Sequestration of bovine seminal plasma proteins by different assemblies of phosphatidylcholine: A new technical approach
Résumé
Binder of SPerm (BSP) proteins, the main proteins from bovine seminal plasma, are known to partially intercalate into the outer leaflet of the spermatozoa membrane and bind to choline-containing lipids being present therein. This insertion generates a negative effect on semen quality after cryopreservation by inducing an early-stage capacitation of spermatozoa. The assumption of surface properties exhibited by BSP proteins was checked by tensiometry measurements: BSP proteins are highly surface active. This suggests that BSP proteins can reach the interface covered by phospholipids not only by interactions between one and each other but also due to their own surface activity. The insertion of BSP proteins into the lipid domains outer leaflet of spermatozoa was reproduced on a biomimetic system such as Langmuir monolayers. The insertion of BSP proteins can be performed in the compressible fluid domains which contain choline-bearing lipids. Monolayer films were used as well to study the complexation of BSP proteins by two phospholipid assemblies: low density lipoprotein (LDLs) from egg yolk or liposomes produced from egg phospholipids. Irrespective of the phospholipid structure (lipoprotein or liposome), BSP was hindered to alter the structure of the membrane. Only the overall ratio BSP proteins:phosphatidylcholine was important. The difference between the two sequestering agents lies on their surface properties: LDL have a strong tendency to merge with the outer layer whereas liposomes mainly remain in the bulk on the same time scale.