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Although it is generally agreed that the arctic flora is among the youngest and least diverse 77 

on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand 78 

years (kyr) of arctic vegetation history, derived from the first large-scale ancient DNA 79 

metabarcoding study of circumpolar plant diversity. For this interval we additionally 80 

explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and 81 

diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr 82 

BP (before present). For much of the period investigated, arctic vegetation consisted of dry 83 

steppe tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the 84 

Last Glacial Maximum (25–15 kyr BP), diversity declined markedly, although forbs 85 

remained dominant. Much changed after 10 kyr BP, with the appearance of moist tundra 86 

dominated by woody plants and graminoids. Our analyses indicate that both graminoids 87 

and forbs would have featured in megafaunal diets. As such our findings question the 88 

predominance of a late Quaternary graminoid-dominated arctic “mammoth steppe”.   89 
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It can be argued that arctic vegetation during the proximal Quaternary (the last c. 50 kyr) is less 90 

well understood than the ecology and population dynamics of the mammals that consumed it, 91 

despite the overall uniformity and low floristic diversity of Arctic vegetation 1-2 Analyses of 92 

vegetation changes during this interval have been based mainly on fossil pollen. Although highly 93 

informative, records tend to be biased toward high pollen producers such as many graminoids 94 

(grasses, sedges, and rushes) and Artemisia, which can obscure the abundance of other forms 95 

such as many insect-pollinated forbs 1. Arctic pollen records are rarely comprehensively 96 

identified to species level, which underestimates actual diversity3. These problems are to some 97 

extent ameliorated by plant macrofossil studies (e.g.4), which may provide detailed records of 98 

local vegetation. However, macrofossil studies are far less common, have their own taxonomic 99 

constraints, and usually cannot provide quantitative estimates of abundance. 100 

In recent years, a complementary approach has emerged that utilizes plant and animal ancient 101 

DNA preserved in permafrost sediments 5. Such environmental DNA 11 does not derive primarily 102 

from pollen, bones, or teeth, but from above- and below-ground plant biomass, faeces, discarded 103 

cells and urine preserved in sediments 6-8. Like macrofossils, environmental DNA appears to be 104 

local in origin 9-12 and in principle the survival of a few fragmented DNA molecules is sufficient 105 

for retrieval and taxonomic identification 13.  106 

Environmental DNA can supply the fraction of the plant community not readily identifiable by 107 

pollen analysis and, to some extent, macrofossils, particularly in vegetation dominated by non-108 

woody growth forms 6. For most plant groups, DNA permits identification at lower taxonomic 109 

levels than pollen14. Additionally, environmental DNA records have proven to reflect not only 110 

the qualitative but also the quantitative diversity of aboveground plant 12 and animal taxa 8, as 111 

determined from modern sub-surface soils.  112 

Leaching of DNA through successive stratigraphic zones may be an issue in temperate 113 

conditions 8,10 but not in permafrost 5 or in sediments that have only recently thawed 15. Re-114 

deposition of sediments and organics can confound results, which is also the case for pollen and 115 

macrofossils 6,16, but can be avoided and accounted for by careful site selection and by excluding 116 

rare DNA sequence reads 16. For Quaternary permafrost settings, at least, taphonomic bias due to 117 

differences in DNA survival across plant groups does not appear to be of concern (see Methods 118 



 7 

section 4.0 on taphonomy), as has been shown by a comparative permafrost ancient DNA study 119 

of plants and their associated fungi 17. 120 

Reconstruction of Arctic vegetation from permafrost samples 121 

We collected 242 sediment samples from 21 sites across the Arctic (Fig. 1, Extended Data Table 122 

1). Ages were determined by accelerator mass spectrometry radiocarbon (14C) dating, and are 123 

reported here in thousands of calibrated (calendar) years BP (Extended Data Figure 1, 124 

Supplementary Data 1). We sequenced the short P6 loop sequence of the trnL plastid region and 125 

a part of the ITS1 spacer region through metabarcoding (Methods section 3.0), generating a total 126 

of 14,601,839 trnL plant DNA sequence reads and 1,652,857 ITS reads. Reads were identified 127 

by comparison with (i) the arctic trnL taxonomic reference library 14, which we extended with 128 

ITS sequences for three families; (ii) a new north boreal trnL taxonomic reference library 129 

constructed by sequencing 1,332 modern plant samples representing 835 species; and (iii) 130 

GenBank, using the program ecoTag (Supplementary Data 2, Methods section 3.0). Basic 131 

statistics, in silico analyses, and additional experiments were carried out to check data reliability 132 

(Extended Data Figure 2, Extended Data Table 2). We grouped the identified molecular 133 

operational taxonomic units (MOTUs) into three distinct intervals (Fig. 2a): i) pre-LGM (50–25 134 

kyr BP), a period of fluctuating climate; (ii) LGM (25–15 kyr BP), a period of constantly cold 135 

and dry conditions; and (iii) post-LGM (15-0 kyr BP), the current interglacial, characterised by 136 

relatively higher temperatures 17.  137 

Shifts in plant composition and lower diversity during the LGM  138 

To address compositional changes in vegetation across space and time we used a generalised 139 

linear model and permutational multivariate analysis of variance (Permanova) (Supplementary 140 

Data 3, Methods section 5.0). We find that (i) the composition of plant MOTU assemblages 141 

differed significantly across the three intervals (pseudo-F = 6.77, p < 0.001, Extended Data 142 

Figure 3a-e), with pre-LGM and post-LGM plant assemblages differing the most (Extended Data 143 

Figure 3f); (ii) the greater the spatial distance separating a pair of samples within each time 144 

period, the less similar their composition (p < 0.001); and (iii) LGM assemblages were most 145 

homogeneous across space and post-LGM assemblages were most heterogeneous (Fig. 2). 146 
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LGM pollen spectra show high floristic richness compared to other intervals (e.g. 1). This is due 147 

to the limited occurrence of woody taxa with high pollen production, which in turn 148 

proportionately emphasizes lower pollen-producing taxa. In contrast, our DNA data reveal that 149 

plant diversity was lowest during LGM relative to other intervals (Fig. 2a). Plant assemblages 150 

became more similar to each other and the estimated number of MOTUs decreased from pre-151 

LGM to LGM (Fig. 2a), with many taxa absent that had previously been well represented (Fig. 152 

2b). In addition, while the LGM flora was largely a subset of the pre-LGM flora, the post-LGM 153 

flora was different (Fig. 2b), with pronounced geographic differentiation (Fig. 2c). 154 

Steppe-tundra  155 

Due to the low taxonomic resolution of previously published vegetation reconstructions, it 156 

remains undetermined whether arctic vegetation during the last part of the Quaternary was a 157 

form of tundra or more like steppe (e.g.18,19). Small-scale contemporary analogues range from 158 

low-productivity fellfields and cryoxeric steppe communities to more productive dry arctic 159 

steppe-to-tundra gradients. Our sediment DNA plant sequence data from ~50–12 kyr BP 160 

encompass taxa that typify both tundra and arctic steppe environments. These include taxa that 161 

are today typical of dry and/or disturbed sites (e.g. Bromus pumpillianus, Artemisia frigida, 162 

Plantago canescens, Anemone patens), saline soils (Puccinellia, Armeria), moist habitats 163 

(Caltha) and rocky or fellfield habitats (Dryas, Draba), plus a woody component dominated by 164 

Salix (Supplementary Data 4 and 5). A spatial and/or temporal mosaic of plant communities is 165 

indicated (Methods section 6.0), as is seen in floristically rich macrofossil records 4. The most 166 

common MOTU in the pre-LGM and LGM samples is Anthemidae Group 1 (Artemisia, 167 

Achillea, Chrysanthemum, Tanacetum), which underscores the importance in regional pollen 168 

assemblages of Asteraceae in general and Artemisia in particular 1. Equisetum and Eriophorum 169 

are important only in postglacial assemblages, reflecting moister soil conditions. Increases in 170 

aquatic taxa (Supplementary Data 4 and 5) also indicate a predominance of moister substrates in 171 

the later part of the post-LGM period. These findings indicate a shift from dry steppe-tundra to 172 

moist tundra in the early part of the post-LGM period—a change widely reported in other proxy 173 

studies. 174 
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Nematode assemblage composition is known to change significantly with vegetation cover 20 175 

moisture 21 and organic resource inputs 22. Therefore, to obtain a complementary proxy for 176 

vegetation cover and soil quality, we characterized the soil nematode fauna of contemporary 177 

mesic shrub tundra and subarctic steppe on well-drained loess soils in Yukon Territory, Canada 178 

(Fig. 1, Extended Data Table 3). The relative proportion of the nematode families 179 

Teratocephalidae and Cephalobidae varied among vegetation types (p < 0.001, nested ANOVA), 180 

and indicator species analysis 23 confirmed that Teratocephalidae (indicator value = 0.98, p = 181 

0.001) and Cephalobidae (indicator value = 0.98, p = 0.001) are very good indicators of tundra 182 

and steppe vegetation, respectively (Fig. 3). These findings are in agreement with previous 183 

studies restricted to subarctic Sweden 24,25 and alpine and subalpine habitats 26-27. We amplified 184 

short DNA sequences from these two taxa from 17 sediment samples analysed for plant DNA 185 

from Yukon and northeastern Siberia. We detected Cephalobidae DNA in almost all samples, 186 

while Teratocephalidae was detected at a higher frequency in samples younger than 10 kyr BP 187 

than in the pre-LGM and LGM samples (Extended Data Table 4). These results support our 188 

inferences from plant sequence data and indicate a transition from relatively dry tundra and 189 

steppe towards more moist tundra during the post-LGM interval. 190 

Forb dominance and megafaunal diets 191 

To assess structural and functional shifts in the plant assemblages, we investigated temporal 192 

changes in the relative abundance of different growth forms. Our DNA results show that pre-193 

LGM vegetation was dominated by forbs, the relative share of which increased during the LGM, 194 

whereas graminoids constituted less than 20% of the total read count (Fig. 4a). These results 195 

persisted when we corrected for observed modern representational bias 12 (Methods sections 4.0 196 

and 5.3). 197 

Continued forb dominance during the LGM implies that similar proportions of forbs and 198 

graminoids were maintained through this period, despite the significant decline in floristic 199 

diversity (Fig. 2a,b). Our findings contrast with pollen-based reconstructions, which have 200 

emphasized dominance of graminoids in the unglaciated Arctic and adjacent regions, particularly 201 

during the LGM, and exemplified by the widely-used term “mammoth-steppe” 19. Rather, our 202 

results show that vegetation was forb-dominated in both overall abundance of MOTUs and in 203 
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floristic richness (Fig. 4a,b, Extended Data Figure 3g,h), in agreement with macrofossil data that 204 

show a diversity of forbs of mixed ecological preference (e.g. 4).  205 

We explored whether forbs were prominent in habitats favoured by megafauna by analysing 25 206 

dated (47-20 kyr BP) sediment samples from Main River, Siberia, using trnL plastid plant and 207 

16S mtDNA mammal primers. We found that the mean proportion of forbs was higher in 208 

samples from which herbivorous megafaunal DNA had been retrieved (n = 18; e.g. woolly 209 

mammoth, woolly rhinoceros, horse, reindeer and elk) than in samples lacking such DNA (n = 7; 210 

Fig. 4c, Extended Data Table 5). Although suggestive of co-occurrence of megafauna in forb-211 

dominated settings, these results should be regarded as tentative, and further studies are needed 212 

to verify if this is indeed a general trend. 213 

We also investigated whether megafaunal diets revealed the level of forb dominance observed in 214 

permafrost sediment samples. Using standardised methods, we genetically characterised 215 

intestinal/stomach contents and coprolites recovered from 8 specimens of woolly mammoth, 216 

woolly rhinoceros, bison and horse from Siberia and Alaska, dated > 55–21 kyr BP (Extended 217 

Data Table 6, Methods sections 3.0 and 7.0). Although ingested plant remains are often difficult 218 

to identify morphologically, they can be accurately identified 28,29 and roughly quantified 30 using 219 

DNA. The majority of these samples are dominated by forbs, which comprise 0.63 ± 0.12 of the 220 

sequences, compared to 0.27 ± 0.16 expressing graminoid sequences (Fig. 4d, Supplementary 221 

Data 6). These results suggest that megafaunal species supplemented their diets with high-222 

protein forbs rather than specializing more or less exclusively on grasses.  223 

To confirm the reliability of our trnL approach for estimating herbivore diet, we analysed 50 224 

rumen samples of sheep-feed diets with varying proportions of forbs (white clover, Trifolium 225 

repens) and graminoids (ryegrass, Lolium perenne) (Methods section 5.4). As seen in Figure 4e, 226 

the Pearson correlation coefficient between the actual fraction of forbs in these diets and the 227 

proportion of forbs estimated with the DNA-based approach was highly significant (r2=0.75, p < 228 

10-15). 229 

Perspectives 230 
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Our observations of high forb abundance in the terminal Pleistocene may merely reflect 231 

vegetation response to glacial climates, but there are other possibilities 1. An abundant 232 

megafauna would have caused significant trampling 31, enhancing gap-based recruitment 32, 233 

which could favour forbs 33. Coupled with nitrogen input from wide-ranging herbivores34, forbs 234 

may out-compete grasses 35. Furthermore, a diet rich in forbs may help explain how numerous 235 

large animals were sustained; forbs may be more nutrient-rich (e.g. 35) and more easily digested 236 

36 than grasses. However, a feedback loop that maintained nutritious and productive forage and 237 

supported large mammalian populations in glacial climate regimes may have been impossible to 238 

maintain after deglaciation, as C:N ratios increased with global warming 37, and the potential 239 

breakdown of the megafauna-forb interaction would have been exacerbated by declining 240 

mammalian populations. In contemporary tundra and steppe (the latter often called grasslands), 241 

graminoids are generally perceived to be the dominant growth form in large herbivore habitats 242 

(e.g. 38,39). Our data, which unearth 50 kyr of arctic vegetation history, call this perception into 243 

question. 244 

Methods summary 245 

Plant fragments or soil matrix organics were 14C-dated using accelerator mass spectrometry and 246 

measured 1 ages were converted into calendar years 40. Permafrost sampling 5, DNA extraction 247 

11, PCR amplification 41 and taxon identification (e.g. 12) followed established procedures. Most 248 

vascular taxa are covered by 42, and nomenclature is provided accordingly; for the remaining 249 

taxa nomenclature follows 43. Dissimilarity between plant assemblages was quantified using 250 

pairwise Bray-Curtis distance 44. Variation in assemblage dissimilarity was decomposed using 251 

Permutational Multivariate Analysis of Variance (Permanova 45) and visualised using non-metric 252 

multidimensional scaling 46,47. We used a distance decay approach 49 and a generalized linear 253 

model to model variation in plant community assemblages over space and time. Growth form 254 

composition of communities was compiled from species trait databases 49. Differences in the trait 255 

composition of assemblages in adjacent climatic periods were compared to a null model 256 

assuming random assortment from the previous interval. Nematode faunas of 35 contemporary 257 

sediment samples were morphologically determined. Presence of two indicator families 258 

(Teratocephalidae for tundra and Cephalobidae for steppe) was genetically determined in 17 259 
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ancient sediment samples. Megafaunal DNA and faeces and gut content were determined 260 

genetically following established methods. For a detailed discussion, see Methods. 261 
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Figure legends 410 

Figure 1. Sample localities. A total of 242 permafrost samples were collected from 21 sites, 411 

shown by green dots. Eight ancient megafauna gut and coprolite samples (A–H) are shown by 412 

grey hollow circles, seven modern nematode localities by grey hollow triangles. 413 

Figure 2. Taxonomic diversity of arctic plant assemblages during the last 50 kyr. Taxon 414 

composition was estimated by high-throughput sequencing of DNA from 242 permafrost 415 

samples. A total of 154 molecular operational taxonomic units (MOTUs) were detected. a, Index 416 

of ambient temperature (continuous line; oxygen isotope concentration, GRIP50) and estimated 417 

MOTU number (horizontal bars; second-order jackknife), are shown for three palaeoclimatic 418 

periods: pre-LGM (> 25 kyr, n = 149), LGM (last glacial maximum; 25–15 kyr, n = 32) and 419 

post-LGM (< 15 kyr, n = 61). b, MOTU counts recorded uniquely in each palaeoclimatic period 420 

and shared among periods. c, Modelled decline in similarity (1-Bray-Curtis dissimilarity) 421 

between pairs of plant assemblages from the same palaeoclimatic period in relation to the spatial 422 

distance separating them. 423 

Figure 3. Proportional abundance of two families (Teratocephalidae - dark; Cephalobidae - 424 

light) among the total soil nematode community at contemporary tundra and steppe sites in 425 

Yukon, Canada. Letters a–g correspond to sample localities (Fig. 1). Median (central dot), 426 

quartile (box), maximum and minimum (whiskers) and outlying values (points) are shown. 427 

Figure 4. Plant growth form composition over time and across sample types, estimated by high-428 

throughput sequencing of DNA from 242 permafrost samples. a, Proportions of DNA reads 429 

corresponding to taxa exhibiting different growth forms, binned over 5 kyr time intervals. The 430 

analysis included all sediment samples except 21 Svalbard samples and three further samples 431 

where no growth form information was available. b, Number of MOTUs exhibiting different 432 

growth forms as a proportion of total MOTU richness in all informative samples for each 433 

palaeoclimatic period. c, The proportional abundance of forbs in samples from Main River, 434 

Siberia (dated 47,100–19,850 yr BP) where megafauna were or were not detected. d, Proportions 435 

of DNA reads corresponding to different growth forms in megafauna diet, determined from 436 

analysis of eight gut and coprolite samples from late Quaternary megafauna species (woolly 437 
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mammoth, woolly rhinoceros, bison and horse). Letters A–H correspond to the individual 438 

samples (Fig. 1). The 95.4% calibrated age range of each sample is shown; ‘> 55’ indicates that 439 

the sample was too old to provide a finite radiocarbon age. e, Reliability of the trnL approach for 440 

estimating forb and graminoid abundance in diet analyses. Sheep were fed with known amounts 441 

of forbs (Trifolium repens) and graminoids (Lolium perenne), and the rumen content analyzed 442 

using the same DNA-based approach as implemented above. Orange dots and lines represent the 443 

means and standard errors for diets containing different fractions of forbs. The grey line is a 444 

linear model fit. Numbers immediately below the columns in a, b, and c indicate sample sizes. 445 

Median (central bar), quartile (box), maximum and minimum (whiskers) values are shown in a 446 

and c. 447 

Extended Data Figure 1. Permafrost sample locality details. a, Radiocarbon dating chronology 448 

for the main section at the Main River site, Russia, from which nearly all Main River samples are 449 

derived; b, View of the 2009 Duvanny Yar exposure, NE Siberia; c, yedoma sandy silt in upper 450 

c. 12 m of the exposure at Duvanny Yar exposure, NE Siberia. A large syngenetic ice wedge (top 451 

centre) within the yedoma is truncated by a thaw unconformity at a depth of c. 1.9 m below the 452 

ground surface, marking the maximum post-glacial thaw depth after deposition of the yedoma 453 

had ended. Persons for scale, with DNA sediment sample holes to the right of the person on 454 

right; d, Calibrated radiocarbon date distributions plotted against depth above river level at 455 

Duvanny Yar exposure, NE Siberia. Although there are some finite dates below ~20 m, the 456 

general curve shape suggests the radiocarbon dating limit occurs at about this level. The two 457 

Svalbard sites at e, Colesdalen and f, Endalen. 458 

Extended Data Figure 2. MOTU characterization and data consistency. (a-c) Graphs showing 459 

the consistency of the DNA-based approach using permafrost samples across the different time 460 

periods: a, average marker size per sample; b, number of reads per sample; c, number of taxa per 461 

sample. d, WebLogos showing the match between the gh primers and their target sequences in 462 

the main plant families involved in the estimation of the proportions of forbs and graminoids 70.  463 

Extended Data Figure 3. Temporal classification of samples, assemblage variation in time and 464 

data robustness. a–d (top panel), K-means clustering of permafrost plant assemblages: a cluster 465 

identity of samples derived from pre-LGM, LGM and post-LGM periods for values of k between 466 
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2 and 10. Each bar represents a separate sample; different colours reflect different cluster 467 

identities b, The Calinski-Harabasz criterion for different levels of k. Higher values indicate 468 

stronger support for a level of partitioning. c,d Heat maps showing the proportional occurrence 469 

of samples from pre-LGM, LGM and post-LGM periods in different clusters, for k=2 (c) and 470 

k=3 (d). Colours vary from red (low values) to white (high values). e–g (middle panel) 471 

Assemblage variation in time and space: e, Nonmetric multidimensional scaling (NMDS) 472 

ordination revealed significant variation (Permanova p < 0.01) in fossil/ancient plant assemblage 473 

composition during the three palaeoclimatic periods; f, The effect of spatial distance on 474 

similarity when assemblages from different palaeoclimatic periods were compared. The vertical 475 

axis represents similarity in floristic composition measured as 1-Bray-Curtis similarity, the 476 

horizontal axis depicts ln of distance between sampled communities in kilometres. The greater 477 

the spatial distance between pairs of assemblages, the more dissimilar they were. However, the 478 

rate of the decay differed depending on which two climatic periods were compared (full model p 479 

< 0.001). The weakest distance decay in similarity was observed in the case of comparisons 480 

between pre-LGM and post-LGM assemblages. Even if pre-LGM and post-LGM samples came 481 

from the same geographic area, their floristic compositions were dissimilar; g, Results of 482 

randomisation tests. Mean proportional composition of different growth form types in LGM and 483 

post-LGM samples. The bars around sample means indicate 95% quantiles derived from 999 484 

bootstrap replicates (where bootstrap N was set to the number of samples in the post-LGM data 485 

set; see methods for details). h (lower panel) Counts of MOTUs exhibiting different growth 486 

forms binned over 5 kyr time intervals. The analysis included 218 of the 242 sediment samples, 487 

as described in Figure 4. Numbers immediately below the columns indicate sample sizes. 488 

Median (central bar), quartile (box), maximum and minimum (whiskers) counts are shown.  489 

Extended Data Table 1. Site information of the 21 permafrost localities (shown in main text 490 

Fig. 1). 491 

Extended Data Table 2. Statistics regarding length of the P6 loop amplified with the gh primers 492 

42for the most important plant families of the two growth forms (graminoids and forbs). These 493 

data were estimated from the arctic/boreal database built for this study. 494 
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Extended Data Table 3. Locality information of the seven contemporary tundra and steppe sites 495 

in Yukon, Canada, which were analysed for nematode faunal composition (shown in main text 496 

Fig. 3). Letters in parentheses refer to locality codes used in main text Figs. 1 and 3. 497 

Extended Data Table 4. Proportion of 17 permafrost sediments with sequences of the two 498 

indicator nematode families Cephalobidae and Teratocephalidae. 499 

Extended Data Table 5. Herbivorous mammal taxa derived from Main River permafrost 500 

samples for which plant data were available. 501 

Extended Data Table 6. Sample information of the eight megafauna gut and coporolite samples 502 

(shown in main text Fig. 1). 503 

  504 
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Methods1.0 Sites and sediment sampling  505 

Site details and related publications are provided in Extended Data Table 1. The sampled sites 506 

are generally well characterised stratigraphically, but not all details are published. Complete site 507 

and sample information is available from the ECOCHANGE database manager 508 

(H.A.Binney@soton.ac.uk) and the Dryad database (also see section 8.0 for further details on 509 

sites). The samples are of mixed provenance: the majority of samples representing the pre-LGM 510 

(n = 149) and LGM (n = 32) come from exposures of frozen ‘ice-complex’ deposits, in which the 511 

clastic component (silt and fine sand) derives mainly from aeolian deposition and surface runoff 512 

in terrestrial permafrost settings characterized by ice-wedge polygons (e.g. 23), whereas most of 513 

the post-LGM samples (n = 61) come from modern soil and peat (37%), aeolian sediment (30%), 514 

thermokarst-lake infill (13%) and fluvial terrace (11%) sequences, and a few samples of mixed 515 

origin (9%). In most cases, frozen sediment samples were extracted by horizontal drilling using 516 

established protocols to guard against sample-based contamination 5,6,53,54 and were kept frozen 517 

until they were processed for DNA analyses. A list of samples and age estimates is given in 518 

Supplementary Data 1. 519 

In July 2009 we sampled soil from sites representing moist tundra and steppe vegetation from 520 

seven different locations in Yukon Territory, North-western Canada (Extended Data Table 3). 521 

Intact soil cores were excavated in 15 or 30 cm (depending on depth of the A-horizon or the 522 

active layer over the permafrost) PVC tubes with a 5 cm diameter inserted into a hollow steel 523 

auger forced vertically into the ground. PVC tubes were closed with close-fitting lids and 524 

transported in an electric cooler to Whitehorse where they were temporarily stored at 5C before 525 

they were shipped to Centre for GeoGenetics, University of Copenhagen, for processing. From 526 

each soil core the five top and bottom cm were processed. Additionally, the moss layer, when 527 

present, was processed from tundra samples. Sample material from each layer was homogenized 528 

before subsamples were taken for nematode extraction. Bulk density varies greatly between 529 

moss, peat and soil, hence the weight of extracted fractions vary between the different sample 530 

materials. Nematodes were extracted from 2.0-10.0 g of sample material for 48 h by a modified 531 

Baermann tray method 53. Nematodes were heat-fixed (80C) in 4% formaldehyde, and a 532 

minimum of 100 individuals per sample was identified to genus or family using a compound 533 

microscope at 1000 magnification. 534 
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Ancient megafauna intestinal/stomach contents and coprolites were collected directly from 535 

permafrost and from permafrost-preserved animals (Extended Data Table 6). Interior parts were 536 

sampled for DNA analyses. 537 

2.0 Chronology methods 538 

For the majority of samples, plant fragments and soil matrix organics extracted from sediment 539 

samples using protocols described in e.g. 56 were radiocarbon-dated using accelerator mass 540 

spectrometry. 14C ages were calibrated with the IntCal09 calibration curve 41, or (in the case of 541 

modern or near-modern soil samples) using the record of post-bomb atmospheric 14C 542 

concentrations. Modern samples yielded 14C concentrations over 100 pMC (percent modern 543 

carbon), which matched variations in the 20th century atmospheric carbon related to nuclear 544 

testing and other enrichment 57. In the case where a series of ages from one profile was available, 545 

age-depth models were calculated, using the free-shape algorithm published by 58, allowing 546 

undated samples to be assigned ages. Age models were only applied to sequences for which 547 

stratigraphic evidence supported continuous accumulation of sedimentary units. For a few 548 

sequences with previously ascribed dates, calibrated ages were assigned based on the calibration 549 

routine available at www.neotomaDB.org. ECOCHANGE radiocarbon ages and supporting 550 

information are contained within the dating table of the ECOCHANGE meta-database (see 551 

above). 552 

3.0 DNA extraction, amplification and sequencing 553 

DNA extraction of permafrost samples and coprolites and intestinal/stomach contents followed 554 

the protocols of 11,59,60. For construction of the new northern boreal plant reference library, DNA 555 

was extracted from leaves taken from taxonomically verified museum specimens originating 556 

from across the circumboreal region and sequenced for the plastid trnL intron, following the 557 

protocols of 14. 558 

3.1 Amplification of plant DNA from sediments 559 

For the ancient plant DNA from sediments, PCR amplification was done using nine base-pair 560 

tagged generic plant primers 41 for the P6 loop of the trnL plastid region (GH primers). We did 561 
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not use the two standard barcoding markers rbcL and matK in this study, despite the extensive 562 

reference database available, as they are not appropriate for working with degraded DNA, as 563 

demonstrated in 12. First, these markers are too long (c. 500 bp for rbcL and 800 bp for matK) for 564 

reliably amplifying degraded DNA, and second, it is not possible to shorten them by designing 565 

versatile primers on protein-coding genes. Hence some short amplification products can be 566 

obtained, but with a strong bias among plant groups according to the variations of the primer 567 

target sequences. 568 

Each trnL tag was distinguished from any other tag by at least three base differences. The list of 569 

tags was generated using the oligoTag program 61. In order to increase the taxonomic resolution 570 

of the analysis for three plant families, three additional primer pairs were used: 571 

ITS1-F: GATATCCGTTGCCGAGAGTC 62 572 

ITS1Poa-R: CCGAAGGCGTCAAGGAACAC 62 573 

ITS1Ast-R: CGGCACGGCATGTGCCAAGG 62  574 

ITS1Cyp-R: GGATGACGCCAAGGAACAC, this study.  575 

They target the first internal transcribed spacer (ITS1) of nuclear ribosomal DNA in Poaceae 576 

(ITS1-F and ITS1Poa-R), Asteraceae (ITS1-F and ITS1Ast-R) and Cyperaceae (ITS1-F and 577 

ITS1Cyp-R). These primers were tagged in the same way as the P6 loop primers to allow the 578 

assignment of sequence reads to the relevant sample. PCR conditions followed the protocol of 12. 579 

Each permafrost and modern soil sample was amplified five times with the gh primer pair and 580 

once with each of the ITS1 primer pairs. Amplicons were sequenced using the Illumina GA IIx 581 

platform as 2 x 108 base pairs (bp) pair end reads. 582 

3.2 Amplification of plant DNA from coprolites and intestinal/stomach contents 583 

DNA amplifications were carried out with the trnL gh primers 17 with MID incorporated tags. 584 

For each sample, PCR was carried out twice with the same-tagged primers and with the use of 585 

HiFi (Invitrogen) polymerase and 5ul of extract with 50 cycles of PCR. PCR products were 586 

pooled equimolarly and subsequently sequenced on the Roche FLX DNA sequencing platform 587 
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(Copenhagen) following previously established protocols 12. 16SMamm1 and 16SMamm2 588 

primers 63 were used to PCR DNA from the environmental faeces extracts, and the amplicons 589 

cloned in order to identify the species of origin.  590 

3.3 Amplification of megafauna DNA from sediments 591 

For megafauna DNA in permafrost, PCRs were performed in the ancient DNA laboratory of the 592 

Natural History Museum at the University of Oslo, using the 16Smam1 and 16Smam2 primers 64 593 

and a human-specific blocking primer (16Smam_blkhum3 59). Fusion primers containing the 594 

Lib-L forward and reverse primers (Roche 454) were used, and 16Smam1 included a Multiplex 595 

Identifier (MID) sequence to allow multiplexing of PCR products for sequencing. PCR mixture 596 

and profile were as described in 59. All samples, including extraction blanks, were amplified a 597 

maximum of six times in an attempt to obtain two positive PCR replicates, where positive PCRs 598 

are those that produced a visible band of the correct size on an agarose gel. When successful, the 599 

two PCR replicates were combined, and purified and normalised together using SequalprepTM 600 

Normalisation plates (Invitrogen). 601 

The purified PCR products were sequenced on three machines following the manufacturer’s 602 

guide for amplicon sequencing. All the plant trnL introns and ITS products were sequenced on 603 

the Illumina GA IIx platform, the Norwegian Sequencing Centre was used for sequencing of 604 

megafauna DNA (Roche 454 GS FLX Titanium). 605 

3.4 Amplification of nematode DNA from sediments 606 

For nematodes, PCR amplification was attempted on a subset of samples using two primer sets. 607 

The Cep (fw primer CepF: 5'-CCGATAACGAGCGAGACTC-3', rv primer CepR 5'-608 

CGGCTAAACACCGAAAATCC-3') and Ter (fw primer TerF: 5'-609 

GCTCTCAAGGTGTATATCGC-3', rv primer TerR: 5'-AAACCAGCAGTATTAGCC-3') 610 

primers target a 90 bp region of the 18S rDNA of the Cephalobidae and a 118 bp region of the 611 

18S rDNA of the Teratocephalidae, respectively. All primers were flanked by the Lib-L fw and 612 

rv primers (Roche 454), and the 5’ primers were further flanked by an 8-bp DNA tag 65. PCRs 613 

were performed with 2 l template DNA in a mixture described by 6 under the following 614 

conditions: initial denaturation at 94C for 5 min, followed by 65 cycles of denaturation at 94C 615 
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for 30 s, annealing at 52C or 50C for Cep and Ter primers, respectively, for 30 s, and extension 616 

at 68C for 30 s. Cycling was completed at 72C for 7 min. PCR products of the correct size 617 

(checked on a 2% agarose gel) were purified using the QIAquick Gel Extraction kit (Qiagen) 618 

according to the manufacturer’s protocol. PCR reactions were repeated at least three times; five 619 

times for samples that failed to produce amplicons using either of the primer pairs. 620 

4.0 Taphonomy and contamination issues 621 

66 recently emphasized the need to understand the taphonomy of a palaeo-proxy system.  Here 622 

we further assess taphonomic bias and possible contamination of the samples. Fossil 623 

assemblages do not represent life assemblages exactly due to post-mortem processes, including 624 

differential decomposition, depositional changes, and addition of removal of material 63. Our 625 

landscape-scale taphonomic model for plant DNA derives it from in situ burial of above- and 626 

below-ground plant parts, downslope transport of material in above-ground and below-ground 627 

flow as particles or with DNA as part of soil-water colloidal complexes, and possible deposition 628 

from a vector such as animals or wind. Tests in Svalbard (ECOCHANGE, unpublished data) 629 

indicate that local (3-50m2) sources provide almost all plant DNA in modern soils. 630 

For yedoma, the surface vegetation was rooted in an accreting substrate that had insufficient time 631 

for full profile development prior to burial and freezing (e.g., inceptisols, see 67. The active layer 632 

(estimated at ~50 cm for the LGM of Alaska by 67 acts as a time-averaging moving window, with 633 

penetration of unfrozen material to a level by roots potentially occurring until the freezing front 634 

reaches that level. We estimate that most yedoma samples record DNA over ~1000 yr of 635 

accumulation, but with a bias toward the first few hundred years, this based on observations on 636 

how deeply roots penetrate modern soils and average accumulation rates of sediment. We also 637 

tested for differences in accumulation rate between time periods that might lead to bias in 638 

diversity estimates 68 (Supplementary Data 1). There was no significant difference between pre-639 

LGM and LGM rates (1.12 and 1.25 mm yr -1, respectively). The post-LGM had significantly 640 

greater average rates (3.82 mm yr-1), but this estimate is based on only a few sites and samples 641 

and more diverse forms of sedimentation; furthermore, beta diversity increases, rather than 642 

diminishes, as would be expected if there were bias, in the post-LGM. We conclude that time-643 

averaging effects in our samples have not biased the diversity estimates. 644 
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Peat and lacustrine sediment samples will have finer (decadal) temporal resolution as 645 

demonstrated by numerous other proxy studies, and the loess-derived sediments sampled beneath 646 

the rapidly deposited Dawson tephra at Quartz Creek (see section 8.3) may be time-averaged 647 

over only decades or centuries. The few samples drawn from thermokarst lake deposits could 648 

potentially include a wider age range of material derived from lake-bank collapse, but the 649 

Holocene 14C chronologies suggest that these sequences can be reliably compared with the late-650 

Pleistocene records. 651 

The study by 12 showed that graminoid DNA occurs in soil in about the same proportions as 652 

graminoids occupy the above-ground biomass. We might expect woody plants to release 653 

environmental DNA at a lower rate in relation to their above-ground biomass as much of their 654 

production goes into woody stems and roots, which have a relatively slow rate of decomposition; 655 

this is in the case, with woody taxa, when at low proportions in the biomass, being under-656 

represented in DNA by a ratio of approximately 5:1. Pollen and macrofossil data from numerous 657 

sites including our own attest to the rarity of woody taxa in the pre-LGM and LGM periods. In 658 

these two periods, woody taxa are likely under-represented in our DNA record, but even 659 

allowing for this they still form a minor component of all assemblages. 660 

12 show forbs to be represented in DNA compared with above-ground biomass at a ratio of about 661 

2:1. 12 suggest that this difference may reflect different litter turnover rates; graminoids are richer 662 

in lignins than are forbs 69. Alternatively, forbs may invest resources into below-ground parts if 663 

they are perennials while others (not many in the Arctic) are annuals and largely decompose 664 

every year, yielding a range of root-shoot ratios 70. It is unlikely that differential preservation of 665 

ancient forb tissue has occurred because this would predict a lessening of forb dominance 666 

through time; rather there is continuous forb dominance through the pre-LGM and LGM and an 667 

abrupt diminution of forb DNA in the post-LGM. Further, there is no bias in the length of 668 

sequences recovered through time (see below), which could otherwise conceivably generate a 669 

bias as some of the longer trnL sequences occur in the Cyperaceae.  670 

Established protocols for permafrost sampling were followed to control for sample-based 671 

contamination 5,6,11,53,54. All ancient pre-PCR work (i.e. sub-sampling, extraction, and PCR set 672 

up) was conducted in full body suits in state-of-the-art dedicated ancient DNA laboratories in 673 
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Copenhagen and Oslo that are physically separated from any other biological laboratories, with 674 

positive air pressure and nightly UV-exposure of surfaces, and equipped with positive flow 675 

hoods. Occasionally, common contaminants were detected: Homo sapiens, Mus musculus, Sus, 676 

Bos, Canis, Felis cattus, Solanum lycopersicum, Zea mays and Cedrus. The current control setup 677 

does not allow contamination of individually tagged PCR products to be detected. To mitigate 678 

this problem we removed haplotypes which have previously been detected as contaminants in 679 

PCR reagents, are exotic to the study sites, or represented likely artificial diversity caused by 680 

sequencing-error-by-products of contaminant or exotic haplotypes. The taxonomic assignment of 681 

these sequences includes for example Rutaceae, Solanaceae, Solanoideae, Loasaceae and 682 

Musaceae. Additionally, the following plant MOTUs occurred in sequencing blanks: Salicaceae 683 

(Group 1), containing Populus and Salix; Equisetum (Group 2), containing E. arvense, E. 684 

sylvaticum, and E. fluviatile; and Taraxacum. These MOTUs are likely to genuinely occur in the 685 

study samples but were excluded as a conservative measure. We also note that Eritrichium, 686 

(Group 1) Triticeae (Group 1), containing Elymus spp., Leymus spp., Apiaceae (Group 1), Betula 687 

(Group 1), Dryas (Group 1) though not found in the bank controls of this study, have been 688 

recorded as possible sources of contamination in other studies. 689 

Importantly, to avoid possible contamination from re-deposition of organics or DNA in the 690 

exposures sampled, we did not include any low-abundance sequences in the analyses (see 691 

below), as such sequences may be due to re-deposition of material 16. 692 

For further evidence of reliability of results and their interpretations please see section 5.3 693 

MOTUs characterization and data consistency. 694 

All the raw and filtered data concerning plants, nematodes and megafauna are available from the 695 

Dryad Digital Repository: http://doi.org/XXXXXX/XXXXXX. 696 

5.0 Plant DNA reference libraries, sequence groupings and MOTU characterization 697 

5.1 DNA reference libraries 698 

We identified plant sequences retrieved from the ancient samples taxonomically using (i) the 699 

arctic plant trnL reference library developed by 14, comprising 842 species representing all 700 
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widespread or ecologically important taxa of the circum-arctic flora, (ii) a new extension of this 701 

library constructed by sequencing the nuclear ribosomal ITS1 region to improve species 702 

resolution in three families (Cyperaceae, Poaceae and Asteraceae), (iii) a new north boreal plant 703 

trnL reference library constructed by sequencing DNA extracted from 1332 herbarium 704 

specimens representing 835 of the most common north circumboreal species, of which most also 705 

occur in present-day arctic vegetation, and (iv) the EMBL database for sequences not matching 706 

taxa contained in these three reference libraries. The specimens used to construct the new north 707 

boreal library were sampled after taxonomic verification from the following collections:  708 

Herbarium of the Natural History Museum, University of Oslo, Norway (O); Popov Herbarium, 709 

Siberian Central Botanical Garden, Novosibirsk, Russia (NSK); National Herbarium of Canada, 710 

Canadian Museum of Nature, Ottawa, Canada (CAN); and University of Alaska Museum of the 711 

North (ALA). Quality checking and cleaning of this new library was performed by comparing all 712 

sequences with published sequences using NCBI/BLAST and by phylogenetic analyses of each 713 

family, including sequences from closely related taxa to verify taxonomic identity. All reference 714 

databases are available from the Dryad Digital Repository: http://doi.org/XXXXXX/XXXXXX. 715 

5.2 Sequence groupings and identifications of sedimentary plant DNA 716 

For plant DNA data obtained from the sediment samples, each pair of reads was assembled to 717 

reconstruct full-length marker sequence using the Solexapairend program from the OBITools 718 

package (http://metabarcoding.org/obitools). Sequences were associated with their corresponding 719 

sample according to the primer tags, and identical sequences were clustered to form molecular 720 

operational taxonomic units (MOTUs). MOTUs occurring less than five times in the whole data 721 

set or containing ambiguous base symbols were discarded. Only PCR repeats with more than 722 

1000 sequences for the gh primers and 500 sequences for the ITS1 primers were considered for 723 

the following process. For gh PCR amplification, a MOTU was considered as belonging to a 724 

sample if it occurred in the majority of the usable repeats for this sample. Taxonomic assignment 725 

of MOTUs was done with the ecoTag program 12 using our plant reference libraries as reference 726 

databases: Only MOTUs having at least 95% similarity with a sequence in one of the reference 727 

libraries or in the EMBL database were kept in the final dataset. Identifications realized with our 728 

reference libraries were given priority over EMBL. The final set of MOTUs associated with a 729 

sample was based on all MOTUs retrieved from all repeats of this sample. Initial identifications 730 
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to the species level were in some cases adjusted to a higher taxonomic level based on the 731 

completeness of our reference libraries. Results are listed in Supplementary Data 2, 4 and 5. 732 

5.3 MOTUs characterization and data consistency 733 

Basic statistics were used to check data consistency among time periods. Results are presented in 734 

Extended Data Figure 2a-c, and clearly show that older samples did not present any bias 735 

compared with more recent samples. A bias could have been introduced (i) if the size of the trnL 736 

P6 loop would have been smaller in taxa identified in older samples, (ii) if the number of 737 

identified taxa were smaller in older samples, or (iii) if the number of sequence reads were lower 738 

in older samples. This was not the case and we conclude that the reconstructed plant assemblages 739 

from different time periods did not suffer from such biases. 740 

We also checked if the primers used could explain the differences observed between forbs and 741 

graminoids. The WebLogos 51 presented in Extended Data Figure 2d show that the target 742 

sequences of the trnL gh primers 42 are very well preserved in the main families leading to the 743 

estimation of the relative proportions of forbs and graminoids. According to the very good match 744 

of the gh primers in the different families, it is highly unlikely that these minor differences can 745 

produce any significant bias in the observed proportions of forbs and graminoids. 746 

Finally, we carried out length statistics of the P6 loop of the trnL intron for several plant families 747 

(Extended Data Table 2), knowing that shorter sequences are likely to be preferentially amplified 748 

than longer sequences. According to the mean length in the different families, Cyperaceae 749 

(graminoid) might be under-represented in our results, and Plumbaginaceae (forb) and 750 

Polygonaceae (forb) over-represented. In any case, the bias was identical for all samples 751 

(permafrost and diet), and for all periods as no size difference among the amplified sequences 752 

were observed among period (Extended Data Figure 2a-c). For all the other families, the size 753 

difference is minor, and is unlikely to generate any significant bias. 754 

5.4 Reliability of the trnL approach for estimating the diet of herbivores 755 

To test the reliability of the trnL approach for estimating the diet of herbivores, we conducted an 756 

experiment on sheep. During the period of May-July 2011, pure plots of white clover (Trifolium 757 
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repens, cv Merwi) and ryegrass (Lolium perenne, cv Aberavon) were used to test five mixtures 758 

of green fodder (i.e. five diets differing by their clover:ryegrass ratios of 0:100, 25:75, 50:50, 759 

75:25 and 100:0). 760 

The five diets were allocated to five 1-year-old Texel sheep fed ad libitum. For each sheep and 761 

each diet, one rumen sample was collected on 2 successive days. The collection started 13 days 762 

after the beginning of the diet in order to prevent from an effect of the previous diet. Each of the 763 

50 samples consisted of about 5 g of rumen content. 764 

Total DNA was extracted from about 25 mg of rumen content with the DNeasy Blood and Tissue 765 

Kit (QIAgen GmbH, Hilden, Germany) following the manufacturer’s instructions. The DNA 766 

extracts were amplified with the trnL gh primers (g: GGGCAATCCTGAGCCAA; h: 767 

CCATTGAGTCTCTGCACCTATC 24) targeting a short portion of the trnL intron of the 768 

chloroplast DNA. For each sample two independent PCR replicates were carried out. Paired-end 769 

sequencing (100 nucleotides on each extremity of the DNA fragments) was carried out at the 770 

French National Sequencing Centre (CEA Genoscope, Evry, France) on a Illumina HiSeq 2000 771 

(Illumina Inc.). 772 

A total of 216,586 and 163,328 sequence reads corresponded to Trifolium repens (forb) and to 773 

Lolium perenne (graminoid), respectively. The Pearson correlation coefficient between the actual 774 

fraction of forb in diet and the proportion of forb estimated using the DNA-based approach is 775 

highly significant (r2=0.75, p < 10-15) (Fig. 4e). 776 

All the data concerning the sheep diet experiments are available from the Dryad Digital 777 

Repository: http://doi.org/XXXXXX/XXXXXX. 778 

6.0 Analysis of MOTU assemblage data 779 

Each sediment sample provided a molecular characterization of a local plant assemblage. To 780 

analyse gross changes in plant assemblages through space and time we used 242 dated samples 781 

from 21 sites (56 entities, i.e., individual sections), which provided a total of 7,738,725 782 

chloroplast trnL (UAA) intron reads. For these analyses we used only the MOTUs identified 783 

with the gh primers (see Section 3.0), because the reads of these MOTUs are proportional to 784 
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vegetation (see 12). In total, 154 taxa (MOTUs) were identified, of which 47 were assigned to 785 

species level (Supplementary Data 4). Supplementary Data 5 lists the MOTUs and constituent 786 

taxa for the ITS identifications. 787 

6.1 Temporal classification of samples and data robustness  788 

Each sample was allocated to one of three broad age categories: (i) 50–25 thousand years ago 789 

(kyr; pre-LGM), a period of fluctuating climate 71; (ii) 25–15 kyr, the Last Glacial Maximum 790 

(LGM), a period of constant cold and dry conditions 17; (iii) 15 kyr–present, the current 791 

interglaciation (post-LGM), which, subsequent to deglacial warming, is characterised by climate 792 

stability and relatively high temperatures 71. Our specification of LGM timing represents a period 793 

between the transition of Marine Isotope Stage (MIS) 3 to MIS 2 and the transition to the Bølling 794 

(Gi-1e). This time window incorporates the period of lowest global sea level, which is 795 

traditionally used to define the LGM (22–18 kyr), along with flanking periods during which the 796 

development of glaciation or deglaciation occurred. The use of a fairly wide window was also 797 

intended to allow for some regional variation in the timing of the maximum. We assessed the 798 

robustness of our analyses to alternative definitions of LGM timing using Permanova 799 

(implemented using R package vegan 72) to test the fit of models including LGM specifications 800 

with different duration and timing, falling in the range 30–11 kyr. In general, there were not 801 

large differences between many of the alternative definitions, and all detected the large shifts in 802 

plant assemblages occurring around that time (Supplementary Data Table 3). To assess whether 803 

our temporal definition of post-LGM masked changes prior to and including the onset of the 804 

Holocene at ~11 kyr, we extracted the post-LGM subset of data, i.e. 15–0 kyr, and used 805 

Permanova to test whether splitting the data into two time periods (15–11 and 11–0 kyr) 806 

improved the fit. The results indicated that given the data we have, the split of post-LGM into 807 

two consecutive time bins did not significantly improve the null model (P = 0.08). 808 

We compared our approach of defining a priori groups based on radio carbon dating with an 809 

unsupervised approach whereby variation between samples was used to define groups. To 810 

partition samples into clusters we used k-means clustering with the Hartigan-Wong algorithm, 811 

values of k between 2 and 10 and 100 random starting configurations for each value of k. The 812 

Calinski-Harabasz criterion was used to identify the best supported values of k 73.The results of 813 
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unsupervised clustering largely coincided with our supervised analysis (Extended Data Figure 3 814 

a-d). The two- and three-cluster solutions, which were best supported, revealed the clearest 815 

distinction between post-LGM communities on one hand and pre-LGM and LGM samples on the 816 

other. This is in accordance with our diversity analysis, which showed that that the species list of 817 

the LGM was essentially a subset of the pre-LGM species list, although considerably fewer 818 

species were recorded from LGM samples. The higher values of k indicated more subtle 819 

differences between LGM and pre-LGM samples. 820 

As a further investigation of data robustness, we repeated the analyses, but imposed an upper 821 

limit of 40 kyr to the pre-LGM period and excluded older samples, thus equalizing the duration 822 

of the pre- and post-LGM periods (both 15,000 years). The results of these analyses were 823 

qualitatively identical to those based on the whole data set. However, while MOTU richness 824 

remained highest in the pre-LGM in the equalized analysis, it was less clearly so (equalized 825 

analysis: total richness: pre-LGM = 103, LGM = 48, post-LGM = 74; jackknife second order 826 

estimator: pre-LGM = 169, LGM = 85, post-LGM = 159). 827 

6.2 Functional characterization of molecular taxa 828 

We characterized MOTUs in terms of their coarse growth form; 147 of the 154 taxa identified 829 

could be placed into four primary groups: forbs, graminoids (grasses + sedges + rushes), dwarf 830 

shrubs or other woody plants (i.e., shrubs and trees). Information on growth form was derived 831 

from BiolFlor, a database covering more than 60 plant species traits for 3659 plant species from 832 

the German flora 49,74. Where data were lacking, we excluded the taxon from analysis. 833 

6.3 Assemblage variation in time and space 834 

6.3.1 Ordination 835 

Variation in assemblage characteristics among time periods was visualised using two-836 

dimensional non-metric multi-dimensional scaling (NMDS). The composition of samples was 837 

estimated by the proportion of reads corresponding to particular MOTUs. 838 

Dissimilarity between pairs of plant assemblages was defined using Bray-Curtis 839 
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dissimilarity (BC)44. For some analyses similarity was calculated as 1-BC. Bray-Curtis 840 

dissimilarity is frequently used in plant community ecology and is recommended by several 841 

basic sources due to its properties 75 pg 51 and elsewhere 72,76,77. In particular, Bray-Curtis shows a 842 

good ability to mirror environmental distances 75,78 pg 50-54. The Bray-Curtis index also works well 843 

with proportional abundance data 78,79 pg 287. Euclidean distance is also widely used with 844 

proportional abundance data. While so-called proportion indices like BC depend on the number 845 

of shared species and thus measure distance as proportions of the maximum distance possible, 846 

Euclidean distance concentrates only on differences in relative proportional abundances 80. Thus, 847 

the choice of distance measure depends on the emphasis of a particular study, e.g. how much 848 

attention is paid to different aspects of community assemblage structure. We considered the co-849 

occurrence of taxa in samples to be an important feature of palaeocommunity assembly, and this 850 

is why Bray-Curtis was our primary choice. However, since Euclidean distance could add 851 

another aspect of community assembly, we performed a parallel analysis (Permanova, NMDS 852 

and distance decay) using Euclidean distance. We found that our quantitative results and the 853 

qualitative patterns were robust to the choice of distance measure. 854 

First, the ordination was conducted for the whole data set. Second, since the spatial distribution 855 

of the total data set was not balanced between time periods, we identified four replicated 856 

locations (two in North America, one in western Siberia, one in eastern Siberia) where samples 857 

were collected from sites within 100 km of each other in all palaeoclimatic periods. We based a 858 

further ordination on an equal number of samples per location per period (15 samples per period, 859 

45 samples in total). Because the results of analyses based on the two data sets coincided, only 860 

the results of the first analysis are presented, except in Extended Data Figure 3e where it was 861 

impossible to portray all 242 samples and the results of the second analysis are presented. Stress 862 

values for the ordinations were in the range 0.05–0.17. Permanova was used to compare the 863 

similarity of floristic composition in different periods.  864 

6.3.2 Richness estimation 865 

Nonparametric richness estimators are usually recommended due to their precision and low 866 

susceptibility to sampling bias 81. In particular, the second order jackknife has been shown to be 867 

one of the most effective estimators 82,83, especially for highly sparse palaeontological data 84. 868 

We used the second order jackknife to estimate species richness in climatic periods. 869 



 34 

6.3.3 Distance-decay measures  870 

We modelled variation in plant communities using a distance-decay in similarity approach 48, 871 

using as a dependent variable all pairwise similarities between samples in terms of floristic 872 

composition. We used a generalised linear model to describe variation in the dependent variable. 873 

The dependent variable was bounded by 0 and contained a large proportion of exact 0s (i.e. 874 

achieved when pairs of samples contained no shared taxa). The data were also theoretically 875 

bounded by 1, but in practice no samples were identical and the data exhibited a strong positive 876 

skew. To adequately model variation in such a dependent variable, we used a compound Poisson 877 

error distribution (using R package tweedie 85), with an index parameter for the power variance 878 

function of 1.45 (estimated using maximum likelihood) and a log link function. The geographic 879 

distance separating points was included as an independent variable. This distance was calculated 880 

as the natural logarithm of the orthodromic distance between points, i.e. calculated as the shortest 881 

earth-surface distance between two sets of latitude and longitude coordinates (the earth was 882 

assumed to be spherical with a radius of 6371 km). The second independent variable consisted of 883 

a categorical variable representing the combination of the time periods being compared. Thus, 884 

this variable had six levels, consisting of all pairwise combinations between these periods (pre-885 

LGM vs pre-LGM, pre-LGM vs LGM, pre-LGM vs post-LGM etc.). 886 

An interaction term between the independent variables was included in the model. Since each 887 

sample was represented multiple times in the data set, observations were not independent, 888 

biasing model estimates of variance and statistical significance. To estimate the true significance 889 

of model terms, we recalculated each model a further 999 times using data sets where the 890 

community data underlying the dependent variable were randomised (values were permuted 891 

within samples using the permatfull function from the R package vegan). The change in deviance 892 

associated with dropping a term in the empirical model was then compared to the corresponding 893 

statistics derived from randomised models; significance was estimated based on the number of 894 

randomised statistics higher than the empirical value. 895 

6.3.4 Randomisation tests used to assess functional changes between time periods 896 
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We used a randomisation procedure (BCdiff; described in 86) to assess whether the growth form 897 

composition of plant communities of the LGM and post-LGM (target) periods represented a 898 

random sample from the directly preceding (source) period. To do this we calculated the BC 899 

between the observed mean growth form composition of the target period and each of 999 means 900 

derived from a bootstrapped selection (sampled with replacement; the sample size corresponding 901 

to that of the target period) of samples from the source period (BC[observed vs random]=BCor). 902 

In parallel, BC was calculated 999 times between two random means, calculated as described 903 

above (BC[random vs random]=BCrr). The latter calculation provided a population of BC 904 

measures that might be expected to arise by chance. The vector of 999 BCrr values was 905 

subtracted from the vector of 999 BCor in a random pairwise manner to produce a final vector of 906 

999 values (BCdiff=BCor−BCrr). BCdiff has an expected value of 0 if community composition is 907 

random. 908 

This approach indicated that LGM growth form structure did not differ from a random draw 909 

from the pre-LGM community (95% quantiles of BCdiff; LGM: -0.14–0.11). However, post-910 

LGM growth form composition was not a random subset of that from the LGM (95% quantiles 911 

of BCdiff: 0.05–0.30). The abundance of forbs decreased while the abundance of all other 912 

growth form types increased in the post-LGM compared with the LGM period (Extended Data 913 

Figure 3g).  914 

6.3.5 Overview of vegetation change through time 915 

We classified a subset of samples (those of finite age) into 5000-year age classes (from 50,000–916 

45,000 to 5000–0 kyr) across the region encompassing central and northeast Siberia and Alaska-917 

Yukon. These regions were unglaciated and inhabited by the megafauna in the Pleistocene, and 918 

they are the regions from which the dietary samples originated. The samples from Svalbard used 919 

in the previous analyses were omitted here as Svalbard was almost entirely glaciated in the LGM 920 

and did not host megafauna. We plotted the abundance of the key groups (described above) as 921 

estimated by the abundance of DNA sequence reads through time to provide an overview of their 922 

shifting importance. We also calculated the number of MOTUs detected for each group through 923 

time (Extended Data Figure 3h). 924 



 36 

7.0 Filtering and taxonomic inference of nematode and megafauna data  925 

7.1 Nematode data 926 

Nematode sequences were sorted according to the DNA tag used. Within individual PCR 927 

products, sequences represented by less than five reads were discarded. The remaining sequences 928 

were assigned to taxa using the statistical assignment package SAP 87. 929 

We used Dufrêne–Legendre indicator species analysis 23 to identify nematode taxa that acted as 930 

good indicators of modern tundra or steppe habitat (as implemented by the indval function from 931 

the R package labdsv 88). The function calculates an indicator value for each taxon that is the 932 

product of its relative frequency and relative average abundance in sample groups (the groups in 933 

this case being steppe and tundra). The value varies from 0 to 1 and would be maximal if all 934 

examples of a taxon were distributed among all samples from only one of tundra or steppe. By 935 

morphologically determining the nematode faunas of 35 sediment samples from contemporary 936 

tundra and steppe sites in Yukon, Canada, we discovered two indicator families: 937 

Teratocephalidae for tundra and Cephalobidae for steppe. We tested whether the proportion of 938 

the two families differed between tundra and steppe with a nested ANOVA (site nested within 939 

vegetation type) (SAS Enterprise Guide, version 4). Data on proportions were square root 940 

transformed to obtain homogeneity of variance (Bartlett test). The ANOVA was executed on 941 

non-normally distributed data, but the ANOVA is quite robust to non-normality 89. We 942 

genetically determined the presence of the two indicator families in 17 of the 242 ancient 943 

sediment samples; results are listed in Extended Data Table 4. 944 

7.2 Ancient megafauna sediment data 945 

Sequences were filtered and sorted using the programs included in the OBITools package 946 

(http://metabarcoding.org/obitools). For filtering, only reads containing both primers and the tag 947 

were kept in the data, permitting two errors in the primers and no errors in the tags. Filtering and 948 

taxonomic identification was performed as described in 59 with the following two adjustments: 949 

(i) an additional denoising step using the program Obiclean was included 90, and (ii) the 950 

electronic PCR was performed on the EMBL standard sequences release 111. Within each 951 

sample, only sequences represented by > 10 reads and an identification to at least genus level 952 
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with an identity > 0.95 were kept in the final dataset. Identified taxa in each of the samples for 953 

which plant data are available are given in Extended Data Table 5. 954 

7.3 Ancient megafauna diet data 955 

The plant DNA amplified from coprolites and intestinal/stomach contents was sorted using the 956 

OBITools package (http://metabarcoding.org/obitools). Sequences shorter than 10 basepairs, or 957 

containing ambiguous nucleotides, or with occurrence ≤ 5 were excluded. Strictly identical 958 

sequences were merged and taxonomic assignation was achieved using the ecoTag program and 959 

reference libraries described in sections 5.1 and 5.2.Only unique sequences with an identity of 960 

100% to at least one of the reference sequences were kept for further analysis. Where 100% 961 

identities were obtained from multiple reference libraries, priority was given to taxon assignment 962 

using the Arctic and boreal libraries. 963 

We obtained a total of 15,951 sequence reads that could be assigned to the eight coprolite/gut 964 

samples using the MID tags, of which 1,663 reads were unique. Out of these reads, 13,735 965 

passed filtering and a final 9,084 reads could be assigned with 100% identity to a plant species in 966 

one of the reference databases. Sequence data and compositional data for the fossil diet samples 967 

are given in Supplementary Data 6. 968 

8.0 Permafrost site information 969 

8.1 Published sites, Eurasia 970 

Bol'shaya Balakhnaya, Buor Kaya and Khatanga, NW Siberia 971 

Three locations in NW Siberia with perennially frozen deposits are described in 16. Buor Kaya is 972 

located on the east side of the bay formed by the Lena Delta, is a 3-m exposure of sandy silt with 973 

organic inclusions, interpreted as lacustrine sediment, Holocene in age. Khatanga material was 974 

sampled from Holocene river terrace deposits (< 5m) along a small tributary stream. Material 975 

ranged from clay, to weakly laminated sands and silts, to peat. Bol’shaya Balakhnaya is also a 976 

Holocene fluvial terrace locality featuring weakly laminated sands and minor interspersed lenses 977 

of peat and clay. 978 
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Baskura Peninsula, Cape Sabler, Federov Island, Ovrazhny Peninsula, and Upper Taymyr 979 

River, Taimyr Peninsula, NW Siberia 980 

These localities are described by 6, who report perennially frozen sediments taken along the 981 

shore of Lake Taimyr. Deposits are silt-dominated but range from organic to inorganic, and 982 

massive to laminated; all sediments are of late-Pleistocene age (~40 to 12 kyr). Further 983 

stratigraphic information from the “type locality” of this type of sediment – the Cape Sabler site 984 

– is provided in 91. Sediment depth/age curves in 6 show that depositional rates were in the order 985 

of 1–2 mm/yr. This implies a high temporal resolution of the trapped macroflora elements and 986 

other biogenic matter, as the ground surface rose due to the vertical accretion of silt and fine sand 987 

that was transported and deposited by aeolian and surface runoff processes. 988 

Main River, E Siberia 989 

The Main River (Ice Bluff) exposure extends for about 1 km at an elevation of 30 m on the left 990 

bank of the Main River. It has been previously reported by 91 and 93. The northern exposure, from 991 

where our samples are derived, is dominated by ice-rich deposits interpreted as a facies of 992 

yedoma by 92. At the time of sampling, the lower portion of the exposure was covered by slump 993 

material; the oldest exposed deposits are ~40 kyr. We dated further samples to improve the 994 

previously established chronology of the site (Extended Data Figure 1a). Samples form a 995 

consistent progression suggesting continuous sedimentation without major hiatus between ~40 996 

and 20 kyr. 997 

8.2 Unpublished sites, Eurasia 998 

Taimyr Lake, Taimyr Peninsula, NW Siberia 999 

A 3 m high cliff section at the western side om the Cape Sabler Peninsula. Vaguely laminated silt 1000 

with some sand intrabeds. Four radiocarbon dates suggest a mid-Holocene age between 4.7-7.1 1001 

kyr for the sediment sequence, except for the uppermost sample that is modern in age. 1002 

Anadyr, E Siberia 1003 
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Holocene deposits, beside the Anadyr River, 2 km West of Anadyr, Chukotka. Materials 1004 

excavated from a pit lying 3.0–5.1 m above sea level. 1005 

Duvanny Yar, NE Siberia 1006 

The site is the type section for the late Pleistocene in NE Siberia and has been much studied (e.g. 1007 

94-96). The extensive set of exposures runs for ~4 km along the east bank of the Kolyma River 1008 

and features high cliffs of yedoma (ice complex), dominated by silt and large syngenetic ice 1009 

wedges, depressions representing the drained basins of thermokarst lakes (alasy), and large areas 1010 

of slumped and partially vegetated material. The exposure we studied and sampled in 2009 1011 

(Extended Data Figure 1b) is from the centre of remnant 7E of the yedoma surface identified by 1012 

94. We levelled in and logged 23 sections and sampled for DNA, radiocarbon and 1013 

palaeoecological analysis from just above the Kolyma River level to ~40 m above it.  1014 

The sampled stratigraphic unit comprised yedoma sandy silty at least 34 m thick, underlying a 1015 

thaw unconformity at a depth of ~1.9 m below the ground surface (Extended Data Figure 1c). 1016 

The yedoma unit was characterized by grey sandy silt to silty fine sand with low and varying 1017 

amounts of organic matter, the most prominent of which were abundant fine in situ roots 1018 

pervasive throughout the unit. The sediment is interpreted primarily as loess and contains a 1019 

number of weakly developed palaeosols (J.B. Murton unpublished data). The upper 1.9 m of the 1020 

sedimentary sequence comprised the post-glacial transition zone and overlying modern active 1021 

layer.  1022 

A 14C age-depth model is presented in Extended Data Figure 1d. The upper part of the model, 1023 

above an elevation of 20 m above river level, is considered to be robust, based on 14C ages that 1024 

decrease overall in stratigraphic order towards the top of the unit. 14C ages from below 15–20 m 1025 

above river level are close to the limit of radiocarbon dating, and the age-depth model of this 1026 

lower part of the yedoma should be treated as less definitive, although supported by OSL age at 1027 

14.5 m. The basal units of the exposure are not represented in this study. 1028 

Svalbard: Colesdalen and Endalen  1029 
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Samples were taken from the upper organic horizon of tundra soils in two valleys directly into 1030 

sterile tubes and sealed. Sites are Colesdalen and Endalen (Extended Data Figure 1e,f). Both 1031 

valleys have vegetation dominated by mid-Arctic tundra. 1032 

8.3 Published sites, North America 1033 

Zagoskin Lake, Alaska 1034 

Zagoskin is a maar lake in western Alaska with sediments dating from ~37 kyr BP. Details are 1035 

reported in 97,98. The sediments are relatively inorganic and dominated by silt, interpreted as loess 1036 

98. Loss on ignition values are generally < 10%, except in the top 1.4 m of the 15-m section. 1037 

Biostratigraphic changes related to deglaciation (~15 kyr BP) are recorded at 5 m depth. 1038 

Sediments dating to the LGM are present. 1039 

Quartz Creek, Yukon Territory, Canada 1040 

This locality is described by 99. Sections are exposed in mining cuts and comprise silt-rich facies 1041 

and palaeosols. The silt is loess-derived and sometimes finely bedded, reflecting re-working. 1042 

Samples are associated with the Late Pleistocene Dawson tephra 99,100 and immediately underlie 1043 

the bed, ranging from 31 kyr BP to 30 kyr BP, consistent with the Dawson tephra chronology.  1044 

Goldbottom, Yukon Territory, Canada 1045 

This locality also comprises several exposures in mining cuts and is described in 101. Frozen silt-1046 

dominated sediments, interpreted as loess or retransported loess, and organic deposits are 1047 

present, and the Dawson tephra provides a late MIS 3-ealry MIS 2 stratigraphic marker.  1048 

Previous dating of the tephra at ca. 30 kyr BP 101,102 are consistent with ages associated with the 1049 

samples in this study. Samples at the site range include pre-LGM samples (ca. 45 to 27 kyr BP) 1050 

and early LGM ages (ca. 24 to 23 kyr BP).  1051 

Stevens Village, Alaska 1052 

The locality is described in 11. The exposure is ~15 m high and lies on the Yukon River in central 1053 

Alaska. Frozen silt, interpreted as loess, overlies basal fluvial gravel and contains interbedded 1054 
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organic layers (regosols) dating to the early Holocene.  A single sample collected from an early 1055 

Holocene soil dates to 11.2 kyr BP.  1056 

8.4 Unpublished sites, North America 1057 

Purgatory, Alaska 1058 

The Purgatory site is located a few kilometres upstream from the Stevens Village site and 1059 

consists of aeolian sands with plant detritus.  Two samples from near the base of the exposure 1060 

date to the post-LGM interval. 1061 

Ross Mine, Canada 1062 

The Ross Mine site is located in the southern Klondike goldfields of central Yukon.  One sample 1063 

from a floodplain silt unit within fluvial deposits dates to the LGM, while the remaining samples, 1064 

collected from within a Holocene peatland date to the post-LGM interval.  1065 
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