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Insight into the evolution of the Solanaceae from
the parental genomes of Petunia hybrida
Aureliano Bombarely1†, Michel Moser2†, Avichai Amrad2, Manzhu Bao3, Laure Bapaume4, Cornelius
S. Barry5, Mattijs Bliek6, Maaike R. Boersma7, Lorenzo Borghi8, Rémy Bruggmann9, Marcel Bucher10,
Nunzio D’Agostino11, Kevin Davies12, Uwe Druege13, Natalia Dudareva14, Marcos Egea-Cortines15,
Massimo Delledonne16, Noe Fernandez-Pozo17, Philipp Franken13, Laurie Grandont18, J. S. Heslop-
Harrison19, Jennifer Hintzsche20, Mitrick Johns20, Ronald Koes6, Xiaodan Lv21, Eric Lyons22,
Diwa Malla23, Enrico Martinoia8, Neil S. Mattson24, Patrice Morel25, Lukas A. Mueller17,
Joëlle Muhlemann14, Eva Nouri26, Valentina Passeri6, Mario Pezzotti16, Qinzhou Qi23,
Didier Reinhardt27, Melanie Rich28, Katja R. Richert-Pöggeler29, Tim P. Robbins30, Michael C. Schatz31,
M. Eric Schranz18, Robert C. Schuurink7, Trude Schwarzacher19, Kees Spelt6, Haibao Tang22, Susan
L. Urbanus6, Michiel Vandenbussche25, Kitty Vijverberg32, Gonzalo H. Villarino24, Ryan M. Warner5,
Julia Weiss15, Zhen Yue21, Jan Zethof32, Francesca Quattrocchio6, Thomas L. Sims23

and Cris Kuhlemeier2*

Petunia hybrida is a popular bedding plant that has a long history as a genetic model system. We report the whole-genome
sequencing and assembly of inbred derivatives of its two wild parents, P. axillaris N and P. inflata S6. The assemblies
include 91.3% and 90.2% coverage of their diploid genomes (1.4 Gb; 2n = 14) containing 32,928 and 36,697 protein-coding
genes, respectively. The genomes reveal that the Petunia lineage has experienced at least two rounds of hexaploidization:
the older gamma event, which is shared with most Eudicots, and a more recent Solanaceae event that is shared with
tomato and other solanaceous species. Transcription factors involved in the shift from bee to moth pollination reside in
particularly dynamic regions of the genome, which may have been key to the remarkable diversity of floral colour patterns
and pollination systems. The high-quality genome sequences will enhance the value of Petunia as a model system for
research on unique biological phenomena such as small RNAs, symbiosis, self-incompatibility and circadian rhythms.
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The garden petunia, Petunia hybrida, with its diversity of colour
and morphology is the world’s most popular bedding plant
with an annual wholesale value exceeding US$130 million in

the USA alone1. Petunia has a long history as a model species for
scientific research. To the scientific community, Petunia is best
known for the discovery of RNAi2,3. This breakthrough was the cul-
mination of decades-long research on the synthesis and regulation
of the floral pigments and as a consequence anthocyanin biosyn-
thesis remains one of the best-known pathways of secondary metab-
olism in any plant species4. Development, transposon activity,
genetic self-incompatibility, and interactions with microbes, herbi-
vores and pollinators have also been active research topics utilizing
Petunia as model system.

The genus Petunia is a member of the Solanaceae family native
to South America. It forms a separate and early branching clade
within the family with a base chromosome number of x = 7 rather
than the typical x = 12 found for most Solanaceae crown-group
species, including important crops such as tomato, potato,
tobacco, pepper and eggplant5. The commercial P. hybrida is
derived from crosses between a white-flowered, moth-pollinated
P. axillaris, and species of the P. integrifolia clade, a group of
closely related bee-pollinated species and subspecies (Fig. 1)6,7.
The first hybrids were produced by European horticulturalists in
the early nineteenth century, probably multiple times from different
accessions of the two parent clades7,8. The remarkable phenotypic
diversity in today’s commercial garden petunias is the result of
almost two centuries of intense commercial breeding. Here, we
present the genome sequences of P. axillaris N and P. inflata S6,
two inbred laboratory accessions representing the parents of
P. hybrida (Fig. 1).

Results and discussion
Sequencing, assembly and annotation. For P. axillaris N, we
performed a hybrid de novo assembly using a combination of short
read (Illumina; coverage 137X) and long read technologies (PacBio;
coverage 21X), whereas for P. inflata S6 we produced exclusively
short reads (Illumina; coverage 135X) and performed a short read
de novo assembly (for details see Supplementary Note 1). The resulting
high-quality assemblies have a size of 1.26 Gb for P. axillaris and
1.29 Gb for P. inflata (Table 1). The estimated size of both genomes
is 1.4 Gb, using a k-mer size of 31, which is consistent with previous
microdensity measurements9. We have remapped Illumina reads to
the assemblies and called single nucleotide polymorphism (SNPs) to
estimate the level of heterozygosity, which is estimated as 0.03% for
both accessions. Moreover, we mapped the 248 Core Eukaryotic
Genes (CEGs) to assess the completeness of both assemblies and
found 239 (94%) and 243 (98%) in the assembly of P. axillaris and
P. inflata, respectively. The estimated unassembled fraction of the
genome comprises ∼140 Mb for P. axillaris (181 Mb if sequence
gaps of 41 Mb are included) and ∼110 Mb for P. inflata (197 Mb
with sequence gaps of 87 Mb), which is likely to be due to the large
numbers of repetitive sequences (see below). Genome annotation
identified 32,928 protein-coding genes for P. axillaris and 36,697
protein-coding genes for P. inflata with an average of 5.2 and 5.1
exons per protein coding gene and an average predicted protein
size of 393 and 386 amino acids, respectively.

Repeat landscape of Petunia genomes. Petunia genomes are rich in
repetitive DNA (as are most other plant genomes), but its presence at
60–65% of the assembled genome is relatively low considering its
genome size (Fig. 2a; Supplementary Note 2), indicating a larger
gene, regulatory and low copy sequence space. Long terminal
repeats (LTR)-retroelement-related sequences are abundant near
centromeres (Fig. 2b), and within the assemblies, equal numbers
of fragments and full-length Ty3/Gypsy-like and Ty1/Copia-like
elements were detected. Repeat cluster analysis of unassembled
reads supported the amount and complexity of the diverse and
rearranged repeat landscape of Petunia. Petunia chromosomes

Table 1 | Summary statistics of the genome assemblies.

Species Category Number L50 (kb) N50 (seqs) Longest (Mb) Size (Gb)
P. axillaris N Total contigs 109,892 95.17 3,943 0.57 1.22

Total scaffolds 83,639 1,236.73 309 8.56 1.26
P. inflata S6 Total contigs 213,254 34.99 9,813 0.57 1.20

Total scaffolds 136,283 884.43 406 5.81 1.29

The assemblies are version Peaxi162 for P. axillaris N and version Peinf101 for P. inflata S6.
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Figure 1 | Origin and diversity of P. hybrida flowers. a, P. inflata S6,
P. axillaris N and their F1. b, Selected individuals from P. inflata S6 × P. axillaris
N F2 population. c, Commercial P. hybrida accessions. d, P. hybrida
accessions and mutants. Row 1, from left to right: Mitchell (W115); R27;
transposon line W138; R143; vacuolar ph3 mutant with pale colour compared
with the isogenic R143. Mitchell, R27 and R143 were used for
transcriptomics analysis. Row 2, from left to right: V26; V26 with CHS RNAi
transgene (images provided by J. Kooter, VU Amsterdam); homeotic mutant
pMADS3RNAi/fbp6; an2 mutant; homeotic mutant blind.
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average 200 Mb in length (three times that of Solanum lycopersicum or
S. tuberosum), as a larger genome is distributed over 7 rather than 12
chromosomes (Fig. 2b). Chromosomal organization in Petunia is thus

different compared to other Solanaceae and this together with high
DNA transposon frequency and mobility has an effect on genome
evolution, meiotic recombination and homogenization events10.
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Figure 2 | Genome and repeat organization. a, Comparative genome organization of Solanum lycopersicum, P. axillaris and Nicotiana tomentosiformis. The
circles are proportional to genome size; regulatory sequences and repeat classes are shown in the segments19,29. b, Fluorescent in situ hybridization (FISH) to
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DNA transposons. DNA transposons are five times more abundant
in the Petunia genome than in Nicotiana tomentosiformis and
S. lycopersicum (Fig. 2a). The identification and cloning of the
small endogenous non-autonomous hAT-like defective transposon
of petunia hybrida1 (dTph1), which is highly mobile in the
P. hybrida line W138 (Fig. 1d), has allowed the development of
efficient tools for forward and reverse genetics11. The P. axillaris
and P. inflata genomes contain 16 and 21 dTph1 copies,
respectively (Fig. 2c and Supplementary Note 3). This is similar to
the numbers in most P. hybrida accessions, but far fewer than in
the old P. hybrida accession R27 or the hyperactive accession
W138 with over 200 copies. Comparison of dTph1 insertion loci
in P. axillaris and P. inflata with W138 provides evidence that
both species indeed contributed to W138. dTph1 distribution
patterns in wild P. axillaris accessions from Uruguay showed
comparable low dTph1 copy numbers and a very low overall locus
diversity, suggesting that dTph1 transposition activity is largely
suppressed in natural populations, but was reactivated after the
interspecific crosses leading to the domesticated P. hybrida. Seven
previously identified dTph1-like elements and one newly
discovered element, dTPh12, are present in both genomes,
demonstrating their ancient origin (Fig. 2c.) The expansion of

different transposable elements—dTph1 in W138 and dTph7 in
the two wild species—suggests that, despite extensive homology in
their terminal inverted repeat regions, they may require different
transacting factors for their mobility.

Endogenous pararetroviruses. Integrated copies of Caulimoviridae
are widespread in plant nuclear genomes including the Solanaceae12.
These DNA viruses are characterized by a gag region with RNA
binding domains and a pol region that codes for reverse
transcriptase and RNase H (ref. 13). The P. axillaris and P. inflata
genomes show near-complete but also degenerated and
rearranged copies of Petunia vein clearing virus (PVCV, a
Petuvirus14; Supplementary Note 2). Their structures suggest
that the behaviour and mode of integration are similar for both
species, and parallel the types of complex rearrangements seen
in the banana genome15. Fluorescent in situ hybridization of these
sequences (Fig. 2b) showed signals near the centromeres of two
chromosome pairs in P. axillaris adjacent to LTR retroelements.
Phylogenetic analysis of single insertions showed repeated
incidents of homogenization. Such homologous sequences
contributed to the tandem array structures found in P. hybrida
that are prerequisites of inducible and disease generating viruses14.

Gene families and tandem duplications. Polypeptide sequences
from P. axillaris, P. inflata, S. lycopersicum, S. tuberosum,
Nicotiana benthamiana and Arabidopsis thaliana were clustered
into gene families. This analysis (Supplementary Note 4) grouped
39.2% of the genes into 27,600 gene families, ranging in size from
2 to 1,026 members. Most gene families followed the accepted
evolutionary lineage (Fig. 3a), with the Petunia, Solanum and
Solanaceae clades sharing gene families far more often than other
species groupings (Fig. 2e). Two contrasting sets of gene families
that are almost mutually exclusive were found: Petunia-specific
families and balanced shared families (Fig. 2d). The size
distributions of tandem gene arrays in P. axillaris, P. inflata and
S. lycopersicum were quite similar, with each species containing
about 8,000 genes in 3,000 tandem arrays.

Paleopolyploidy history of Petunia. Analysis of the Petunia data
allowed us to infer the history of polyploidy not only for Petunia but
for the entire Solanaceae. Polyploidy is ubiquitous among angiosperms,
with many independent lineage-specific paleopolyploidy events
associated with changes in genome structure and gene retention
and loss16,17. Most paleopolyploidy events are the result of ancient
genome duplications (paleotetraploidies), but ancient triplications
(paleohexaploidies) have also been identified, for example the
gamma event near the origin of Eudicots (Fig. 3a) first detected by
analysis of the Vitis vinifera (grape) genome18. Similarly, genome
analysis of S. lycopersicum suggested that there was a triplication at
some point during the evolution of the Solanaceae family19. Petunia
as a sister to the x = 12 crown-group clade of the Solanaceae5 is an
ideal species to investigate the timing and nature of this event (Fig. 3a).

Using whole-genome synteny analyses of our de novo assemblies,
we identified genomic regions of collinearity between S. lycopersicum
and P. axillaris, using V. vinifera as an outgroup (Supplementary
Note 5). Inferring their relative timing by analysing synonymous
changes (Ks), we show that Petunia shares the older gamma
paleopolyploidy event with other higher eudicots, and the more
recent paleohexaploidy event with S. lycopersicum. We then can
infer that the Solanaceae event occurred at least 30 Myr ago
(Fig. 3a). Microsynteny analysis shows the process of gene fraction-
ation following the polyploidization event, and reveals that the
S. lycopersicum genome has retained fewer genes than the Petunia
genome, thus contributing to the relatively large genic fraction
found in Petunia (Fig. 2a). From the fractionation patterns observed,
(Fig. 3b), we predict a first and common incomplete gene
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V. vitifera
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S. lyco. 2
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Figure 3 | Genome triplication and fractionation in Petunia.
a, Paleohexapolyploid history of the Solanaceae family, showing the gamma
hexaploidy event shared with most eudicots and the family-specific
Solanaceae-α hexaploidy event. We place Solanaceae-α before the
divergence of Petunia and the x = 12 crown-group (∼30 and 49 Myr ago
(Ma))5. b, Differential gene fractionation of Petunia (P. axillaris, shortened
to P. axi.) and tomato (S. lycopersicum, S. lyco.) in comparison with grape
(V. vitifera). One grape genomic region is syntenic to three regions of Petunia
and tomato. Genes in red represent shared-retained genes of Petunia and
tomato whereas green (retained in Petunia/lost in tomato) and purple
(retained in tomato/lost in Petunia) represent independently fractionated
genes. For details see Supplementary Note 5.
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fractionation step in both Petunia and S. lycopersicum and a second
step after their divergence in S. lycopersicum only. This may have
contributed to the separation of the lineages, similar to that
observed in Saccharomyces yeasts20 but until now not yet described
in flowering plants.

Origin of the P. hybrida genomes. Comparisons of the two
genome sequences with transcriptomics data from three unrelated
P. hybrida lines, namely Mitchell, R27 and R143 (Fig. 1d, see
Supplementary Note 6) revealed a complex history of the garden
petunia. The majority of the ∼20,000 analysed genes could be
assigned to P. axillaris (∼15,000), with only ∼600 genes assigned
to P. inflata. This indicates that the P. inflata parent makes only a
minor contribution to the P. hybrida gene space. One possible
explanation for this preponderance of the white parent genome
could be that breeding for different colours and colour patterns
required a background with recessive mutations in the
pigmentation pathway. About 2,000 P. hybrida genes contain a
high percentage of non-specific SNPs potentially derived from an
unknown ancestor.

Approximately 1,500 genes of mixed parentage were identified,
with blocks of SNPs similar to P. axillaris and other blocks
similar to P. inflata (Fig. 4). These unusual constellations are con-
served between the three P. hybrida accessions and may involve
gene conversion, random repair of heteroduplexes, contributions
of unknown parents or unknown mechanisms. Gene conversion
events have been previously reported in plastids21 and polyploids22

but they have not been reported before in hybrids (or species of
hybrid origin). Definitive answers, especially to the question
whether this phenomenon is restricted to transcribed regions will
require transcriptome and whole-genome sequencing of multiple
P. hybrida accessions.

Genes encoding pollinator attraction traits. Bee-pollinated
P. inflata has purple flowers that produce only a limited amount
of scent, whereas the flowers of the hawkmoth-pollinated
P. axillaris are strongly scented and white (Fig. 1a). Colour and
scent influence the attraction of pollinators and thereby cause
reproductive isolation and ultimately speciation. Speciation of
P. axillaris from a P. inflata-like ancestor involved the loss of
anthocyanin pigments and the gain of volatiles4. Thus the genes that
caused the changes in these two traits are potential speciation genes.
The anthocyanin backbone is synthesized from phenylalanine by
nine enzymatic steps followed by specific decorations of the
backbone that modify the absorption spectrum. To address how
the change in anthocyanin pigmentation of Petunia flowers
evolved, we compared all known regulatory and structural genes
(Supplementary Note 7).

Both Petunia genomes contain a complete set of functional genes for
the core pathway (CHS, CHI,DFR, ANS, 3GT, 5GT and AAT); however,
some of the decorating enzymes are compromised in P. axillaris. The
steps in the pathway, from DFR on, are regulated by a ternary
complex consisting of MYB, bHLH and WD40 transcription factors.
The bHLH andWD40 components are functional, but in all P. axillaris
accessions, the MYB factor AN2 has been inactivated because of
independent mutations in the coding region23,24 (Fig. 1d). The
only known function of AN2 is to regulate anthocyanin synthesis
in petal lobes and this lack of pleiotropic effects makes AN2 a
preferred target of selection in the natural habitat.

In P. hybrida, four related MYB factors activate the anthocyanin
biosynthetic pathway in different tissues: AN2 controls anthocyanin
deposition in the petal limb, AN4 in the anthers and DPL and
PHZ in green tissues. Unlike AN2, the AN4, DPL and PHZ coding
sequences have remained intact in P. axillaris. Based on P. hybrida
data, differential expression of AN4 might be responsible for the
shift in anther colour from purple in P. inflata to yellow in P. axillaris.

The genomic regions containing these four MYB genes have
undergone massive rearrangements since the separation of the
two species estimated at 0.9 Myr ago, possibly influenced by trans-
poson or retroelement activities found in the vicinity (Fig. 5a). As a
consequence, the synteny between the corresponding regions of
P. axillaris and P. inflata has been largely destroyed and gene
spacing altered. P. axillaris AN4 is duplicated and inactivated sub-
sequently in anthers because of large insertions of transposon-like
sequences in the promoter. Similar insertion events are visible
around the other anthocyanin MYB genes. Instead, the genomic
regions containing other anthocyanin regulators (AN1, JAF13,
AN11) and other MYBs involved in vacuolar pH regulation and
scent production show strong conservation of the synteny
between the two Petunia species. Thus, the AN2-like MYBs reside
in an exceptionally dynamic region of the genome. Although lack
of pleiotropy makes AN2-like MYBs preferential targets of selection,
genomic rearrangements may have provided the mechanism
responsible for the remarkable spatial and temporal diversity of
anthocyanin pigmentation patterns.

Exceptional dynamics of the regions containing the MYB regula-
tors of the anthocyanin pathway is not restricted to Petunia. The
regions in S. lycopersicum share little synteny with either of the
two Petunia species indicating that large rearrangements occurred
after the separation of the genera. In the more distantly related
Mimulus guttatus, we also find duplications and rearrangements
to have taken place after the separation of the ancestors of
Solanaceae and Phrymaceae. Thus, genome dynamics of AN2-
type MYB factors may be a general mechanism that caused the
diversity of floral pigmentation patterns across angiosperms.

P. axillaris emits an abundant blend of floral benzenoid and phe-
nylpropanoid volatiles whereas P. inflata only emits benzaldehyde.
A comparison of all structural and regulatory genes known to be
involved in floral scent synthesis indicates that all the known
biosynthetic and regulatory genes encode functional proteins
(Supplementary Note 8). Thus, the increase in complexity and con-
centration of volatiles accompanying the shift to moth pollination
in P. axillaris involved mutations in cis-acting regulatory elements
or the mutation of as yet unknown transcriptional regulators.

Petunia uses a single enzyme for the biosynthesis of 2-phenylac-
tealdehyde25 whereas S. lycopersicum utilizes an amino acid decar-
boxylase plus a yet unidentified amine oxidase (Fig. 5b)26.
Interestingly, the S. lycopersicum genome does harbour a homol-
ogue of the Petunia gene, but this is predicted to be 124 amino
acids shorter than its Petunia homologue and presumably inactive.
Furthermore, although S. lycopersicum is also known to produce
eugenol27, homologues of the two involved enzymes appear to be

Box 1 | MicroRNAs.

Small RNA sequencing of young flower buds and mapping of
candidates in the genome sequences confirm the presence of
44 conserved miRNAs in Petunia, belonging to 30 families and
corresponding to 140 MIR loci, in line with other species. Only
two loci were unique to P. axillaris (MIR171g, MIR398b) and
two unique and one truncated to P. inflata (MIR160d, MIR397b,
MIR477), and MIR sequences and organization in the genome
were largely conserved. MiRNA expression profiles were also
highly similar between the two species and comparable to
tomato and potato19, with highest expressions for miR166,
miR159 and miR319, known for their involvement in floral
organ development, and low expression for miRNA169c
(BLIND), a well-studied regulator of floral whorl identity in
Petunia (Fig. 1d) and Antirrhinum28. Predicted miRNA targets
included genes involved in development and metabolic pathways.
For additional information, see Supplementary Note 9.

ARTICLES NATURE PLANTS DOI: 10.1038/NPLANTS.2016.74

NATURE PLANTS | www.nature.com/natureplants6

© 2016 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nplants.2016.74
http://www.nature.com/natureplants


absent (Fig. 5c). Thus, the Solanaceae have evolved multiple strat-
egies for the synthesis of C6–C2 and C6–C3 compounds.

Petunia as a model for comparative research of gene function.
High throughput DNA sequencing makes it possible to compare
DNA sequences and RNA expression patterns across a wide variety
of taxa. However, functional analysis is necessary to determine if

sequence conservation can be equated with conservation of gene
function. Good examples are the AP2 and BL/FIS (MIR169) genes,
which, although very well conserved at the sequence level, can
perform divergent developmental functions in different species28.

In general, a larger diversity of genetic model systems will be
essential to link sequence information with function. Ease of culti-
vation and propagation, highly efficient genetics and transformation
make Petunia an attractive model system for comparative analysis of
gene function (see Boxes 1–4). The availability of high-quality
genome sequences further increases the utility of the asterid
Petunia not only for testing the generality of conclusions based on
the rosid Arabidopsis or the monocot rice, but also for studying bio-
logical phenomena in a species with different genome organization,
biochemistry, development, ecology and evolution.

Methods
Genome sequencing, assembly and annotation. Plants were grown and DNA
was extracted following the methods described at Supplementary Note 1.

Illumina libraries with 0.17-, 0.35-, 0.5-, 0.8-, 1-, 2-, 5-, 8- and 15-kb inserts
were sequenced at BGI-Shenzghen and University of Illinois, Roy J. Carver
Biotechnology. PacBio P. axillaris DNA library was sequenced with
P4/C2 chemistry.

Illumina reads were processed using Fastq-mcf (quality filtering; https://code.
google.com/p/ea-utils/wiki/FastqMcf), PRINSEQ (duplication filtering; http://
prinseq.sourceforge.net/) and Musket (error correction; http://musket.sourceforge.
net/). Pacbio reads were processed using the SMRT Analysis pipeline (v.2.0.1;
https://github.com/PacificBiosciences/SMRT-Analysis).

Both genomes were assembled with SOAPdenovo30 with different k-mer sizes.
For both genomes, k-mer = 79 showed the best statistics. Gaps between contigs were
completed using GapCloser30. Additionally for P. axillaris, PacBio reads were
integrated in four different steps: (1) Rescaffolding of the Illumina contigs using
the PacBio reads and the AHA assembler31; (2) Gap filling using PBJelly32;
(3) Rescaffolding using the Illumina pair data and SSPACE33; (4) Last round of gap
filling using PBJelly32.

Genome size estimation was performed through the k-mers abundance
distribution34 (k-mer = 31). Heterozygosity was estimated mapping the Illumina
reads to the assemblies using Bowtie235, calling SNPs using FreeBayes36 and
annotating the SNPs using SnpEff37.

The genome structural annotation was performed using Maker-P38: (1) SNAP and
Augustus as ab initio gene predictors; (2) Exonerate as experimental based predictor

Box 4 | The circadian clock.

Floral volatiles serve to attract pollinators but will also be per-
ceived by unwanted herbivores48. Volatile emission in P. axillaris
is under circadian control, peaking at dusk when its nocturnal
hawkmoth pollinator visits49. Although this specific output is
known quite well, the genetic structure of the circadian clock
itself is understudied in Petunia. In Arabidopsis, the clock con-
sists of three loops, the morning, core and evening loop, based
on their expression pattern. The current hypothesis is that gene
dosage effect is important for clock function50. Comparison of
the Petunia genomes with other Solanaceae indicates that the cir-
cadian clock has undergone a deep restructuring in the
Solanaceae and each species seems to have a different set of
genes (Supplementary Note 12). Petunia and the rest of the
Solanaceae share single orthologues for LHY, TOC1, PRR3 and
the MYB transcription factor LUX. In contrast PRR7, PRR5,
GIGANTEA, ELF3 and ELF4 are in some cases duplicated or tri-
plicated. P. inflata has a larger number of evening loop paralo-
gues than P. axillaris. The GI gene is present in two copies in
P. axillaris with three in P. inflata, and there are three ELF3
copies in P. axillaris and four in P. inflata. These results
suggest strong purifying selection on some of the clock com-
ponents but others may have undergone a rapid subfunctionali-
zation or redeployment. Comparative analyses will help to
understand how clock structure is adjusted to optimize specific
outputs thus allowing adaptation to different environments.
For additional information, see Supplementary Note 12.

Box 2 | Symbiosis with fungi.

A good example of Petunia as a model system is the study of the
symbiotic interactions with fungi. In the arbuscular mycorrhiza
(AM) with the Glomeromycota, the fungal hyphae function as
an extension of the root system that enhances the acquisition
of mineral nutrients, primarily phosphate. This symbiosis is
widespread amongst land plants, but is lacking in the
Brassicaceae (including Arabidopsis thaliana). Symbiosis signal-
ling involves a family of lysine motive (LysM) receptor-like
kinases (LysM-RLK) in the host, which perceive specific
microbial signals44. LysM-RLKs activate a signalling pathway
that is shared with root nodule symbiosis, a symbiotic interaction
restricted to the Fabaceae. The comparison between Petunia
and tomato versus the legumes Lotus japonicus and Medicago
truncatula revealed that the two Solanaceae have considerably
smaller gene families than the two legumes with 10/11 and 14
versus 17 and 18 LysM-RLK members, respectively. The expan-
sion of the LysM-RLK family during the evolution of nodule
symbiosis in the legumes45 will help to understand the evolution
of two fundamentally different symbiotic interactions. Large-
scale genomic and transcriptional analysis of two transcription
factor families revealed that several GRAS genes are regulated
during AM symbiosis, whereas AP2/ERF genes are induced
during adventitious root formation. For additional information,
see Supplementary Note 10.

Box 3 | Self-incompatibility.

In the Solanaceae, self-fertilization is prevented by S-RNase-
mediated gametophytic self-incompatibility (GSI), which is
based on the ability to reject pollen from a plant expressing a
matching S-locus haplotype, while accepting pollen from indi-
viduals whose haplotypes do not match that of the stylar
parent46. During an incompatible pollination, the growth of
‘self’ pollen tubes is inhibited by the action of an imported,
cognate, ribonuclease, the S-RNase. In compatible pollinations,
the action of non-self S-RNases is inhibited by ubiquitination
and degradation by a SCFSLF E3 ubiquitin ligase, of which distinct
SLF (S-locus F-box) proteins are the recognition component.

We found that the S-RNase in P. axillaris is identical to the
S1-RNase from P. hybrida47. This finding is consistent with the
hypothesis that self-incompatibility in P. hybrida was inherited
from both of the progenitor species43. In addition, we identified
20 SLF genes in the genome of P. axillaris and 29 SLF genes in
P. inflata, together representing 20 different SLF variants. Several
(2–5) SLF genes in each species were found linked on the same scaf-
fold; in P. axillaris, the Sax1-RNase was linked to SLF10. These data
support current models, which propose that the pollen and style
components of GSI are tightly linked in a region of the chromo-
some that is suppressed for recombination. Suppression of recom-
bination is an important mechanism to preserve co-adapted gene
complexes. Our long-range sequencing strategy is an important
step towards characterizing a complete S-locus, as a means to
better understand the evolution of gametophytic self-incompati-
bility. For additional information, see Supplementary Note 11.
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with 454 and Illumina RNASeq reads and protein sequences from different protein
datasets. RNAseq Illumina data was mapped using Tophat239. tRNAs were annotated
using tRNAscan (http://lowelab.ucsc.edu/tRNAscan-SE/).

The gene functional annotation was performed by sequence homology
search with different protein datasets using BlastP40 and protein domains search
using InterProScan41. Functional annotations were integrated using AHRD
(https://github.com/groupschoof/AHRD). See Supplementary Note 1.

Repetitive elements analysis. Repeat annotation was performed using RepeatModeler
(v1.0.8; http://www.repeatmasker.org/RepeatModeler.html), RepeatMasker (v4.0.5;
http://www.repeatmasker.org) with the repeat database Repbase (release 20140131;
http://www.girinst.org/repbase/) and Geneious (v7.1.4; http://www.geneious.com).
Identification of PVCV-like and EPRV elements was performed using BlastN and
TBlastN40. The identified sequences were aligned with ClustalW (MEGA5 package;
http://www.megasoftware.net/) and then manually curated. RepeatExplorer
(http://www.repeatexplorer.org/) and othermethods were used to extend the analysis to
unassembled repeats. Fluorescent in situ hybridization was performed in root tips from
young P. axillaris and P. inflata plants for 5S rDNA and three PVCV viral probes
following the procedure described in Supplementary Note 2.

The detection of dTph1 loci in P. hybrida W138 was performed through a
BLAST40 search of the P. axillaris and P. inflata dTph1 elements including the
500 bp of flanking sequence against the TFS W138 collection43. Polymorphisms
found in the genomic flanking regions were used to identify the species of origin.
dTph1 elements were identified in a P. axillaris population using a modification
of the methodology described in Supplementary Note 3.

Whole-genome duplication, tandem duplications and gene family analysis.
Whole-genome collinear analysis was performed using SynMap and microsynteny
analysis were performed using GEvo in the comparative genomics platform, CoGe42.
See Supplementary Note 5.

The gene family analysis included Solanum lycopersicum, S. tuberosum,
Nicotiana benthamiana andArabidopsis thaliana protein sets using BlastP (v2.2.27)40

on an all-versus-all comparison and grouping the genes into families with
OrthoMCL, v2.0.8. See Supplementary Note 4.

Small RNA sequencing and analysis. Total RNA was purified and small RNA
libraries were prepared and sequenced and analysed following the methods
described in Supplementary Note 9. Annotation and identification was performed
using Perl scripts, mirDeep-P (v1.3; http://sourceforge.net/projects/mirdp/), Bowtie
(v1.0.1) and CLCbio, based on identity to miRNAs in Arabidopsis and Solanaceae
spp. Secondary structures of pre-miRNAs were predicted with RNAfold (http://rna.
tbi.univie.ac.at/cgi-bin/RNAfold.cgi). MiRNA target genes were predicted using
TargetFinder (v1.6). See Supplementary Note 9.

Petunia hybrida transcripts comparison. Petunia hybrida (accessions Mitchell,
R27 and R143) reads were mapped to the P. axillaris genome (v1.6.2) using
Bowtie235. SNPs were called using FreeBayes36 and annotated using Snpeff37. Exons
and genes were assigned to P. axillaris or P. inflata based in the SNP data using a Perl
script. Five categories were used: Homozygous P. axillaris; Homozygous P. inflata;
Heterozygous P. axillaris/P. inflata; Homozygous P. axillaris/P. inflata and unclear
assignment. Homozygous SNPs for the genes with exons from both species were
confirmed aligning P. hybrida EST using Exonerate (v2.2 l; http://www.ebi.ac.uk/
about/vertebrate-genomics/software/exonerate). Gene Set Enrichment Analysis
(GSEA) was performed using the Bioconductor package TopGO (v2.22.0; http://
bioconductor.org/packages/topGO/). See Supplementary Note 6.

Gene data mining. The specific identification of genes for P. axillaris and P. inflata
genomes for colour and scent, root-specific pathways, self-incompatibility and
circadian clock was performed through a BlastN/BlastP sequence homology search.
Blast GUI, JBrowser (http://jbrowse.org/) and WebApollo (http://genomearchitect.
org/) were installed in a server to search and manually curate the gene structures of
the identified genes. See Supplementary Notes 7, 8 and 10–12.

The P. axillaris and P. inflata genome sequences are available on the Sol Genomics
Network (SGN) at https://solgenomics.net/organism/Petunia_axillaris/genome and
https://solgenomics.net/organism/Petunia_inflata/genome, respectively.
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