1), 1x

)
+

(N − 1)wN
(
x,x(N−1), 1x

) N∑
k=2

[
(k − 1) pk(x, x)

(N − 1)

]
= w1

(
x,x(N−1), 1x

)
+ r(x, x)(N − 1)wN

(
x,x(N−1), 1x

)
, (A-22)

which is the expression provided in eq. 20.

Turning now to the goal functions, we start with the uA function defined in eq. 16 of

the main text. A necessary condition for a strategy x to be a symmetric Nash equilibrium

strategy of GA = (N, X, uA) is that, if all the other players except player i use strategy x,

strategy x satisfy the first-order condition for a local maximum for individual i:

∂uA(xi,x
(N−1), φ)

∂xi

∣∣∣∣
xi=x

= 0. (A-23)

Note that in the second term in eq. 16, xi appears exactly once in x−j, for each j. By

permutation invariance, we can without loss of generality assume that xi appears as the last

component in each x−j, so that, for each j, the partial derivative of w(xj,x−j, φ) with respect

to xi writes wN(xj,x−j, φ). Moreover, since x̄ = x if all other individuals uses strategy x,

we immediately obtain

∂uA(xi,x
(N−1), φ)

∂xi

∣∣∣∣
xi=x

= w1(x,x
(N−1), 1x) + r(x, x) (N − 1)wN

(
x,x(N−1), 1x

)
, (A-24)

an expression which coincides with eq. 20.

Next, we turn to the goal function uB defined in eq. 18 of the main text. A necessary

condition for a strategy x to be a symmetric Nash equilibrium strategy of GB = (N, X, uB)
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is that, if all the other players except player i use strategy x, i.e., if x−i = x(N−1), strategy

x satisfy the first-order condition for a local maximum for individual i:

∂uB(xi,x
(N−1), φ)

∂xi

∣∣∣∣
xi=x

= 0. (A-25)

Permutation invariance implies

uB(xi,x
(N−1), φ) =

N∑
k=1

qk(x̄, x̄)

(
N − 1

k − 1

)
w
(
xi,x

(k−1)
i ,x(N−k), φ

)
. (A-26)

Supposing now that everyone in the population except individual i uses strategy x, and

applying observations made earlier in this proof, we obtain

∂uB
(
xi,x

(N−1), φ
)

∂xi

∣∣∣∣∣
xi=x

=

[
N∑
k=1

qk(x, x)

(
N − 1

k − 1

) k∑
j=1

wj

(
xi,x

(k−1)
i ,x(N−k), φ

)]∣∣∣∣∣
xi=x

= w1

(
x,x(N−1), 1x

)
+ (N − 1)wN

(
x,x(N−1), 1x

) N∑
k=2

(k − 1) pk(x, x)

(N − 1)

= w1

(
x,x(N−1), 1x

)
+ r(x, x)(N − 1)wN

(
x,x(N−1), 1x

)
, (A-27)

which is an expression which coincides with the one provided in eq. 20.

Result 3

Suppose that XD = {x}, for some x ∈ X. We have

∂2W (y, x)

∂y2
=

N∑
k=1

[(
N − 1

k − 1

)
∂2qk(y, x)

∂y2
w
(
y,y(k−1),x(N−k), 1x

)]
+

2
N∑
k=1

[(
N − 1

k − 1

)
∂qk(y, x)

∂y

k∑
j=1

wj
(
y,y(k−1),x(N−k), 1x

)]
+

N∑
k=1

[(
N − 1

k − 1

)
qk(y, x)

k∑
j=1

k∑
`=1

wj`
(
y,y(k−1),x(N−k), 1x

)]
. (A-28)

As noted above, we need to evaluate this expression at y = x. Since w
(
y,y(k−1),x(N−k), 1x

)∣∣
y=x

=

w
(
x,x(N−1), 1x

)
, which is independent of k, and given the definition of qk(y, x), when evalu-
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ated at y = x, the first line in eq. A-28 may be written as

w
(
x,x(N−1), 1x

) N∑
k=1

∂2pk(y, x)

∂y2

∣∣∣∣
y=x

= w
(
x,x(N−1), 1x

) ∂2
∂y2

N∑
k=1

pk(y, x)|y=x

= w
(
x,x(N−1), 1x

) ∂2
∂y2

(1) = 0. (A-29)

Next, and disregarding the constant 2, the second line in (eq. A-28) may be rewritten as

follows:

N∑
k=1

[(
N − 1

k − 1

)
∂qk(y, x)

∂y
w1

(
y,y(k−1),x(N−k), 1x

)]∣∣∣∣∣
y=x

+

N∑
k=2

[(
N − 1

k − 1

)
∂qk(y, x)

∂y

k∑
j=2

wj
(
y,y(k−1),x(N−k), 1x

)]∣∣∣∣∣
y=x

= w1

(
y,y(k−1),x(N−k), 1x

) ∂
∂y

N∑
k=1

pk(y, x)

∣∣∣∣∣
y=x

+

+
N∑
k=2

[(
N − 1

k − 1

)
∂qk(y, x)

∂y
(k − 1)wN

(
x,x(N−1), 1x

)]∣∣∣∣
y=x

. (A-30)

The first term on the right-hand side of this equality equals zero (see eq. A-20). Turning

now to the second term, by factoring out wN
(
x,x(N−1), 1x

)
, by multiplying and dividing by

(N − 1), and by using the definition of qk, this term writes

(N − 1)wN
(
x,x(N−1), 1x

) N∑
k=2

[
∂pk(y, x)

∂y

(k − 1)

(N − 1)

]∣∣∣∣
y=x

= (N − 1)wN
(
x,x(N−1), 1x

) ∂
∂y

N∑
k=2

[
(k − 1) pk(y, x)

(N − 1)

]∣∣∣∣∣
y=x

= (N − 1)wN
(
x,x(N−1), 1x

)
r1(y, x)|y=x . (A-31)

Finally, we proceed to rewriting the third line in the original expression (eq. A-28). Using
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permutation invariance, we obtain the following expression:

w11

(
x,x(N−1), 1x

)
+

(N − 1)w1N

(
x,x(N−1), 1x

) N∑
k=1

[
(k − 1) pk(y, x)

(N − 1)

]∣∣∣∣∣
y=x

+

(N − 1)wN1

(
x,x(N−1), 1x

) N∑
k=1

[
(k − 1) pk(y, x)

(N − 1)

]∣∣∣∣∣
y=x

+

(N − 1)wNN
(
x,x(N−1), 1x

) N∑
k=1

[
(k − 1) pk(y, x)

(N − 1)

]∣∣∣∣∣
y=x

+

(N − 2) (N − 1)w2N

(
x,x(N−1), 1x

) N∑
k=1

[
(k − 2) (k − 1) pk(y, x)

(N − 2) (N − 1)

]∣∣∣∣∣
y=x

. (A-32)

Using the coefficient of pairwise relatedness, r(y, x), as well as the coefficient of triplet

relatedness,

r̃(y, x) =
N∑
k=1

(k − 2)(k − 1)

(N − 2)(N − 1)
pk(y, x), (A-33)

and recalling that w1N = wN1, the third line expression in eq. A-28 may thus be written:

w11

(
x,x(N−1), 1x

)
+ 2 (N − 1)w1N

(
x,x(N−1), 1x

)
r(x, x)+

(N − 1)wNN
(
x,x(N−1), 1x

)
r(x, x)+

(N − 2) (N − 1)w2N

(
x,x(N−1), 1x

)
r̃(x, x). (A-34)

Collecting the expressions for the second and third lines in eq. A-28 (respectively in

eq. A-31 and eq. A-34), and writing r1 (x, x) for r1 (y, x)|y=x, the expression in eq. A-28

writes:

∂2W (y, x)

∂y2

∣∣∣∣
y=x

= w11

(
x,x(N−1), 1x

)
+ r(x, x) (N − 1)wNN

(
x,x(N−1), 1x

)
+

r(x, x)2 (N − 1)w1N

(
x,x(N−1), 1x

)
+

r̃(x, x) (N − 2) (N − 1)w2N

(
x,x(N−1), 1x

)
+

r1(x, x)2 (N − 1)wN
(
x,x(N−1), 1x

)
. (A-35)

We now turn to the goal function uA (eq. 16). By Result 2, and given that XD is

a singleton, XD = {x}, a necessary condition for x to be a symmetric Nash equilibrium
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strategy in the population game GA = (N, X, uA) is ∂2uA(xi,x−i, φ)/∂x2i |xi=x ≤ 0, and a

sufficient condition is that this inequality hold strictly. By permutation invariance, we can

without loss of generality assume that xi appears as the last component in each x−j in the

expression for uA (see eq. 16), so that, for each j, the partial derivative of w(xj,x−j, φ) with

respect to xi writes wN(xj,x−j, φ), and the second-order partial derivative with respect to

xi writes wNN(xj,x−j, φ). Moreover, since x̄ = x if all other individuals use strategy x in

eq. 16, we immediately obtain

∂2uA(xi,x−i, φ)

∂x2i

∣∣∣∣
xi=x

= w11

(
x,x(N−1), 1x

)
+ r(x, x) (N − 1)wNN

(
x,x(N−1), 1x

)
. (A-36)

Suppose now that x ∈ XU; then ∂2W (y, x)/∂y2|y=x ≤ 0. By comparing eq. A-35 and

eq. A-36, it immediately follows that if the sum of the three last terms in eq. A-35 is strictly

positive, ∂2uA(xi,x−i, φ)/∂x2i |xi=x < 0, in which case x ∈ XE(uA). The conditions stated

in part (a) of the result are sufficient for the sum of the three last terms in eq. A-35 to be

strictly positive.

Suppose now that x ∈ XE(uA); then ∂2uA(xi,x−i, φ)/∂x2i |xi=x ≤ 0. By comparing eq. A-

35 and eq. A-36, it immediately follows that if the sum of the three last terms in eq. A-35

is strictly negative, ∂2W (y, x)/∂y2|y=x < 0, in which case x ∈ XU. The conditions stated

in part (b) of the result are sufficient for the sum of the three last terms in eq. A-35 to be

strictly negative.

Finally, if the sum of the three last terms in eq. A-35 equals zero,

∂2W (y, x)

∂y2

∣∣∣∣
y=x

=
∂2uA (xi,x−i, φ)

∂x2i

∣∣∣∣
xi=x

, (A-37)

in which case XE(uA) = XU. The conditions stated in part (c) of the result are sufficient for

the sum of the three last terms in eq. A-35 to equal zero.

Result 4

The proof is qualitatively similar to the previous one. By Result 2, and given that XD is

a singleton, XD = {x}, a necessary condition for x to be a symmetric Nash equilibrium
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strategy in the population game GB = (N, X, uB) is ∂2uB(xi,x−i, φ)/∂x2i |xi=x ≤ 0, and a

sufficient condition is that this inequality hold strictly. By permutation invariance, we can

without loss of generality assume that xi appears as the last component in each x−j in the

expression for uB (see eq. 18), so that, for each j, the partial derivative of w(xj,x−j, φ) with

respect to xi writes wN(xj,x−j, φ), and the second-order partial derivative with respect to

xi writes wNN(xj,x−j, φ). Moreover, since x̄ = x if all other individuals use strategy x, we

immediately obtain

∂2uB(xi,x−i, φ)

∂x2i
= w11

(
x,x(N−1), 1x

)
+ r(x, x) (N − 1)wNN

(
x,x(N−1), 1x

)
+

r(x, x)2 (N − 1)w1N

(
x,x(N−1), 1x

)
+

r̃(x, x)(N − 2)(N − 1)w2N

(
x,x(N−1), 1x

)
. (A-38)

Suppose now that x ∈ XU; then ∂2W (y, x)/∂y2|y=x ≤ 0. By comparing eq. A-35 and

eq. A-38, it immediately follows that if the last term in eq. A-35 is strictly positive, i.e., if

the condition stated in part (a) of the result is satisfied, ∂2uB(xi,x−i, φ)/∂x2i |xi=x < 0, in

which case x ∈ XE (uB).

Suppose now that x ∈ XE (uB); then ∂2uB(xi,x−i, φ)/∂x2i |xi=x ≤ 0. By comparing eq. A-

35 and eq. A-38, it immediately follows that if the last term in eq. A-35 is strictly negative,

i.e., if the condition stated in part (b) of the result is satisfied, ∂2W (y, x)/∂y2|y=x < 0, in

which case x ∈ XU.

Finally, if the last term in eq. A-35 equals zero, i.e., if the condition stated in part

(c) of the result is satisfied, ∂2W (y, x)/∂y2|y=x = ∂2uB (xi,x−i, φ) /∂x2i |xi=x, in which case

XE (uB) = XU.

Result 5

In order to prove this result, we start by evaluating individual fitness under weak selection.

By using a first-order Taylor expansion of the fitness of a focal individual i in a focal patch,
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with respect to δ and evaluated at δ = 0, we can write

w(θi,θ−i, 1θ) = 1 + δ
[
af

(
π(θi,θ−i, 1θ)− π(θ(N), 1θ)

)
−an

∑
j 6=i

(
π(θj,θ−j, 1θ)− π(θ(N), 1θ)

N − 1

)]
+O(δ2), (A-39)

where af and an are coefficients that depend on structural demographic parameters, such

as patch size and migration rate. This expansion for fitness follows from four facts about

w(θi,θ−i, 1θ): (i) to the first order in δ, fitness is necessarily an affine (linear plus constant)

function in the payoff of each individual in the population; (ii) each individual j ∈ I with

j 6= i has the same effect on the fitness of the focal individual i (permutation invariance

of payoff effects of neighbors); (iii) each individual from each patch different from the focal

patch has the same effect on the fitness of focal i (permutation invariance of payoff effects of

individuals in different patches when they all carry x); and (iv) total selective effects (here

total effects of payoff on fitness) must sum to zero in a monomorphic population, as the

expected change in type number or frequency is necessarily nil (Lehmann and Rousset, 2009,

p. 38).

Owing to the assumption (introduced in section 2.3) that the fitness of an individual is

monotonic increasing in its payoff and bounded by it, we have 0 < af ≤ 1. Owing to the

assumption that the fitness of an individual is monotonic decreasing in the payoff of its patch

neighbors, and that the negative effect on fitness of a single patch neighbor having its payoff

varied is not larger than the positive effect of the focal having its own payoff varied, we have

0 ≤ an ≤ af. Letting

λ = an/af, (A-40)

we conclude that 0 ≤ λ ≤ 1. Factoring out af > 0 from eq. A-39, we obtain:

w(θi,θ−i, 1θ) = 1+δaf

[
π(θi,θ−i, 1θ)− λ

∑
j 6=i

π(θj,θ−j, 1θ)

N − 1
− (1− λ)π(θ,θ(N−1), 1θ)

]
+O(δ2).

(A-41)

This shows that the coefficient λ quantifies the proportion of density-dependent competition

that is local, among patch members, and thus defines the spatial scale of density-dependent

competition (Frank, 1998, p. 115 ).
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As an illustration, in the Moran island model, and thus using the fitness function for the

main text (eq. 1) along with the fecundity function (eq. 25) (our corresponding risk-factor),

a Taylor expansion and subsequent rearrangement yields

λ =


(N−1)(1−m)2

N−(1−m)2
for fecundity effects

1 for survival effects.
(A-42)

We now note that when types only affect material payoff, vital rates (fecundity and

survival) are the same for all types when δ = 0. Hence, also fitness is then type independent

and thus equal to 1 (set δ = 0 in eq. 1 when fecundity is given by eq. 25). All these quantities

are then exchangeable variables between individuals; the population is monomorphic and the

resulting evolutionary process is neutral (Crow and Kimura, 1970; Gillespie, 2004; Ewens,

2004). Under this neutral process, that is independent of resident type θ, the experienced

lineage-size distribution (eq. 3) takes a value determined solely by local sampling drift (see

e.g., in Crow and Kimura, 1970; Ewens, 2004; Rousset, 2004 for an explicit example). We

denote by q◦k the associated type-profile distribution, where the superscript ◦ signifies that

the quantity is evaluated at the neutral process when δ = 0. Hence, we can write

qk(θ
′, θ) = q◦k +O(δ), (A-43)

where O(δ) is the deviation (relative to the neutral process) of the type profile distribution

induced by selection (i.e., δ > 0) that is at most of order δ.

From eq. A-39 and eq. A-43 we have

w(θi,θ−i, 1θ)qk(θ
′, θ) = qk(θ

′, θ)

+ δaf

[
π(θi,θ−i, 1θ)− λ

∑
j 6=i

π(θj,θ−j, 1θ)

N − 1
− (1− λ)π(θ,θ(N−1), 1θ)

]
q◦k +O(δ2). (A-44)

Substituting this into lineage fitness (eq. 6) produces

W (θ′, θ) =
N∑
k=1

∑
θ−i∈Sk−1

w(θi,θ−i, 1θ)qk(θ
′, θ) = 1

+δaf

N∑
k=1

∑
θ−i∈Sk−1

[
π(θi,θ−i, 1θ)− λ

∑
j 6=i

π(θj,θ−j, 1θ)

N − 1
− (1− λ)π(θ,θ(N−1), 1θ)

]
q◦k+O(δ2).

(A-45)
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Hence, to the first order in selection intensity δ, the expectation of fitness is taken over the

neutral experienced lineage-size distribution, which is a common result of evolutionary dy-

namics that applies both to finite and infinite populations (Roze and Rousset, 2003; Rousset,

2004; Lehmann and Rousset, 2009; Lessard, 2009)

From the definition of Π in eq. 27 combined with eq. A-45, we can write lineage fitness

as

W (θ′, θ) = 1 + δaf

[
Π (θ′, θ)− (1− λ)π(θ,θ(N−1), 1θ)

]
+O(δ2), (A-46)

Neglecting higher order terms in δ in this equation allows us to write the condition for

uninvadability W (τ, θ) ≤ W (θ, θ) given in eq. 8 for weak selection as

Π(τ, θ) ≤ Π(θ, θ). (A-47)

Result 6

In order to save on notation in this proof, we let

πR(xi,x−i, φ) = π(xi,x−i, φ)− λ

N − 1

∑
j 6=i

π(xj,x−j, φ). (A-48)

From eq. A-47 a necessary and sufficient condition for x to be uninvadable under weak

selection is

x ∈ arg max
y∈X

Π(y, x), (A-49)

where

Π(y, x) =
N∑
k=1

∑
x−i∈Sk−1(y,x)

q◦k πR(y,x−i, φ). (A-50)

Thanks to the permutation invariance of π with respect to the components of x−i, for any

x−i ∈ Sk−1 (y, x) we can write x−i =
(
y(k−1),x(N−k)), where y(k−1) is the (k − 1)-dimensional

vector whose components all equal y, and x(N−k) is the (N − k)-dimensional vector whose

components all equal x. By a slight abuse of notation, we drop the parentheses around

y(k−1),x(N−k), and write:

πR(y,x−i) = πR
(
y,y(k−1),x(N−k)) . (A-51)
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Using this notation,

Π(y, x) =
N∑
k=1

(
N − 1

k − 1

)
q◦k πR

(
y,y(k−1),x(N−k)) . (A-52)

Hence, (A-49) writes

x ∈ arg max
y∈X

N∑
k=1

(
N − 1

k − 1

)
q◦k πR

(
y,y(k−1),x(N−k)) . (A-53)

We turn now to the goal function uC defined in eq. 30, which, using eq. A-48, can be

written

uC(xi,x−i, φ) =
N∑
k=1

∑
x−i∈Pik

q◦k πR(xi,x−i). (A-54)

A strategy x is a symmetric Nash equilibrium strategy of GC = (N, X, uC) if and only if

it is optimal for each individual i to play x if all the other players also play x. Thus, and

noting that if all the other players except player i use strategy x we can write x−i = x(N−1),

the necessary and sufficient condition for x to be a symmetric Nash equilibrium strategy of

GC = (N, X, uC) writes:

x ∈ arg max
xi∈X

uC
(
xi,x

(N−1), 1x
)
. (A-55)

By permutation invariance,

uC
(
xi,x

(N−1), 1x
)

=
N∑
k=1

(
N − 1

k − 1

)
q◦k πR

(
xi,x

(k−1)
i ,x(N−k)

)
(A-56)

so eq. A-55 is identical with eq. A-53, which establishes Result 6.

Appendix B: Moran process calculations

Sojourn times

We here evaluate the different results for our examples based on the Moran process (along

similar lines as in Mullon and Lehmann, 2014). The key is to obtain an expression for ti(τ, θ),

which is obtained from the (transient) transition matrix Q(τ, θ) (see eq. A-1) with element

qij(τ, θ) giving the probability that the focal patch with j ∈ I = {1, 2, ..., N} mutants turns
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into a patch. Since for a Moran process only one individual in a patch can be replaced per

unit of demographic time, the Markov chain describing local lineage is a birth-death process

(e.g, Karlin and Taylor, 1975), whose transition probabilities for transient states are

qij(τ, θ) =



bj(τ, θ), if i = j + 1 (“birth” of a mutant)

µj(τ, θ), if i = j − 1 (“death” of a mutant)

1− (bj(τ, θ) + µj(τ, θ)) if j = i (“no change”)

0 otherwise.

(B-1)

Standard results on birth-death processes (e.g., Ewens, 2004, eq. 2.160) show that when the

initial state of the chain is one mutant, we have

ti(τ, θ) =
1

µ1(τ, θ)

i−1∏
k=1

bk(τ, θ)

µk+1(τ, θ)
. (B-2)

In order to evaluate the bk’s and µk’s explicitly in terms of model parameter, we start to

denote by fk(θ
′, θ) and dk(θ

′, θ), respectively, the fecundity and risk-factor of a single type

θ′ ∈ {τ, θ} individual when there are exactly k mutants among its patch neighbors. Then,

for the Moran process (1) we have:

bk(τ, θ) =
(N − k)dk(θ, θ)

kdk−1(τ, θ) + (N − k)dk(θ, θ)

[
(1−m)kfk−1(τ, θ)

(1−m) [kfk−1(τ, θ) + (N − k)fk(θ, θ)] +mNf0(θ, θ)

]
,

(B-3)

where the first factor is the probability that a resident is chosen to die and thus vacates a

breeding spot and the second factor (term in square brackets) is the probability that this

vacated breeding spot is occupied by a mutant. Hence, we have

µk(τ, θ) =

[
1− (N − k)dk(θ, θ)

kdk(τ, θ) + (N − k)dk(θ, θ)

]
[
1− (1−m)kfk(τ, θ)

(1−m) [kfk(τ, θ) + (N − k)fk(θ, θ)] +mNf0(θ, θ)

]
. (B-4)

It now remains to express the fk’s and dk’s in terms of the fecundity and risk-factor

functions f(θi,θ−i, φ) and d(θi,θ−i, φ). Owing to permutation invariance (and recalling the
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argument leading to eq.A-11), we have

fk(θ
′, θ) =

∑
θ−i∈Sk(τ,θ)

(
N − 1

k

)−1
f(θ′,θ−i, 1θ), for k = 0, 2, ..., N − 1

dk(θ
′, θ) =

∑
θ−i∈Sk(τ,θ)

(
N − 1

k

)−1
d(θ′,θ−i, 1θ), for k = 0, 2, ..., N − 1. (B-5)

On substitution of eqs. B-2–B-4 into lineage fitness (eq. 6) along with the fitness function

of the Moran process (eq. 1), we have all the elements to compute lineage fitness exactly

under the Moran process for games of arbitrary complexity.

Neutral distribution

Setting τ = θ in eqs. B-2–B-4, we can compute the full neutral distribution of types (eq. 3),

which gives

pk(θ, θ) =
kmN

m+N − 1

k−1∏
i=1

(1−m)i(N − i)
(i+ 1)(N − (i+ 1)(1−m))

, (B-6)

and on substitution into eq. 4 (by setting θ′ = θ) produces eq. 5. The same result can be

obtained by using a standard (and simpler) identity-by-descent argument (e.g., Karlin, 1968;

Rousset, 2004), implying that relatedness satisfies r(θ, θ) = (1−m) (1/N + [(N − 1)/N ]r(θ, θ)),

whose solution results again in eq. 5.

Cournot game example

We here evaluate the second order conditions for the Cournot game (eq. 23) under a Moran

process when N = 2 and with constant death rate. Substituting the functionals of the

Moran process,eq. 1 and eqs. B-2–B-5 into lineage fitness (eq. 6) along with the game payoff

function eq. 23, allows us to readily compute (using Wolfram Mathematica 10) the second

order condition (eq. 22), which can be simplified to

∂2W (y, x)

∂y2

∣∣∣∣
y=x

= − m [β(1−m)(2−m) + γ(3−m)]A

(1 +m) (A+ α2(3−m) [β(1−m) + γ(3−m)])
, (B-7)

where A = 4 [β(2−m) + γ(3−m)]2 ≥ 0.
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Substituting eq. 1 and eq. 23 into eq. A-36 yields

∂2uA
(
xi,x

(N−1), 1x
)

∂x2i

∣∣∣∣∣
xi=x

= −B
[
−2α2β2(1−m)3

+γ(3−m)
(
γ(3−m)2

(
α2 + 4γ

)
+ 4β2(2−m)2 + β(3−m)C

)]
, (B-8)

where

B =
4m [γ(3−m) + β(2−m)]2

(m+ 1) [(3−m) [γ(3−m) (α2 + 4γ) + βC] + 4β2(2−m)2]2
≥ 0, (B-9)

and C = 8γ(2−m) + α2(1−m) ≥ 0.
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Figure 1: Graphs of ∂2W (y, x)/∂y2|y=x=x∗ (as given by eq. B-7 in the Appendix) and

∂2uA
(
y,x(N−1), 1x

)
/∂y2

∣∣
y=x=x∗

(eq. B-8) as functions of migration m. These are thus the

second order conditions evaluated at x∗ (eq. 24) for the Cournot game (23) under a Moran

process when N = 2. The first row of panels is for α = β = 1, and γ = 1 (γ = 0.5) for the

blue (yellow) line. The second row of panels if for α = 1, β = 2, and γ = 0.01 (γ = 0.005) for

the blue (yellow) line. The third row of panels if for α = 1, β = −1, and γ = 0.5 (γ = 0.2)

for the blue (yellow) line.
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