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Abstract 

Near and mid infrared reflectance spectroscopy (NIRS, MIRS) are time- and cost-effective 

tools for characterizing soil organic carbon (SOC). Here they were used for quantifying (i) 

carbon (C) dioxide (CO2) emission from soil samples crushed to 2 and 0.2 mm, at 18 and 

28°C; (ii) physical C protection, calculated as the difference between CO2 emissions from 

0.2- and 2-mm crushed soil at a given temperature; and (iii) the temperature vulnerability of 

this protection, calculated as the difference between C protection at 18 and 28°C. This was 

done for 97 topsoil samples from Tunisia, mostly calcareous, which were incubated during 

21 days. 

Soil CO2 emission increased with temperature and fine crushing. However, C protection in 

0.2–2 mm aggregates had little effect on the temperature vulnerability of CO2 emission, 

possibly due to preferential SOC protection in smaller aggregates. 

In general NIRS, and MIRS to a lesser extent, yielded accurate predictions of soil CO2 

emission (0.60 ≤ R² ≤ 0.91), and acceptable predictions of C protection at the beginning of 

incubation (0.52 ≤ R² ≤ 0.81) but not over the whole 21 day period (R² ≤ 0.59). For CO2 

emission, prediction error was the same order of magnitude as, and sometimes similar to, the 

uncertainty of conventional determination, indicating that a noticeable proportion of the 

former could be attributed to the latter. The temperature vulnerability of C protection could 

not be modelled correctly (R² ≤ 0.11), due to error propagation. The prediction of SOC was 

better with NIRS and that of soil inorganic C was very accurate (R² ≥ 0.94), especially with 

MIRS. Soil CO2 emission, C protection and its vulnerability were best predicted with NIR 
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spectra, those of 0.2 mm samples especially. MIR spectra of 2 mm samples yielded the worst 

predictions in general. 

NIRS prediction models suggested that CO2 emission and C protection depended (i) on 

aliphatic compounds (i.e. labile substrates), dominantly at 18°C; (ii) on amides or proteins 

(i.e. microbial biomass), markedly at 28°C; and (iii) negatively, on organohalogens and 

aromatic amines (i.e. pesticides). MIRS models showed a negative influence of carbonates on 

CO2 emission, suggesting they did not contribute to soil CO2 emission and might form during 

incubation. They also suggested that CO2 emission and C protection related to carboxylic 

acids, saturated aliphatic ones especially. 

 

Keywords 

Soil organic matter; soil respiration; carbon sequestration; carbonates; near infrared 

reflectance spectroscopy (NIRS); mid infrared reflectance spectroscopy (MIRS). 

 

Introduction 

Terrestrial ecosystems play a major role in regulating the atmospheric greenhouse gases 

concentrations, that of carbon (C) dioxide (CO2) especially. The CO2 flux balance between 

ecosystems and the atmosphere resulted in a global terrestrial sink of about 2.4 Pg C yr
-1

 over 

the period 2000–2009.
1
 However, an increase in global ecosystem CO2 emissions may shift 

the global terrestrial ecosystem from a sink into a source, accelerating the increase in 

atmospheric CO2 concentration. The air temperature increase during recent years was 

positively and significantly correlated with soil CO2 production, which increased by 

0.1 Pg C yr
-1

 between 1989 and 2008.
2
 Because half of CO2-emitting soil respiration is 

estimated to be produced by microbial activity involved in organic matter decomposition (i.e. 

heterotrophic respiration),
3
 the effect of increasing temperature on heterotrophic soil 

respiration is a major issue.
4,5

 

The decomposition of soil organic matter (SOM) may be limited by three stabilization 

mechanisms, namely biochemical recalcitrance, adsorption on mineral surfaces, and physical 

protection in soil aggregates, the latter being the easiest to increase through appropriate soil 

management practices.
6,7

 These stabilization mechanisms may be affected by temperature 

increase. The vulnerability to temperature of SOM stabilization by sorption on mineral 

surfaces or by biochemical recalcitrance has been studied;
8,9

 but few studies have addressed 

the temperature vulnerability of physically protected SOM.
10

 Physical protection of SOM in 
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aggregates has usually been estimated by comparing SOM mineralization from aliquots 

crushed to 2 and 0.2 mm.
7,11

 Additional CO2 emission from 0.2-mm crushed aliquots is 

attributed to soil organic carbon (SOC) protected in 0.2–2 mm aggregates and deprotected 

through crushing to 0.2 mm. Thus addressing the temperature vulnerability of physically 

protected SOC requires incubating 2- and 0.2-mm crushed soil aliquots at different 

temperatures over several weeks, which is costly and time-consuming. 

Near and mid infrared reflectance spectroscopies (NIRS and MIRS, respectively) are cost- 

and time-effective approaches that have been reported to provide accurate determinations of 

SOC concentration,
12,13

 but also of different SOC fractions such as microbial biomass,
14,15

 

particle-size fraction SOC,
16,17

 C-13 NMR (nuclear-magnetic resonance) fractions.
18,19

 

The present work aimed to evaluate the applicability of NIRS and MIRS for studying soil CO2 

emissions, physical C protection in aggregates and its temperature vulnerability, as 

determined from laboratory incubations. This was done for a population of topsoil samples 

from Tunisia, mostly originating from calcareous soils (i.e. soils with carbonates). 

 

Materials and methods 

Sites and soils 

The study analyzed 97 topsoil samples originating from 45 localities of the northern half of 

Tunisia. Sites possibly collected within a same locality were generally kilometres apart, under 

different land uses. The soils were sampled at 0–10 cm depth using a spade. They were 

mainly Calcaric Cambisols and Regosols, Kastanozems, and Chromic and Vertic Cambisols.
20

 

Most were calcareous, with soil inorganic carbon (SIC) ranging from 0 to 93 g C kg
-1

 soil and 

averaging 44 g C kg
-1

 soil (see the section on soil C determination below). Most samples were 

loamy; 23 were clayey and 14 sandy. The main land uses were forest, rangeland, orchards and 

crops. The SOC concentration ranged from 2 to 121 g C kg
-1

 soil and averaged 21 g C kg
-1

 

soil (Table 1). 

 

Soil preparation and soil organic and inorganic carbon determinations 

The samples were air-dried, gently broken up along natural faults, homogenized, and sieved 

to 2 mm. Gravels greater than 2 mm were discarded. One part of the air-dried, 2 mm sieved 

soil samples was then ground and forced through a 0.2 mm sieve.  

Soils were decarbonated prior to SOC determination: 10 mL of water were added to 1 g of 

soil and 0.5 M HCl solution was then dripped onto the sample until there was no more 
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effervescence; then the samples were washed in water until pH reached 7. The SOC 

concentration was then determined on finely ground 25–30 mg aliquots by dry combustion 

using an elemental analyser (Thermo Fisher Scientific CHN NA2000, Waltham, MA, USA). 

The SIC content was calculated as 0.12 times the equivalent calcium carbonate content, 

assuming that most carbonates in the studied soils were calcium carbonates. The equivalent 

calcium carbonate content was determined on finely ground air-dried soil samples using a 

Bernard calcimeter, after calibration with a pure calcium carbonate standard, according to the 

French procedure NF ISO 10693.
21

 

 

Mineralization assays 

Twelve g (± 1 g) of each of the 2- and 0.2-mm crushed soil samples were incubated in 

triplicate at 18°C and 28°C for 21 days, with no pre-incubation, resulting in a total of ca. 

1200 incubations. Deionized water was added to a water potential of -0.01 MPa. Each sample 

was then placed in a 1 L airtight jar with a vial containing 19 mL of aqueous sodium 

hydroxide solution (NaOH 0.5 M) to trap the CO2 emitted. A vial containing 19 mL of 

deionized water was added to the jar to keep the relative air humidity constant in the 

headspace. The amount of CO2 emitted was determined by back titration (HCl 0.5 M; pH 8.6) 

of the NaOH trap with an excess of barium chloride (BaCl2 1 M). At day 7, the jars were 

opened and the NaOH replaced; moreover the sample water content was checked, and 

deionized water was added to keep it constant. Thus trapped CO2 was measured for two 

periods, from day 1 to day 7 and from day 7 to day 21, and was calculated for the total 21 day 

period. The difference between CO2 emissions from 0.2- and 2-mm crushed samples accounts 

for C physically protected within 0.2–2 aggregates,
7,11

 and is denoted "protection" in the 

present paper. It was calculated over 7 days and over 21 days. The difference between C 

protection at 18°C and 28°C was defined as the "vulnerability" of C protection to temperature 

elevation. It was also calculated over 7 and 21 days. The soil CO2 emission, protection and 

vulnerability were generally expressed in mg C g
-1

 soil, but sometimes as proportions of SOC. 

The significance of differences between means was determined by paired t tests (e.g. between 

CO2 emission at 18 and 28°C). 

The standard deviation of the laboratory method (SDL) was calculated for CO2 emission over 

21 days, taking account of the three replicates per incubation, as proposed by Lindedam et 

al.:
22
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Equation (1)  SDL    
               

  
   

 
   

       
 

where X stands for CO2 emission and    for its average, i is the individual laboratory replicate 

out of n replications (n = 3), and j the individual sample out of m samples (m = 97). It was 

calculated separately for 0.2- and 2-mm crushed samples at 18°C and 28°C. However, SDL 

could not be calculated for physical C protection, which was defined as the difference 

between mean CO2 emission from 0.2 mm sample and mean CO2 emission from 2 mm 

sample, each calculated over three replicates. 

 

Spectral acquisition and pre-treatment 

Before incubations, soil reflectance was measured on air-dried then overnight oven-dried 

(40°C) samples, on two aliquots of 2 mm samples and on one aliquot of 0.2 mm samples 

(because the latters were supposed to be more homogeneous).
23

 On the one hand, aliquots of 

about 5 g were placed in a ring cup and scanned in the NIR region between 1100 and 2500 nm 

at 2 nm intervals (700 data points) using a Foss NIRSystems 5000 spectrophotometer (Laurel, 

MD, USA). On the other hand, aliquots of about 0.5 g were placed in a 17-well plate and 

scanned in the MIR region from 4000 to 400 cm
-1

 (i.e. 2500–25,000 nm) at 3.86 cm
-1

 

resolution (934 data points), using a Nicolet 6700 diffuse reflectance Fourier transform 

spectrophotometer (Thermo Fisher Scientific Instruments, Madison, WI, USA). In both cases, 

the aliquot spectrum, automatically averaged from 32 elementary spectra, was recorded as 

apparent absorbance, which is the logarithm of the inverse of reflectance log(1/reflectance). 

For both NIRS and MIRS, more than 200 aliquots can be scanned daily. For 2 mm samples, 

the spectra of the two aliquots were averaged. Data analysis was conducted using the WinISI 

software (Infrasoft International, LCC, State College, PA, USA). 

Several common spectrum mathematical pre-treatments were tested: no derivation (denoted 

01) or first-order derivation with 4-point gap and smoothing (denoted 14), alone (denoted 

None) or in conjunction with standard normal variate transform (SNV), detrend (D), both 

SNV and detrend (SNVD), or standard multiplicative scatter correction (MSC), leading to a 

total of 10 pre-treatments (i.e. None01, None14, SNV01, SNV14, SNVD01, SNVD14, D01, 

D14, MSC01 and MSC14). It has often been observed that such procedures increase the 

signal-to-noise ratio, thus improve the prediction of sample properties using NIR spectra: 

derivation reduces baseline variation and enhances spectral features,
24

 SNV transform reduces 

the particle-size effect,
25

 the detrend transformation removes the linear or curvilinear trend of 
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each spectrum,
25

 and MSC transform removes additive and/or multiplicative signal effects.
26

 

Second-order derivative was not used because previous work had showed that it did not 

improve NIR prediction of soil properties.
27

 

 

Multivariate analyses 

For each of the four spectrum populations studied (NIR and MIR spectra of 0.2 and 2 mm 

samples), spectra were fitted to reference variables, namely soil C (total C, SOC and SIC), 

CO2 emission, C protection and its vulnerability, using modified partial least square (mPLS) 

regression. The modification to PLS regression was to scale the reference data and reflectance 

data at each wavelength to have a standard deviation of 1.0 before each PLS term.
28

 Cross-

validation was performed to evaluate if the reference variables could be predicted from the 

spectra. For this purpose, each soil sample population was divided into six groups; five groups 

were used for fitting the model and one for testing it. The procedure was performed six times 

to use all samples for both model fitting and testing, then the residuals of the six predictions 

were pooled to calculate the standard error of cross-validation (SECV). The optimal number 

of mPLS terms to be used was that which resulted in the lowest SECV. 

Before being divided into cross-validation groups, the sample population was ranked 

according to sample name, which reflected geographical proximity. Then the population was 

divided into six groups in a cyclical way, according to the venetian blinds method: the first, 

seventh, thirteenth samples, etc., were put in the first group; the second, eighth, fourteenth 

samples, etc., in the second group, and so on; until the sixth group, which included the sixth, 

twelfth, eighteenth samples, etc. Thus samples from a given region were in different cross-

validation groups. Venetian blinds cross-validation is not relevant for blocked data with 

replicates, but there were no replicates in the present study: even though some samples 

originated from the same localities, they were under different land uses, and generally 

kilometres apart. Dividing the population into contiguous blocks can be considered more 

robust; but preliminary tests showed that some of such geographical blocks were poorly 

represented by the other blocks, which resulted in overly pessimistic predictions thus did not 

seem appropriate. Random group selection has often been used; but it results in variable 

prediction accuracy depending on the group selection, and requires a rather high number of 

iterations, and their averaging, to achieve more stable results.
29

 

Whatever the spectrum population, no spectral outliers were removed, though some NIR 

spectra sometimes had very high Mahalanobis distance H,
30

 up to 9. Indeed, preliminary tests 
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showed that systematically removing such samples from further investigations did not 

improve prediction accuracy, thus was not useful. This might be due to limited robustness, or 

on the contrary, to the fact that the models applied fairly well to the samples considered 

though their spectra were distant from the rest of the population. For MIR spectra, H was 

always ≤ 3.5, and most generally < 3, which has been considered a threshold for spectral 

outlier removal.
28

 Similarly, no calibration outliers were removed, though some authors 

recommended to remove samples with residues > 2.5 SECV and to perform another cross-

validation.
28

 Removing no outliers, either spectral or for calibration, was supposed to allow 

for model robustness, though external validation was not achieved.  

The accuracy of the cross-validation was assessed using SECV, the part of variance explained 

(i.e. 1 – residual variance, or cross-validation determination coefficient, denoted R²), and the 

ratio of standard deviation to SECV (commonly denoted RPD). After Chang et al. (2001)
14

 

and Dunn et al (2002),
31

 NIRS models with RPD ≥ 2 were considered accurate and those with 

1.6 ≤ RPD < 2.0 acceptable for the prediction of soil properties. Similar criteria were applied 

for MIRS predictions. 

Paired t tests were used to compare the averages of the best RPDs over different variables 

between different conditions (e.g. NIRS vs. MIRS prediction of CO2 emission). 

 

Results 

Reference data: soil C, CO2 emission, physical C protection, and temperature vulnerability of 

this protection 

The distributions of conventionally determined variables are presented in Table 1 (SOC, SIC, 

and 21-day incubation data), in mg C g
-1

 soil. Expressed as proportion of SOC, mean soil CO2 

emission over 21 days increased significantly with finer crushing (p < 0.001): from 2.9 to 

5.0% SOC at 18°C, yielding a mean C protection of 2.1% SOC; and from 4.7 to 6.6% SOC at 

28°C, resulting in a mean physical protection of 2.0% SOC. Thus the temperature 

vulnerability of C protection averaged +0.1% SOC over 21 days, indicating that protected C 

decreased when temperature increased (but not significantly; p > 0.1). The increase in CO2 

emission from 18 to 28°C was significant and averaged 1.7% SOC for soil < 2 mm and 

1.6% SOC for soil < 0.2 mm (p < 0.001). 

About 5% of the samples showed significant decrease in CO2 emission after finer crushing 

(from 2 to 0.2 mm). No particular property could be associated with this result, especially 

regarding total C, SOC, SIC, or texture. 
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General considerations on NIRS and MIRS predictions 

Soil CO2 emission, C protection and its temperature vulnerability expressed as proportions of 

total C or SOC (mg C-CO2 g
-1

 soil C or mg C-CO2 g
-1

 SOC, respectively) were less accurately 

predicted than they were when expressed as proportions of total soil (mg C-CO2 g
-1

 soil), thus 

are not presented here. It is worth noting that CO2 emission from 0.2 mm samples was 

predicted using spectra of 0.2 and 2 mm samples; similarly CO2 emission from 2 mm samples 

was predicted using spectra of 0.2 and 2 mm samples. Indeed, more accurate predictions are 

generally achieved using spectra of 0.2 mm soil samples;
27

 but fine grinding is somewhat 

tedious, thus studying predictions using spectra acquired with both sample preparations is 

relevant. 

For each studied variable, the results presented are those achieved using the pre-treatment that 

yielded the best prediction (i.e. maximum RPD). This best pre-treatment depended on the 

spectrum population and predicted variable; nevertheless, when using spectra of 2 mm 

samples, the best pre-treatment was often D14, with no clear trend otherwise. 

 

NIRS and MIRS predictions 

Predictions results are presented in Tables 2 (NIRS) and 3 (MIRS). The predictions of soil C 

were very accurate (RPD ≥ 3.9) except for SOC using the MIR spectra of 2 mm samples 

(RPD = 2.5). The MIR spectra yielded particularly accurate predictions of SIC (RPD ≥ 5.8), 

especially using 0.2 mm samples (RPD = 7.8). 

Generally, CO2 emission was accurately predicted using NIR spectra (1.9 ≤ RPD ≤ 3.4), and 

using MIR spectra to a lesser extent (1.6 ≤ RPD ≤ 3.1). On the whole, CO2 emission was 

better predicted for 0.2- than for 2-mm incubated samples (mean RPD = 2.4 vs. 2.2, 

respectively; p = 0.07), at 28°C than at 18°C (RPD = 2.5 vs. 2.1; p = 0.01), over the first 

7 days than over 21 days (RPD = 2.4 vs. 2.2; p = 0.06), with NIRS than with MIRS 

(RPD = 2.5 vs. 2.1; p < 0.001), and using scans from 0.2 than from 2 mm samples 

(RPD = 2.4 vs. 2.2;  p = 0.03). Thus CO2 emission was best predicted for 0.2 mm samples at 

28°C over the first 7 days using the NIR spectra of 0.2 mm samples (RPD = 3.4). Considering 

CO2 emission over 21 days, SECV and SDL were the same order of magnitude (0.19-0.47 vs. 

0.09-0.27 mg C g
-1

 soil, respectively; see SDL in Table 1), and were even similar for the 

incubation of 0.2 mm samples at 18°C (0.24-0.31 vs. 0.27 mg C g
-1

 soil, respectively). 
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The prediction of C protection was less accurate. It was nevertheless acceptable, and 

sometimes accurate over 7 days using spectra of 0.2 mm samples or using NIR spectra 

(1.6 ≤ RPD ≤ 2.3), but not over 21 days (RPD ≤ 1.6), especially at 28°C (RPD = 1.0 using 

NIR or MIR spectra of 0.2 or 2 mm samples). MIRS did not allow accurate prediction of C 

protection (RPD ≤ 1.9). On the whole, C protection was better predicted over 7 than over 

21 days (mean RPD = 1.8 vs. 1.3, respectively; p = 0.01), using NIR than MIR spectra 

(RPD = 1.6 vs. 1.5; p = 0.03), and less clearly, using scans from 0.2 than from 2 mm samples 

(RPD = 1.6 vs. 1.5; p = 0.14), while temperature did not affect prediction accuracy 

(RPD = 1.5 vs. 1.6 at 18°C and 28°C, respectively; p = 0.78). Carbon protection was thus best 

predicted over 7 days at 28°C using NIR spectra of 0.2 mm samples (RPD = 2.3). 

The vulnerability of C protection to temperature could not be modelled correctly using NIR or 

MIR spectra (RPD ≤ 1.1). 

As examples, the Figure 1 presents some comparisons between conventional determinations 

and predictions for soil CO2 emission, C protection and its temperature vulnerability over 

7 days (predictions made using the NIR spectra of 0.2 mm samples), and for SIC (predictions 

made using the MIR spectra of 0.2 mm samples). 

 

General considerations on the determinants of NIRS and MIRS predictions 

The predictions of CO2 emission (or C protection) could not just be explained by NIRS or 

MIRS prediction of SOC and correlation between SOC and CO2 emission (or C protection). 

Indeed, determination coefficient R² between SOC and CO2 emission over 7 days was lower 

than prediction R² for CO2 emission over 7 days using NIR spectra of 0.2 mm samples (0.75-

0.85 vs. 0.80-0.91, respectively). Similarly, the loose correlation between SIC and CO2 

emission (R² < 0.45) could not explain the indirect prediction of CO2 emission through the 

prediction of SIC. One might imagine indirect NIRS or MIRS prediction of CO2 emission 

through the prediction of SOC, SIC, carbon-to-nitrogen ratio, clay content, other variables 

possibly, and multiple correlation between CO2 emission and all these variables. However, the 

present work has not attempted to identify all the possible variables that would be involved in 

such multiple correlation. Moreover, measuring all these variables conventionally would be 

much more tedious and costly than acquiring NIR or MIR spectra. 

Furthermore, examining the regression coefficients of prediction models provided information 

on the chemical compounds involved in the variables studied. Indeed, an mPLS prediction 

model expresses a variable of interest (e.g. CO2 emission) as a linear combination of 
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absorbances at all wavelengths. Spectral regions with large regression coefficients contribute 

more heavily to the prediction than those with small regression coefficients. Looking at 

chemical compounds assigned to heavily contributing regions helps identifying the 

determinants of the studied variables. Here this was done for the predictions of CO2 emissions 

and C protection over the first 7 days using spectra of 0.2 mm samples, with no pre-pre-

treatment (None01) because pre-treated spectra are often more difficult to interpret (though 

they often result in more accurate predictions). 

 

Chemical determinants of NIRS and MIRS predictions 

For NIRS, assignations were made according to Workman and Weyer,
32

 in the absence of 

other citation. According to regression coefficients, the chemical compounds that seemed to 

contribute most to NIRS predictions were (Figure 2): 

- for CO2 emission: positively, aliphatic organic compounds (1710–1720 nm), and to a lesser 

extent but markedly at 28°C, amides or proteins (2110–2130 nm; less markedly, 2060–

2065 nm; at 28°C, 1560–1590 nm) and hydroxyl (1425–1430 nm); negatively, chlorinated 

organic compounds (1860 nm), and to a lesser extent, at 28°C, aromatic amines (1500–

1505 nm); 

- for physical C protection: positively, aliphatic organic compounds (1710–1720 nm at 18°C, 

1690–1720 nm à 28°C), amides or proteins especially at 28°C (2060–2070 and 2120 nm at 

18°C; 1590 nm at 28°C), and to a lesser extent, hydroxyl (1425–1430 nm, more marked at 

18°C); negatively, mainly halogenated organic compounds (1640–1650 nm, assigned to 

brominated compounds, more marked at 18°C; 1860–1870 nm, assigned to chlorinated 

compounds, more marked at 28°C) and at 28°C, lignin (1785–1790 nm),
33

 and to a lesser 

extent, aromatic amines (1500–1510 nm) and amides or proteins (1520–1530 nm). 

By comparison, the compounds that contributed heavily to NIRS prediction of SOC were 

(Figure 4, Supplementary Materials): positively, aliphatic (1690–1710 nm) and aromatic 

organic compounds (1670 nm) and amides or proteins (2120–2130 nm); negatively, aromatic 

amines (1500–1505 nm) and chlorinated compounds (1860 nm). The regions that contributed 

markedly to NIRS prediction of SIC were (Figure 4, Supplementary Materials): positively, 

hydroxyl (1430 nm), calcite (1760–1770 nm) and carbonates (2480 nm); negatively, silica 

(1395 nm), and possibly carbonates (1560–1580 and 2390 nm).
34,35

 

For MIRS, assignations were made according to Socrates,
36

 in the absence of other citation. 

The graphs that represented regression coefficients at every wavenumber displayed close 
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zigzags between 1200 and 400 cm
-1

 (Figure 3), which in general rendered interpretation 

difficult in this region. The main chemical compounds that seemed to contribute heavily to 

MIRS predictions were: 

- for CO2 emissions: positively, aliphatic compounds at 18°C (2930–2920 cm
-1

),
37,38

 saturated 

aliphatic carboxylic acids (2780–2660 cm
-1

 at 18°C, 1740–1690 cm
-1

 at both temperatures), 

carboxylic acid salts (1620–1590 cm
-1

, except for 2 mm samples at 28°C); negatively, 

carbonates mainly (2510–2490 cm
-1

 at 18°C; 1790–1800 and 865–860 cm
-1

 at both 

temperatures),
39,40,29

 but also amides (1650–1635 cm
-1

); 

- for physical C protection: positively, aliphatic compounds at 28°C (2925–2920 cm
-1

)
37,38

, 

saturated aliphatic carboxylic acids (2750–2670 and 1705–1680 cm
-1

), carboxylic acid salts 

(1600–1575 cm
-1

), and to a lesser extent at 18°C, possibly nitriles (2420–2370 and 2300–

2265 cm
-1

); negatively, carbonates mainly (2540–2490 and 1805–1785 cm
-1

, and at 18°C, 

865–860 cm
-1

),
39,40,29

 but also amides (1650 cm
-1

). 

By comparison, the compounds that contributed most to MIRS prediction of SOC were 

(Figure 5, Supplementary Materials): positively, saturated aliphatic carboxylic acids mainly 

(1730 cm
-1

), and negatively, carbonates (1800–1790 cm
-1

). Moreover, carbonates were the 

main compounds that contributed to MIRS prediction of SIC, positively (2510, 1800–1790 

and 820–815 cm
-1

),
39,41,29

 but also negatively (860 cm
-1

;
39

 Figure 5, Supplementary Materials). 

 

Discussion 

CO2 emissions, physical C protection and its temperature vulnerability 

Incubation data confirmed previous results: finer crushing (from 2 to 0.2 mm) increased CO2 

emission significantly. This indicated that the compartmentalization of substrates and 

decomposers reduces the decomposability of otherwise labile material.
42,11

 Temperature 

elevation also increased CO2 emission significantly, which is a well established result.
43,5

 

Indeed, finer crushing, as well as temperature elevation, induces higher diffusion rates, higher 

C solubilisation (water soluble C content), higher cellular enzyme activity, and faster 

substrate uptakes.
11,44

 This affects microorganism metabolism and growth rates, and leads to 

higher respiration rates. 

Unlike C stabilization by biochemical recalcitrance
9
 or sorption on mineral surfaces

8
, C 

protection within 0.2 to 2 mm aggregates had little effect on the temperature vulnerability of 

CO2 emissions (the temperature elevation caused 1.7% vs. 1.6% mean increase in CO2 

emissions of 2 vs. 0.2 mm samples, respectively). This weak influence of C protection on the 
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temperature vulnerability of CO2 emission, also reported by Plante et al.,
10

 was probably 

because SOC protected against microbial mineralization is mainly located within 

microaggregates (< 0.2 mm) or associated with minerals.
6,45

 

 

NIRS and MIRS predictions of soil C, CO2 emission, C protection and its temperature 

vulnerability 

Accurate NIRS and MIRS predictions of soil C concentration, either total or organic, as 

observed in the present study, have been reported and discussed extensively.
12

 Excellent 

predictions of SIC have been reported but to a lesser extent, using either NIRS
46

 or MIRS.
29

 

As already mentioned and discussed, most spectral regions that contributed heavily to SIC 

prediction have been assigned to carbonates, but some contributing regions have also been 

assigned to other constituents (e.g. silica).
35,29

 

For the studied samples, CO2 emission was accurately predicted in general by NIRS, and by 

MIRS to a lesser extent (the comparison NIRS vs. MIRS is discussed in the next section). The 

literature has also reported accurate prediction of basal soil respiration, using NIRS mainly, 

with RPD ranging from 2.1 to 2.6.
14,47,48

 However, comparison between studies remains 

difficult because model performance depends on sample set diversity,
27

 a fortiori when 

chemometric procedures differ. The important point is that NIR and MIR spectra of dry soil 

samples contain information on their CO2 emission during incubation. Indeed, CO2 emission 

results from the consumption of soil organic matter by microorganisms and thus reflects its 

chemical composition (e.g. labile materials are used first). 

The predictions of physical C protection were less accurate than for CO2 emission but were 

acceptable and sometimes accurate after 7 days, with NIRS and to a lesser extent with MIRS. 

The fact that MIR and even NIR spectra might be used for quantifying SOC fractions has 

been reported by many works,
14-19

 and some even addressed the labile, stabilized or resistant 

nature of SOC fractions specifically.
16,49

 So it is not surprising that the physically protected 

fraction of SOC could be quantified using infrared spectroscopy. In the present study, poor 

predictions of C protection were however achieved in general after 21 days, especially at 

28°C. It is likely that some problems occurred at the end of the incubations at 28°C for two or 

three samples, which were very poorly predicted; but these problems have not been identified. 

The prediction error (SECV) and the uncertainty of conventional determination (SDL) of CO2 

emission were the same order of magnitude, and even similar in some instances. Thus a 

noticeable proportion of the so-called "prediction error" could actually be attributed to the 



13 

 

uncertainty of conventional determinations. Less accurate predictions for C protection than 

for CO2 emissions might be attributed to error propagation, as the former was calculated by 

difference between CO2 emissions from 0.2 mm and 2 mm samples. The temperature 

vulnerability of C protection was very poorly predicted, probably due to error propagation to a 

greater extent, as it was calculated by difference between C protection at 18 and 28°C. 

 

Predictions using NIR vs. MIR spectra of 0.2 vs. 2 mm samples 

Whatever the sample preparation, MIRS outperformed NIRS for SIC prediction; nevertheless 

NIRS prediction of SIC was very accurate. By contrast, the best prediction of SOC was 

always achieved using NIRS, while the best prediction of total C was either achieved using 

NIRS or MIRS depending on sample preparation. For the other variables, the best predictions 

were achieved using NIR spectra of 0.2 mm samples, then NIR spectra of 2 mm samples in 

general, and the worst predictions using MIR spectra of 2 mm samples. For the sample set and 

variables studied, NIRS could thus be considered preferable because it yielded better 

predictions except for total C and SIC, which it nevertheless predicted very accurately. 

Moreover, predictions were more accurate using 0.2 than 2 mm sample spectra, with the 

notable exceptions of SIC, and to a lesser extent SOC, using NIRS. 

Achieving better NIRS predictions using spectra acquired on more finely crushed soil samples 

(i.e. 0.2 vs. 2 mm) is an overall trend that has already been reported and discussed, as well as 

the attenuation of this trend for coarse-textured samples.
23,27

 Better MIRS prediction of soil 

properties using finely than coarsely crushed samples has also been reported.
50

 Indeed, 

whatever the spectral range, fine crushing homogenizes the sample and reduces light 

diffusion, which both allow better predictions. This is particularly true for MIRS because the 

spectrometer's beam aperture is often around 1-2 mm in diameter.
50

 

Comparisons between NIRS and MIRS predictions of soil properties have led to somewhat 

contradictory reports in the literature. As MIR spectra seem much more informative a priori 

than NIR spectra due to their numerous peaks relating to fundamental bond vibrations, it has 

been considered that they should logically yield more accurate predictions, and a number of 

papers have supported this view.
e.g. 12,24,51

 However, other studies have been much less 

conclusive, especially when samples were prepared similarly (e.g. similar crushing), and 

either reported better MIRS or NIRS predictions depending on the soil properties and sample 

sets considered.
18,52-57

 For instance, for litters and topsoils from north-western Europe, 

Ludwig et al.
18

 achieved more accurate NIRS predictions of SOC, nitrogen (N) and lignin 
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contents but more accurate MIRS predictions of microbial biomass and SOC/N ratio. For 

Maryland soils, Igne et al.
54

 reported better SOC and texture predictions with MIRS but better 

N predictions with NIRS, when using comparable bench-top devices. For Canadian soils, 

Yang et al.
57

 achieved better MIRS predictions of fine-fraction SOC and N but better NIRS 

predictions of coarse-fraction SOC and N. The absence of superiority of MIRS seems 

noticeable for tropical soils. For example, on Brazilian Ferralsols, Madari et al.
53

 obtained 

slightly better N predictions with MIRS but clearly better SOC predictions with NIRS. In 

soils from sub-tropical China, Shao and He
56

 observed better predictions of available N with 

NIRS but better predictions of available phosphorus and potassium with MIRS (SOC was not 

studied). Rabenarivo et al.
 13

 even reported systematically better NIRS than MIRS predictions 

for Malagasy Ferralsols. They suggested that the overlap of absorption regions relating to 

metal sesquioxides and organic compounds could represent an obstacle for MIRS prediction 

of soil organic properties: for instance, metal oxides may absorb in the 1020–970 cm
-1 

region 

(when more than one oxygen atom is bound to a single metal atom) and in the 1100–825 cm
-1

 

region (when containing a metal-to-oxygen double bound);
36

 while carbohydrates absorb in 

the 1080–1030 and 960–730 cm
-1

 regions and polysaccharides in the 1170–950 cm
-1

 region.
58

 

Information useful for SOC prediction could thus be masked in MIR spectra, at least partially, 

due to the abundance of minerals such as iron and aluminum sesquioxides. Sesquioxides have 

not been studied in the Tunisian soils considered in the present work; but it is well established 

that dry and warm conditions are favourable to the formation of haematite, which, in 

calcareous soils, is not leached from the topsoil.
59

 The worse overall performance of MIRS, 

compared to NIRS, in the prediction of some properties of soils such as Mediterranean 

carbonated soils might thus be attributed to mineralogy. Nevertheless, SIC was better 

predicted and the influence of carbonates on CO2 emission was clearer using MIRS than 

NIRS (see the next section). Though the review of Reeves emphasizing soil C analysis 

underlined that MIRS is often more accurate and produces more robust calibrations than 

NIRS when analyzing dried ground samples,
12

 this can hardly be generalized for all soils and 

soil properties. 

 

Chemical determinants of NIRS and MIRS predictions 

The regression coefficients of NIRS prediction models indicated that CO2 emission over 

7 days related positively to the amount of aliphatic organic compounds, and to a lesser extent 

but markedly at 28°C, to amides or proteins. Aliphatic organic compounds are easily 
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degradable substrates, preferentially used by soil microorganisms.
43

 Their influence on NIRS 

prediction of CO2 emission over 7 days reflects the importance of labile substrate availability 

during the first incubation days. Amides or proteins might be considered a proxy for soil 

microbial biomass, because microorganisms concentrate soil organic N. The influence of 

amides or proteins on CO2 emission would thus reflect that of microbial biomass on 

respiration. This influence was relatively more marked at 28 than at 18°C, possibly because 

substrate availability was less limiting at 28°C due to better substrate diffusion and use by 

microorganisms.
44,9

 Furthermore, regression coefficients of NIRS models suggested that CO2 

emission was affected negatively by organochlorines and aromatic amines. This might relate 

to the toxicity of several of these molecules, which are used as pesticides or are pesticide 

metabolites.
60

 According to regression coefficients of NIRS predictions, physical C 

protection, defined as additional CO2 emission from 0.2 mm samples (compared to 2 mm 

samples), related positively to aliphatic organic compounds, dominantly at 18°C, and to 

amides or proteins, markedly at 28°C. This suggested that the mineralization of C deprotected 

by fine grinding depended firstly on substrate availability at 18°C and on microbial biomass at 

28°C, as was the case for CO2 emission. The negative contribution of halogenated compounds 

and aromatic amines to physical C protection indicated that they would cause higher reduction 

in CO2 emission from 0.2 that from 2 mm samples, possibly because 0.2–2 mm aggregates 

would contain microhabitats not affected by these compounds. 

Interestingly and surprisingly, regression coefficients of MIRS predictions showed a negative 

influence of carbonates on soil CO2 emissions. This strongly suggested that carbonates did not 

contribute to CO2 emissions, and even, that emissions could be reduced as a consequence of 

carbonate formation.
61,62

 Thus MIRS could help evaluating the carbonate impact on soil CO2 

emissions, which is a challenging issue in calcareous soils.
63,64

 Regression coefficients in the 

MIR also indicated that CO2 emissions and C protection related to carboxylic acids, saturated 

aliphatic ones especially, which is consistent with the fact that fulvic acids represent the most 

labile form of humus.
58

 On the whole, except regarding carbonates, the regression coefficients 

were more difficult to interpret, and tended to be less informative on the compounds involved, 

in the MIR than in the NIR. This was unexpected because MIR spectra are considered more 

informative a priori;
51,12

 but the higher informativeness of MIR spectra is still debated.
18,13
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Conclusion 

Incubation data confirmed that soil respiration (CO2 emission, strictly speaking) increases 

with temperature elevation and with finer crushing. They also indicated that physical C 

protection in 0.2–2 mm aggregates had little effect on the temperature vulnerability of soil 

respiration, possibly due to preferential SOC protection in aggregates < 0.2 mm. 

In general NIRS and MIRS predictions of soil CO2 emission were accurate and those of 

physical C protection acceptable, which confirmed that NIR and MIR spectra contain useful 

information on SOC quality, even in terms of physical protection. However, the temperature 

vulnerability of C protection could not be modelled correctly by NIRS or MIRS, which was 

attributed to error propagation when calculating this vulnerability conventionally. 

The prediction of SOC was better using NIRS than MIRS. The prediction of SIC was better 

using MIRS, but was very accurate even with NIRS. The best predictions of CO2 emission 

and C protection were generally achieved with NIR spectra of 0.2 mm samples, then with NIR 

spectra of 2 mm samples, and the worst with MIR spectra of 2 mm samples. For the variables 

considered (except SIC), NIRS thus seemed more appropriate for studying Mediterranean 

carbonated soils. 

Regression coefficients of NIRS prediction models suggested that CO2 emission and physical 

C protection depended on aliphatic compounds (i.e. labile substrates), dominantly at 18°C, 

and on amides or proteins (i.e. microbial biomass), markedly at 28°C. Moreover, NIRS 

models suggested that CO2 emission and physical C protection were affected negatively by 

organohalogens and aromatic amines (i.e. pesticides). Regression coefficients of MIRS 

prediction models showed a systematic and negative influence of carbonates on CO2 

emission. This suggested that carbonates did not contribute to CO2 emission, which could 

even be reduced as a consequence of carbonate formation. This indicates that MIRS could 

help addressing challenging issues such as that of carbonate impact on soil CO2 emissions. 

Regression coefficients of MIRS models also suggested that CO2 emission and C protection 

related to carboxylic acids, saturated aliphatic ones especially. However, except regarding 

carbonates, MIRS regression coefficients seemed, on the whole, more difficult to interpret and 

less informative than their NIR counterparts, which was unexpected. 
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Table 1. Distribution of conventionally determined variables: soil organic and inorganic 

carbon (SOC, SIC), CO2 emission, physical C protection, and temperature vulnerability of 

this protection over 21 days (the physical C protection is the difference between CO2 emission 

from 0.2 and 2 mm samples; the temperature vulnerability of this protection is the difference 

between C protection at 18 and 28°C). 

 

               
 

 SOC SIC  CO2 emission 
 

C protection 
 

Vulnera- 

 
 

  
 0.2 mm soil  2 mm soil 

    
bility 

 
 

  
 at 18°C at 28°C  at 18°C at 28°C 

 
at 18°C at 28°C 

  

 
 mg C g

-1
 soil  mg C g

-1
 soil 

 
mg C g

-1
 soil 

 
mg C g

-1
 soil 

               Min  2.0 0.0  0.04 0.16  0.03 0.09 
 

-0.31 -0.27 
 

-0.84 

Max  121.0 92.9  3.55 4.50  1.84 3.64 
 

1.77 1.14 
 

1.24 

Mean  21.1 43.6  0.84 1.20  0.48 0.84 
 

0.35 0.36 
 

-0.01 

Median  14.7 49.2  0.63 0.84  0.37 0.60 
 

0.27 0.29 
 

-0.01 

SD  23.1 25.6  0.65 0.90  0.37 0.73 
 

0.33 0.33 
 

0.40 

SDL  ND ND  0.27 0.24  0.09 0.18 
 

ND ND 
 

ND 

               
SD: standard deviation of the means over three replicates per sample (97 samples). SDL: standard 
deviation over all incubations, including three replicates per sample, cf. equation (1).

22
 ND: not 

determined. 
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Table 2. NIRS cross-validation results (total C, SOC and SIC are in mg C g
-1

 soil; CO2 stands 

for CO2 emission, over 7 or 21 days, at 18 or 28°C, from 0.2 or 2 mm samples, and is in 

µg C g
-1

 soil; C protection is the difference between CO2 emission from 0.2 and 2 mm 

samples, in the same unit; vulnerability is the difference between C protection at 18 and 28°C, 

in the same unit). 

 

Variable Best pre- 

treatment 

N Mean SD SECV R² RPD Terms 
      

         
Predictions using NIR spectra of 0.2 mm samples 

Total C MSC14 97 64.7 38.2 8.0 0.96 4.8 11 
SOC MSC14 97 21.1 23.1 4.9 0.96 4.7 13 
SIC None14 97 43.6 25.6 6.3 0.94 4.0 9 
CO2 7d 0.2mm 18° SNVD01 97 480 381 154 0.83 2.5 6 
CO2 7d 0.2mm 28° D01 97 683 524 154 0.91 3.4 7 
CO2 7d 2mm 18° D01 97 249 169 76 0.80 2.2 7 
CO2 7d 2mm 28° None01 97 418 322 119 0.86 2.7 7 
CO2 21d 0.2mm 18° D01 97 839 624 235 0.86 2.7 7 
CO2 21d 0.2mm 28° D14 97 1204 882 380 0.81 2.3 4 
CO2 21d 2mm 18° None01 97 484 369 192 0.73 1.9 7 
CO2 21d 2mm 28° SNVD14 97 844 727 245 0.89 3.0 15 
C protection 7d 18° SNVD14 97 232 247 149 0.63 1.7 2 
C protection 7d 28° SNV01 97 266 226 98 0.81 2.3 7 
C protection 21d 18° None14 97 355 330 211 0.59 1.6 3 
C protection 21d 28° None14 97 360 325 318 0.04 1.0 1 
Vulnerability 7d None01 97 -34 168 169 -0.03 1.0 1 
Vulnerability 21d SNVD14 97 -5 398 377 0.09 1.1 1 

         
Predictions using NIR spectra of 2 mm samples 

Total C SNVD14 97 64.7 38.2 8.4 0.95 4.5 9 
SOC SNV14 97 21.1 23.1 4.7 0.96 4.9 12 
SIC None01 97 43.6 25.6 5.7 0.95 4.5 14 
CO2 7d 0.2mm 18° SNV01 97 480 381 136 0.87 2.8 14 
CO2 7d 0.2mm 28° MSC01 97 683 524 197 0.86 2.7 10 
CO2 7d 2mm 18° D14 97 249 169 83 0.76 2.0 11 
CO2 7d 2mm 28° D14 97 418 322 130 0.84 2.5 10 
CO2 21d 0.2mm 18° MSC01 97 839 624 235 0.86 2.7 15 
CO2 21d 0.2mm 28° D14 97 1204 882 449 0.74 2.0 9 
CO2 21d 2mm 18° D14 97 484 369 190 0.73 1.9 10 
CO2 21d 2mm 28° D14 97 844 727 278 0.85 2.6 10 
C protection 7d 18° SNVD01 97 232 247 139 0.68 1.8 13 
C protection 7d 28° D01 97 266 226 113 0.75 2.0 7 
C protection 21d 18° SNVD01 97 355 330 224 0.54 1.5 9 
C protection 21d 28° SNV01 97 360 325 313 0.06 1.0 1 
Vulnerability 7d D14 97 -34 168 169 -0.02 1.0 1 
Vulnerability 21d SNVD14 97 -5 398 373 0.11 1.1 1 
                  

N is the number of samples used for cross validation. SD is the standard deviation of the means over three 
replicates per sample. SECV is the standard error of cross validation. Mean, SD and SECV are in the unit of the 
variable.  R² is the determination coefficient. RPD is the ratio of SD to SECV. 
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Table 3. MIRS cross-validation results (total C, SOC and SIC are in mg C g
-1

 soil; CO2 

stands for CO2 emission, over 7 or 21 days, at 18 or 28°C, from 0.2 or 2 mm samples, and is 

in µg C g
-1

 soil; C protection is the difference between CO2 emission from 0.2 and 2 mm 

samples, in the same unit; vulnerability is the difference between C protection at 18 and 28°C, 

in the same unit). 

 

Variable Best pre- 

treatment 

N Mean SD SECV R² RPD Terms 
      

                  
Predictions using MIR spectra of 0.2 mm samples 

Total C SNV01 97 64.7 38.2 5.7 0.98 6.7 16 
SOC None01 97 21.1 23.1 5.4 0.95 4.3 13 
SIC D01 97 43.6 25.6 3.3 0.98 7.8 12 
CO2 7d 0.2mm 18° None14 97 480 381 172 0.79 2.2 5 
CO2 7d 0.2mm 28° D01 97 683 524 172 0.89 3.1 15 
CO2 7d 2mm 18° SNVD01 97 249 169 93 0.70 1.8 9 
CO2 7d 2mm 28° SNVD01 97 418 322 146 0.79 2.2 9 
CO2 21d 0.2mm 18° MSC01 97 839 624 290 0.78 2.1 8 
CO2 21d 0.2mm 28° SNV01 97 1204 882 471 0.71 1.9 12 
CO2 21d 2mm 18° MSC14 97 484 369 233 0.60 1.6 3 
CO2 21d 2mm 28° SNVD14 97 844 727 305 0.82 2.4 12 
C protection 7d 18° None14 97 232 247 154 0.61 1.6 5 
C protection 7d 28° None14 97 266 226 117 0.73 1.9 3 
C protection 21d 18° MSC14 97 355 330 226 0.53 1.5 3 
C protection 21d 28° MSC14 97 360 325 310 0.08 1.0 2 
Vulnerability 7d D01 97 -34 168 168 -0.01 1.0 1 
Vulnerability 21d SNV01 97 -5 398 394 0.01 1.0 2 
         

Predictions using MIR spectra of 2 mm samples 

Total C MSC14 97 64.7 38.2 9.8 0.93 3.9 8 
SOC D14 97 21.1 23.1 9.1 0.84 2.5 6 
SIC SNVD01 97 43.6 25.6 4.4 0.97 5.8 7 
CO2 7d 0.2mm 18° D14 97 480 381 189 0.75 2.0 3 
CO2 7d 0.2mm 28° D14 97 683 524 207 0.84 2.5 4 
CO2 7d 2mm 18° None14 97 249 169 97 0.67 1.8 3 
CO2 7d 2mm 28° None14 97 418 322 146 0.79 2.2 3 
CO2 21d 0.2mm 18° D14 97 839 624 312 0.75 2.0 3 
CO2 21d 0.2mm 28° D14 97 1204 882 468 0.72 1.9 4 
CO2 21d 2mm 18° MSC14 97 484 369 219 0.64 1.7 4 
CO2 21d 2mm 28° D14 97 844 727 332 0.79 2.2 4 
C protection 7d 18° D14 97 232 247 171 0.52 1.4 2 
C protection 7d 28° D14 97 266 226 121 0.71 1.9 3 
C protection 21d 18° D14 97 355 330 238 0.47 1.4 3 
C protection 21d 28° MSC14 97 360 325 320 0.02 1.0 2 
Vulnerability 7d SNV01 97 -34 168 168 0.00 1.0 1 
Vulnerability 21d SNVD01 97 -5 398 389 0.03 1.0 1 
         

N is the number of samples used for cross validation. SD is the standard deviation of the means over three 
replicates per sample. SECV is the standard error of cross validation. Mean, SD and SECV are in the unit of the 
variable. R² is the determination coefficient. RPD is the ratio of SD to SECV. 
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Figure 1. Comparisons between NIRS predictions and conventional determinations of soil 

CO2 emission, C protection and its temperature vulnerability over 7 days (in µg C-CO2 g
-1

 

soil), and between MIRS predictions and conventional determinations of SIC (in g kg
-1

 soil). 

All predictions were made using the spectra of 0.2 mm samples. 

 

 

-20

0

20

40

60

80

100

0 20 40 60 80 100

SIC
(using MIRS)

1:1R²=0.98

-500

0

500

1000

1500

2000

0 500 1000 1500 2000

CO2 emission
2 mm soil, 28 C

1:1R²=0.86

-600

-300

0

300

600

900

-600 -300 0 300 600 900

Vulnerability

1:1R²=-0.03

-500

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

CO2 emission
0.2 mm soil, 28 C

1:1R²=0.91

0

400

800

1200

-400 0 400 800 1200

C protection
28 C

1:1R²=0.81

-200

0

200

400

600

800

1000

0 200 400 600 800 1000

CO2 emission
2 mm soil, 18 C

1:1R²=0.80

-500

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

CO2 emission
0.2 mm soil, 18 C

1:1R²=0.83

-400

0

400

800

1200

1600

0 400 800 1200 1600

C protection
18 C

1:1R²=0.63

Conventional determinations

P
re

d
ic

ti
o

n
s



25 

 

Figure 2. Regression coefficients of NIRS prediction models of CO2 emission from 0.2 and 

2 mm samples, and of soil C protection, at 18°C and 28°C, over the first 7 days of incubation 

(predictions made using NIR spectra of 0.2 mm samples, with no pre-treatment). 
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Figure 3. Regression coefficients of MIRS prediction models of CO2 emission from 0.2 and 

2 mm samples, and of soil C protection, at 18°C and 28°C, over the first 7 days of incubation 

(predictions made using MIR spectra of 0.2 mm samples, with no pre-treatment). 
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