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Abstract

Phenotypic variation in natural populations results from a combination of genetic effects, environmental effects, and gene-
by-environment interactions. Despite the vast amount of genomic data becoming available, many pressing questions
remain about the nature of genetic mutations that underlie functional variation. We present the results of combining
genome-wide association analysis of 41 different phenotypes in ,5,000 inbred maize lines to analyze patterns of high-
resolution genetic association among of 28.9 million single-nucleotide polymorphisms (SNPs) and ,800,000 copy-number
variants (CNVs). We show that genic and intergenic regions have opposite patterns of enrichment, minor allele frequencies,
and effect sizes, implying tradeoffs among the probability that a given polymorphism will have an effect, the detectable size
of that effect, and its frequency in the population. We also find that genes tagged by GWAS are enriched for regulatory
functions and are ,50% more likely to have a paralog than expected by chance, indicating that gene regulation and gene
duplication are strong drivers of phenotypic variation. These results will likely apply to many other organisms, especially
ones with large and complex genomes like maize.
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Introduction
Natural phenotypic variation arises from a combination of

genetic effects, environmental effects, and gene-by-environment

interactions. A major goal of modern genetics is to tease apart these

components, and especially to identify the genetic loci that govern

variation in traits. In the past decade, genome-wide association

studies (GWAS) have become a major tool to advance our

understanding of genetic variation. While many genome-wide

association studies (GWAS) focus on disease phenotypes, especially

in humans (e.g., [1–5]), it is also important to identify the genetic

nature of normal functional variation in populations—that is, all

genetic variation which has a discernible phenotypic effect. There is

also increasing evidence that differences in gene regulatory regions

plays a significant role in functional variation [6–8], although the

exact balance between regulatory variation versus protein-coding

variation is still unsettled.

Because of the ability to create controlled crosses, model organisms

provide powerful platforms to dissect this natural genetic variation. In

recent years, large artificial populations have been created using

several different organisms to leverage this power to dissect genetic

traits (e.g., the mouse Collaborative Cross [9] and the Arabidopsis

Multiparent Advanced Generation Intercross population [10]).

Currently, the largest such population is the maize Nested Association

Mapping (NAM) population [11]. Maize is an excellent genetic model

for understanding natural variation due to the large phenotypic and

genetic diversity available in its collections. NAM was designed to

capture a large fraction of this variation by crossing 25 diverse founder

lines to the reference line, B73, and generating 200 recombinant

inbred lines (RILs) from each cross [11]. The hierarchical design of

NAM provides both the high power of traditional linkage analysis and

the high resolution of genome-wide association.

We leveraged the strengths of the NAM population to perform

high-resolution GWAS across 41 diverse phenotypes to identify the

general patterns of functional variation in maize. These traits were

gathered from several individual studies on the NAM population

(Table 1) and span the range of relatively simple metabolic traits up

to highly complex traits such as height and flowering time. Our

intent was not to re-identify regions influencing any specific trait,

but rather to determine properties that make variants in general

more likely to have a functional impact.

We expect to have very high resolution for these hits because of

the speed with which linkage disequilibrium (LD) decays in maize.
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An empirical calculation of LD decay in NAM shows that most

LD decays to below background levels within 1 kilobase of a given

polymorphism, though the variance is large since some alleles are

segregating in only one or two families (S1 Figure). Due to this

rapid LD decay, the high density of polymorphisms we used, and

the high statistical power gained by using the NAM population, we

expect that many of the polymorphisms we identified will be

extremely close (within a few kb) to the causal polymorphism, and

in many cases may even be the causal polymorphisms themselves.

We find that a large amount of functional variation is located

outside of protein-coding genes, presumably in regulatory regions,

and that these non-genic variants often have large phenotypic

effects. We also find that genes identified by association analysis

are enriched for regulatory functions and for paralogs; this latter

implies that gene duplication followed by functional divergence

(e.g., subfunctionalization or neofunctionalization) is likely to be a

strong driver of normal functional variation.

Results

Phenotype data
The majority of phenotype data in this analysis was taken from

existing studies on the maize Nested Association Mapping

population (Table 1) [12–19]. These existing phenotypes cover

various plant architecture, developmental, and disease resistance

traits. In addition, we also obtained trait data for 12 different

metabolites in leaves: Chlorophyll A, Chlorophyll B, Fructose,

Fumarate, Glucose, Glutamate, Malate, Nitrate, Starch, Sucrose,

Total amino acids, and Total protein. (Details of data acquisition

are in the Methods section.) An in-depth analysis of these

metabolites and the variants associated with each of them is

forthcoming (Zhang et al., in preparation); for this paper, we used

them primarily to expand our pool of available phenotypes. Both

raw metabolite data and best linear unbiased predictors (BLUPs)

for each NAM line are included in S1 Dataset.

Genome-wide association
Single-nucleotide polymorphisms (SNPs, also including short

indels of ,15 base pairs) were taken from Maize Hapmap1 [20]

and Hapmap2 [21], for a total of 28.9 million segregating SNPs.

We also used the raw Hapmap2 read depth counts to identify

,800,000 putative copy-number variants (CNVs) as done

previously [21].

These 29.7 million total segregating polymorphisms were then

projected onto the 5,000 RIL progeny based on low-density

markers obtained through genotyping-by-sequencing (GBS) [22].

We then performed forward-regression GWAS to identify which

of these variants associated with the different phenotypes. Full

details are in the Methods section; in brief, the forward-regression

model iteratively scans the genome, each time adding only the

most significant SNP to the model until no SNPs pass the

significance threshold. We ran 100 such genome-wide associations

for each trait with a random 80% of lines subsampled each time.

The random subsampling allows us to filter based on how many of

these 100 iterations a SNP appears in, a measure of the strength

and stability of the association.

After filtering to remove hits that showed up in ,5 iterations

[12,13], we identified 4,484 SNPs and 318 CNVs that were

significantly associated with at least one phenotype. These variants

are referred to as the ‘‘GWAS dataset’’ for the rest of this article, in

contrast to the input dataset of ,30 million variants.

The number of polymorphisms identified for each trait varies

widely and broadly matches prior assumptions based on the

genetic complexity of the traits (Fig. 1). Comparing our results

with those of published studies in NAM shows good agreement

with the locations of known QTL (S2 Figure).

Variant classification
To classify each polymorphism, we used the Ensembl Variant

Effect Predictor (VEP) [23] to identify the potential effect of each

SNP in both the input and GWAS datasets. Since most SNPs are

likely not causal but just linked to the causal polymorphism, these

annotations serve primarily to identify the region a SNP lies in and

the types of SNPs most frequently identified by GWAS across our

dataset.

After classification, we analyzed the distribution of VEP classes

and copy-number variants (CNVs) for enrichment in GWAS hits

relative to the input dataset (Fig. 2). Intergenic regions (.5 kb

away from the nearest gene) are strongly depleted for GWAS hits,

causing almost all other categories to show significant enrichment

(Fig. 2B). Part of this depletion may be due to transposon activity

in intergenic regions altering the physical location—and thus the

projected genotype—of sequences in some founder lines. After

controlling for intergenic regions, both genic SNPs and CNVs are

still strongly enriched for GWAS hits (Fig. 2C). This agrees with

the recent findings of Schork et al. [24], who found similar

enrichment patterns of GWAS hits close to genes. Of the enriched

classes, large CNVs show the most enrichment, while the most

enriched SNP category is for synonymous mutations. Some of the

enrichment for synonymous sites is probably due to synthetic

associations [25,26], where the signals from several low-frequency

causal SNPs combine to make a nearby, higher-frequency SNP

appear associated with the trait. (This is different from the normal

situation in GWAS where the associated SNPs are assumed to be

linked to causal loci that weren’t sampled but that would show up

if they had been.) Such associations are probably not the sole

explanation for the enrichment of synonymous SNPs, however,

because synonymous SNPs are also significantly enriched over

intronic SNPs (p = 2.8061028 by Chi-square test) despite having

similar site frequency spectra (S3 Figure) and being in similar LD

structures (due to the small size of maize introns, which have a

median size of only ,150 base pairs in quality-filtered genes). This

implies a legitimate enrichment for synonymous SNPs. Some (and

possibly most) of that enrichment is probably due to linkage with

nearby causal SNPs; this may also result in the enrichment of

synonymous over intronic SNPs, since synonymous ones will on

average still be in tighter LD with nonsynonymous SNPs than will

Author Summary

We performed genome-wide association mapping analysis
in maize for 41 different phenotypes in order to identify
which types of variants are more likely to be important for
controlling traits. We took advantage of a large mapping
population (roughly 5000 recombinant inbred lines) and
nearly 30 million segregating variants to identify ,4800
variants that were significantly associated with at least one
phenotype. While these variants are enriched in genes,
most of them occur outside of genes, often in regions
where regulatory elements likely lie. We also found a
significant enrichment for paralogous (duplicated) genes,
implying that functional divergence after gene duplication
plays an important role in trait variation. Overall these
analyses provide important insight into the unifying
patterns of variation in traits across maize, and the results
will likely also apply to other organisms with similarly
large, complex genomes.

Maize Functional Variation
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those in introns. The remainder of the enrichment is likely due to

the (unknown) fraction that are causal themselves but act through

mechanisms other than protein sequence (e.g., altering mRNA

stability, protein binding sites, or local translation rates [27]).

Although genic regions are the most strongly enriched in

GWAS, the majority (,70%) of our hits still fall outside of

annotated genes, as defined by their transcriptional start and stop

sites. Plotting the distances from non-genic SNPs to the nearest

gene on a log scale reveals a bimodal distribution, with a peak at

,1–5 kb away from genes that is not reflected in the input dataset

(Fig. 3). This corresponds with likely positions of promoters and

other short-range regulatory elements. Finding enrichment at this

scale provides evidence for the high resolution and biological

relevance of the GWAS hits in this study. The second peak, which

Table 1. Phenotypes used in this study.

Phenotype Citation

Anthesis-silking interval [14]

Average internode length (above ear) [17]

Average internode length (below ear) [17]

Average internode length (whole plant) [17]

Boxcox-transformed leaf angle [19]

Chlorophyll A This study

Chlorophyll B This study

Cob diameter [12]

Days to anthesis [14]

Days to silk [14]

Ear height [16]

Ear row number [12]

Fructose This study

Fumarate This study

Glucose This study

Glutamate This study

Height above ear [17]

Height per day (until flowering) [17]

Kernel weight Panzea.orga

Leaf length [19]

Leaf width [19]

Malate This study

Nitrate This study

Nodes above ear [17]

Nodes per plant [17]

Nodes to ear [17]

Northern leaf blight [18]

PCA of metabolites: PC1 This study

PCA of metabolites: PC2 This study

Photoperiod growing-degree days to anthesis [15]

Photoperiod growing-degree days to silk [15]

Plant height [17]

Protein (total) This study

Ratio of ear height to total height [17]

Southern leaf blight [13]

Stalk strength [16]

Starch This study

Sucrose This study

Tassel branch number [12]

Tassel length [12]

Total amino acids This study

ahttp://www.panzea.org/lit/data_sets.html#phenos; the joint-linkage model to create residuals for this data was provided courtesy of Sherry Flint-Garcia.
doi:10.1371/journal.pgen.1004845.t001
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follows the null distribution, probably reflects elements that are not

correlated with gene distance (e.g., long-range regulatory elements,

unannotated transcripts, etc.). For example, using a list of 316

maize noncoding RNAs from Gramene (available at http://ftp.

gramene.org/release39/data/fasta/zea_mays/ncrna/) that were

not included in the Ensembl annotations reveals that intergenic

hits are significantly enriched for polymorphisms within 5 kb of

these RNAs (n = 13, expected = 1.07, p = 1.3610210 by two-sided

exact binomial test). Alternatively, some of these ‘‘intergenic’’ hits

may actually be tagging legitimate genes that are simply not

present in the reference genome due to the high amount of

presence-absence variation in maize [21]. Identifying the nature of

these hits should be possible as more information about the maize

pan-genome becomes available.

Relative effect sizes of the different classes
We also determined the relative effect each polymorphism class

has on phenotype. We classified all SNP hits by whether they fell

Figure 1. Number of polymorphisms found and variance explained for each trait. (A) Polymorphisms found per trait. Bars show the mean
$0.05 (see Methods). The number

polygenic traits like plant architecture. The relative complexity within each category is less certain, but the pattern still probably holds to a first
degree of approximation. (B) Variance explained per trait. For each trait, a general linear model incorporating a family term (for each of the 25
biparental families in NAM) and all SNPs that passed filtering (dark bars in (A)) was fit to the original Best Linear Unbiased Predictors (BLUPs) for each
trait. Bars show the portion of total variance explained by the fitted SNPs as measured by adjusted R2.
doi:10.1371/journal.pgen.1004845.g001
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within genes (genic), within 5 kb of a gene (gene-proximal), or

more than 5 kb away (intergenic), and compared the variance

explained among traits for these classes and for CNVs (Fig. 4A).

Genic and gene-proximal SNPs explain the most unique variance,

meaning the proportion of variance explained when the specified

category is added last to a model. However, examining the minor

allele frequency (MAF) and effect size distributions for each class

reveals a more complex picture (Figs. 4B & 4C). Both MAF and

effect size strongly influence variance explained, and in our dataset

they are negatively correlated. Similar results were found in a

previous study of inflorescence traits [12]. This negative correla-

tion is probably due to both biological factors (e.g., large-effect

mutations are more likely to be detrimental to overall fitness

[28,29] and thus kept at low frequency) and also statistical

limitations (e.g., GWAS can only identify rare variants if they have

large effects). At the extremes, intergenic variants have the largest

median effect size but the lowest allele frequencies, while CNVs

are the reverse. Thus many large phenotypic effects tend to occur

outside of genes (presumably in regulatory elements, unannotated

transcripts, or the like), but they also tend to be rare and so make

only minor contributions to total variance explained. This inverse

relationship between allele frequency and effect size holds across

polymorphism classes (Fig. 5), implying a general pattern across

polymorphisms. Since large-effect polymorphisms are exactly the

sort of mutation breeders often look for in selecting germplasm for

breeding programs, these data may prove useful for future

breeding efforts.

Characteristics of GWAS-hit genes
Since the annotation of single nucleotides in genic regions is

more straightforward than in intergenic regions, we also identified

common characteristics of genes that were tagged by genic or

gene-proximal GWAS hits.

First, an analysis of expression levels using RNA-seq data from

the Maize Gene Atlas [30] reveals a small (,20%) but highly

significant depletion of low-expressed genes (p = 1.30610222 by

Mann-Whitney test and <0 by Kolmogorov-Smirnov test) (Fig. 6).

The expression level of these genes is even lower than most

transcription factors, which are themselves usually only expressed

at a low level, and their depletion among GWAS hits may reflect a

lower probability of such rarely expressed genes altering plant

phenotype.

Second, Gene Ontology (GO) term analysis revealed significant

enrichment (,34%) in terms relating to regulatory activity,

especially protein kinase activity and transcription factor activity,

and depletion (,71%) among several core metabolism and

signaling terms (Table S2). These terms are fairly broad, probably

because the diverse phenotypes in this study make it so that the

only terms that are significantly changed are those general enough

to be involved across many different phenotypes. Nonetheless, the

enrichment of regulatory terms across such a broad phenotypic

spectrum implies that changes in gene regulation are a frequent

driver of functional variation. Conversely, the depletion of core

metabolic terms speaks to the difficulty of altering these functions

without causing detriment to the organism. The depletion in core

metabolic terms is especially striking because the studied traits

include 12 metabolic traits.

Finally, we found that genes with GWAS hits in their primary

transcripts are ,50% more likely to have a paralog than expected

by chance (36.4% of 970 GWAS-hit genes vs 24.2% of 39,656

total genes in the maize AGPv2 filtered gene set; p = 3.79610217

by two-sided exact binomial test and 1.06610-17 by Fisher’s exact

test). Paralogous genes do not appear to have significant

Figure 2. Relative enrichment of polymorphism classes in GWAS
hits. (A) The proportions of different polymorphism classes in the input
dataset (left) and GWAS hits (right). The overall GWAS hit distribution is
significantly different from the input at p = 8.74610235 (Chi-square
test). (B) The relative change in polymorphism classes in the GWAS
dataset as compared to the input dataset, with the raw p-value of each
class shown at right (two-sided exact binomial test). Only categories
with Bonferroni-corrected p-values #0.01 are shown. The strong
depletion of intergenic SNPs in the GWAS dataset drives almost all
other categories to appear significantly enriched. Exact category counts
and alternate p-values based on circular permutation are available in S1
Table. (C) The same analysis as in (B), but with intergenic regions
excluded.
doi:10.1371/journal.pgen.1004845.g002

Figure 3. Distribution of non-genic GWAS hits as a function
The number of SNPs at increasing distances from

,25 kb away from a gene. The GWAS dataset, however, shows an
additional peak at ,1–5 kb (shaded), where one would expect to find
promoters and short-range regulatory elements. Note that due to the
log scale, each bin contains successively more nucleotides that make it
appear that most SNPs are far from genes, when the reverse is actually
true.
doi:10.1371/journal.pgen.1004845.g003
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differences from non-paralogous genes in either allele frequency or

LD structure, and the marginally lower density of SNPs in them

would seem to disfavor their selection by GWAS, all other things

being equal (Fig. 7). Thus the enrichment for paralogous genes is

probably due to the benefits of gene duplication, since having

redundant copies of a gene allows one of them to more easily take

on altered (and phenotypically significant) roles through either

subfunctionalization or neofunctionalization [31]. Also, we did a

parallel analysis looking only at paralogs resulting from maize’s

most recent genome duplication to see if they followed a different

distribution. The resulting enrichment ratio and p-value are nearly

identical to the analysis with all paralogs (30.7% paralogous in

GWAS versus 20.0% in the maize filtered gene set,

p = 2.91610217 by exact binomial test), so we conclude that for

this analysis the source of paralogs does not play a significant role.

Discussion

Taken together, the large number and effect sizes of hits outside

genes and the enrichment for copy-number variants indicate that

while variation in gene sequence is important, a large portion of

functional variation in maize probably stems from differences in

copy number and gene regulation rather than in protein-coding

sequence. These results corroborate similar findings in other

organisms [6–8], indicating that this pattern will likely hold for

Figure 4. Different effects of the polymorphism classes. (A)
Variance explained by polymorphism class. Genic and gene-proximal
polymorphisms explain the largest amount of unique variation in each
trait. Breaking the data into the two components that most influence
variance explained—allele frequency (B) and polymorphism effect size
(C)—reveals a negative correlation between them such that classes with
larger effect sizes (e.g., intergenic) also tend to have rarer polymor-
phisms. (D) Pairwise p-values testing whether the distributions in (A-C)
are significantly different from each other (two-sided Kolmogorov-
Smirnov test); values ,161023 are bolded.
doi:10.1371/journal.pgen.1004845.g004

Figure 5. Polymorphism effect size and allele frequencies. (A)

than small ones, and thus are more likely to remain rare) and statistical
ones (e.g., in order for a rare variant to explain enough variance to be
detected in GWAS, it must have a large effect). Similar results were
found in a previous analysis of maize inflorescence traits [12]. (B) Minor
allele frequency distributions for the different polymorphism classes of
GWAS hits. Intergenic hits are strongly enriched for rare alleles. The
bimodal distribution in both parts is due to the way NAM was
constructed; specifically, since B73 is a parent in all 25 families, any
polymorphisms with the rare allele in B73 have their frequency
artificially boosted toward 0.5.
doi:10.1371/journal.pgen.1004845.g005

Figure 6. Distribution of RNA expression. Transcript-specific RNA
expression values from the Maize Gene Atlas [30] were summed to
determine total expression for each gene. The log-transformed
distribution of maximum expression values are shown for the entire
filtered gene set (solid line) or just genes with GWAS hits within 5 kb of
their primary transcripts (dashed line); vertical lines indicate the median
of each distribution. The GWAS-hit genes show a slight depletion
(,20%) of low-expressed genes. For comparison, the median expres-
sion of maize transcription factors in this dataset (as annotated on
Grassius, http://grassius.org/) is indicated by an arrowhead. FPKM,
Fragments Per Kilobase of transcript per Million mapped reads.
doi:10.1371/journal.pgen.1004845.g006
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tively correlated with minor allele frequency. This correlation is probably
due to both biological factors (e.g., large effects are both more likely
to deleterious (Fisher 1930; Orr 1998) and more easily selected against
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many other species. One caveat, however, is that our filtering for

robust GWAS hits intrinsically skews the results toward more

common alleles; rare variants may follow different patterns. Also

note that since intergenic regions were enriched for rare variants, we

may still be underestimating their contribution to the various traits.

Our results also imply that the cost-saving measure of

genotyping individuals by sequencing only the exome may be of

limited utility for GWAS, at least for organisms like maize where

LD decays rapidly. This is in direct contrast with the conclusions

of Li et al. [32], who determined that 79% of the explained

variation in their maize dataset could be encompassed by genic

and promoter (,5 kb upstream) regions. We suspect that this

difference is chiefly due to choice of input polymorphisms. Li et al.
used ,290,000 SNPs derived from RNA-seq data and ,775,000

SNPs from Maize Hapmap1; the former is obviously biased

toward genic regions, while the latter has a similar (albeit smaller)

bias due to using methyl-sensitive restriction enzymes to construct

genomic libraries [20]. In contrast, the majority (,92%) of our

input polymorphisms come from Maize Hapmap2, where

sequencing libraries were created by random shearing and thus

show much smaller bias toward genic regions [21].

Ultimately, the goal of modern crop genetics is to design crops

for rapidly changing environments. Doing so requires accurate

information about which genomic regions contribute to trait

qualities. The fact that most of our hits (70%) lie in poorly

annotated regions outside of annotated genes and that these hits

often have large phenotypic effects argues for an urgent need to

identify the genetic features in these regions. Such efforts are

already underway for humans and several model animals [33–35];

similar work should be extended to plants and especially to

important crops like maize. The low cost of current sequencing

would even make it possible to, for example, combine GWAS with

expression profiling across several thousand individuals to identify

both regulatory regions and their effects on phenotype. Identifying

these features and including them in prediction models will further

not only basic genetics, but also help breeders craft better crops

and help improve food security for the global population.

Methods

Bioinformatics and statistics
Unless otherwise stated, all analyses were performed with in-house

bioinformatics pipelines written in SAS, R, Perl, or Java. Source code

for the various scripts is included in S3 Dataset. All analyses were

done with using the maize B73 genome (version AGPv2) as reference.

The maize filtered gene set was taken from maizesequence.org and is

available at ftp://ftp.gramene.org/pub/gramene/maizesequence.

org/release-5b/filtered-set/ZmB73_5b_WGS_to_FGS.txt. [verified

13 Oct 2014]

Metabolite data
Sampling. The NAM population was planted in Aurora,

New York, USA in May 2007. Samples were all taken within one

week at the beginning of August (when most NAM lines are

flowering) between 10:00 AM and 2:00 PM on the sampling date.

Two samples were taken from each row (RIL), one from the end

plant and the other from four middle plants (,12,000 raw samples

total). Tissue was punched in the base part of the first leaf below

the flag leaf and immediately frozen in liquid nitrogen, then stored

at 280uC until extraction.

Quantification. ,50 mg (fresh weight) of tissue was extract-

ed twice with 80% ethanol and once with 50% ethanol as in

Geigenberger et al. [36] (the final volume of each was 650 ml).

Protein and starch were extracted from the pellet with 100 mM

NaOH [37] and measured according to established protocols

[37,38]. Immediately after extraction, chlorophyll content was

determined using the protocol in Arnon [39]. Total free amino

acids were assayed using fluorescamine [40]. Nitrate levels were

quantified as in Tschoep et al. [41], while malate and fumarate

were measured as described in Nunes-Nesi et al.[42]. Glutamate

was determined by pipetting 10 ml aliquots of extract or standards

(0–20 nmol) into a microplate with 100 mM Tricine/KOH pH 9,

3 mM NAD+, 1 mM methylthiazolyldiphenyl-tetrazolium bro-

mide, 0.4 mM phenazine ethosulphate and 0.5% v/v Triton X-

100. The absorbance at 570 nm was read for 5 min, then 1 U of

glutamate dehydrogenase was added and the absorbance moni-

tored until it reached stability. Sucrose, glucose, and fructose (in

ethanolic extracts) were determined as per Jelitto et al. [43]. All

assays were prepared in 96-well polystyrene microplates using a

JANUS automated workstation robot (Perkin-Elmer, Zaventem,

Belgium). Absorbances at 340 or 570 nm were read in either an

ELX-800 or an ELX-808 microplate reader (Bio-Tek, Bad

Friedrichshall, Germany). A Synergy microplate reader (Bio-

Tek, Bad Friedrichshall, Germany) was used to determine

absorbances at 595, 645 or 665 nm and fluorescence (405 nm

excitation, 485 nm emission).

Figure 7. Comparison of paralogous to nonparalogous genes. Maize paralogous genes (identified by Schnable & Freeling [52]) were exam-

differences in either minor allele frequency distribution (A) or linkage disequilibrium decay (B), and the slightly lower SNP density (C) (median 32.8
SNPs/kb versus 33.4 SNPs/kb for nonparalogous genes) would be expected to actually decrease the probability of hitting paralogous genes, albeit by
a very small amount.
doi:10.1371/journal.pgen.1004845.g007
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BLUPs and principal components. Best linear unbiased

predictors (BLUPs) for each line within each trait were calculated

using ASReml (version 2.0; http://www.vsni.co.uk/software/

asreml). The final BLUPs are the result from controlling for

several potential confounding factors, specifically: spatial effects

within the field; the level of nitrogen, phosphorous and potassium

in the soil before planting; the tissue sampling date and time; the

researcher who performed the sampling; the batch effect of the

plate samples were stored in; and the batch effect of the plate the

measurements occurred in. BLUPs were also calculated for

flowering time (defined as the time from sowing to when 50% of

plants in a row are shedding pollen), correcting for the spatial field

effects. Most metabolites correlate with flowering time, so we used

Proc GLM in SAS (http://www.sas.com/) to regress the values for

all 12 metabolites on flowering time. Partial correlation analysis

(part of Proc GLM) was used to confirm that resulting values were

significantly different, and a Holm-Bonferroni correction [44] at

a= 0.05 was used to correct for multiple testing. Principal

components were calculated with Proc PRINCOMP in SAS after

fitting a linear model to account for the effect of flowering time

(days to anthesis) as a covariate. (That is, the principal components

are of the residuals after factoring out flowering time.)

GWAS analysis
Phenotype data for GWAS analysis was taken from previous

studies by our lab and others on a variety of traits, along with the

metabolite data included herein (Table 1). In the majority of cases

phenotypic data had already been processed by fitting a joint-

linkage model [45] with 1,106 high-confidence SNP markers

across NAM. Chromosome-specific residuals were then deter-

mined by fitting a model that included as covariates all identified

quantitative trait loci (QTL) except those on the given chromo-

some. For traits without precomputed residuals, the same process

was followed but with an updated list of ,7,000 SNPs derived

from genotyping-by-sequencing [22]. All genotypes are available

at http://www.panzea.org; chromosome-specific residuals are

included in S2 Dataset.

Forward-regression genome-wide association was then per-

formed with the NamGwasPlugin in TASSEL version 4.1.32 [46].

This plugin was created specifically to run stepwise forward

regression on the Maize NAM population, and takes as input the

chromosome-specific residuals, a genetic map, anchor genotypes

in the progeny, and founder genotypes to be imputed. Each

chromosome was analyzed separately for each phenotype via 100

forward-regression iterations, each of which excluded a random

20% of NAM lines to destabilize spurious associations [47]. The

cutoff for polymorphism inclusion in the model was a raw p-value

,9.5061028, which was empirically determined by permutation

testing with the days to anthesis phenotype to correspond to a

genome-wide Type I error rate of 0.01. The resample model

inclusion probability (RMIP) [47] of each polymorphism was

determined as the proportion of iterations in which a specific

polymorphism was called as significant; only polymorphisms with

an RMIP $0.05 are considered in this study.

The input SNPs were a union of all SNPs in Hapmap1 and

Hapmap2. A small portion of SNPs are duplicated between the

datasets—that is, they were independently discovered in both

studies—but in almost every case they have different (and

sometimes conflicting) allele calls. Thus we made no attempt to

merge such SNPs and instead let each original call be tested

individually. After running GWAS, we found a single case of

ambiguity in determining which SNP had been chosen by the

model, due to two SNPs having identical positions and allele

codings. In this case we retained both to maintain consistency with

the input dataset.

Copy-number variants
Putative CNVs were determined by two methods. First,

Hapmap2 sequencing reads aligned to the maize genome were

counted in 2 kb-windows and compared to a high-coverage B73

sample with edgeR [48]. This procedure had been done previously

[21], and our analysis was primarily to update the results to a

newer version of the Zea mays reference genome (AGPv2). The

B73 sample from Hapmap2 itself served as the null distribution to

determine the cutoff corresponding to an empirical, genome-wide

Type I error rate of 0.05. CNVs that had been previously

identified within annotated genes by the same method [21] were

also included in the analysis but with updated gene coordinates

based on their stable Ensembl gene identifiers.

Independently, the mapped reads were also analyzed by

CNVnator [49] to identify putative CNVs based on shifts in

mean read depth across 500 bp bins. Interestingly, although many

CNVnator CNVs showed consistent segregation across the NAM

founders, GWAS hits came almost exclusively from the edgeR-

derived CNVs. Looking at the characteristics of each, this disparity

is probably due to two factors: (1) the edgeR-derived CNVs are

generally much smaller than those found by CNVnator, and

smaller CNVs have previously been shown to have more

significant GWAS hits in this population [21]; and (2) edgeR also

detects many more CNVs than CNVnator to begin with,

presumably because small CNVs are more common than large

ones.

Since there were a total of three separate sources of CNVs in

this analysis, a single genome region could potentially contribute to

multiple CNVs and thus be tested multiple times per GWAS run.

The contribution to each set of CNVs will be different, however,

since each one depends on all regions within its limits and is then

collapsed to a single score of 0 or 1.

SNP annotation
Putative SNP effects were determined by running all 28.9

million SNPs through the Ensembl Variant Effect Predictor (VEP)

[23] using a local copy of the Zea mays Ensembl database (version

68). Since the VEP annotates effects relative to any gene model

(not just quality-filtered ones), it was run with both the ‘‘–most-

severe’’ and ‘‘–per-gene’’ options to get lists of the worst overall

effect per SNP and the worst per gene, respectively. (Note that the

VEP considers that changing an existing amino acid is more severe

than in-frame insertions and deletions, so small indels that do both

get classified as ‘‘missense.’’ These make up ,0.1% of the input

polymorphisms and only 3 GWAS-hit ones, however, so altering

the annotation would not significantly affect the results.) The two

results were then combined with in-house Perl scripts to create a

list of the worst overall SNP effect with respect to only those genes

in the Zea mays 5b.60 filtered gene set (available at http://www.

gramene.org).

Polymorphism class enrichment
Polymorphisms classes were tallied for both the input SNPs

dataset and for the GWAS-hit SNPs. Using the input dataset as the

null, we then removed any categories with ,5 expected counts in

the GWAS dataset. Total counts in the remaining groups were

then tested for significance by a Chi-square test using the Stats

package in R [50]. Individual categories were then tested for

enrichment by a two-sided exact binomial test, also in R.

Due to the possibility that linkage disequilibrium could distort

the results from the above test, we also ran 1 million circular
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permutations of the hits to generate a null distribution of what

would be expected by chance. Circular permutation in this case

refers to keeping the order of all elements intact while randomly

changing the ‘‘start’’ location along the chromosome. This

maintains the structure of the original data while randomizing

its relationship to genomic features. The resulting counts formed a

normal distribution, which was used to extrapolate the p-values in

S1 Table.

Marginal variance explained
Marginal variance explained by polymorphisms classes (genic,

gene-proximal, intergenic, and CNVs) was calculated by fitting

linear models to each trait and comparing the difference in

variance explained (adjusted R2) between a model with all

identified SNPs and a model with all SNPs except those in the

chosen category.

Standardized effect sizes
Standardized effect sizes for each polymorphism were deter-

mined by first taking all effect sizes the NAM-GWAS model

identified for each trait and fitting an empirical cumulative

distribution function with ecdf() in R [50]. This function was then

used to determine the quantile of each effect. Mean quantile scores

were then calculated for each polymorphism that passed RMIP$

0.05 filtering. Each point in the distribution thus represents a

specific trait-polymorphism combination.

GO term enrichment
Gene Ontology term analysis was performed with agriGO [51]

using all genes with GWAS hits within 5 kb of their annotated

transcript. Statistical analysis was performed in R [50] via a two-

sided Fisher’s exact test with Benjamini-Yekutieli control of the

false discovery rate (FDR) to analyze for both enrichment and

depletion.

Paralogy
Maize paralogs were taken from an existing list [52] (available at

http://genomevolution.org/CoGe). The number of genes with

paralogs in the GWAS hit dataset was compared to those in the

maize filtered gene set and significance of the difference tested by a

two-sided exact binomial test in R [50].

Supporting Information

Figure S1 Linkage disequilibrium in NAM. Linkage disequilib-

rium (LD) in the NAM population was calculated for 10,000

random polymorphisms (A) and for all GWAS hits (B) based on

expected contribution from the 26 founder genotypes. Lines show

the distribution of polymorphisms at different percentile cutoffs

(marked at left). Median LD, as marked by the 50% line, falls

below background (r2,0.2) in less than 100 base pairs. Rare

variants segregating in just a few lines create a large variance in

LD structure, however, as shown by the persistence of LD at

higher percentile cutoffs.

(EPS)

Figure S2 Agreement between identified polymorphisms and

known QTL. Quantitative trait loci (QTL) for key traits from

previous studies in NAM were compared against polymorphisms

found in the current analysis (black dots). Gray bars show the

results of genome-wide joint-linkage scans for days to anthesis (A)

and days to silk (B) (Buckler et al. 2009), QTL support intervals for

Northern leaf blight resistance (C) and leaf length (D) (Poland et al.
2011; Tian et al. 2011), and 6 cM windows of significant SNPs for

stalk strength (E) (Peiffer et al. 2013). 100,000 circular permuta-

tions were performed to determine the significance of overlap

between the previous results and our GWAS hits; the resulting

empirical p-values are in the upper-right of each graph. (Since

parts (A) and (B) are continuous scans, a LOD-score cutoff of 15

was used to specify QTL intervals.) All overlaps are significant at

p,0.01. It should be noted that the lack of perfect overlap is

largely due to the different statistical strengths of joint linkage and

GWAS, and similar results are seen in the previous NAM studies

that used both methods.

(EPS)

Figure S3 Site frequency spectra for intronic and synonymous

SNPs. The site frequency spectra for all SNPs annotated as either

synonymous or intronic in the input dataset (all 28.9 million SNPs)

are plotted. The spectra are nearly identical, with only a slight

enrichment for rare variants among the intronic SNPs.

(EPS)

Table S1 Category counts.

(DOCX)

Table S2 GO term analysis.

(DOCX)

Dataset S1 Metabolite data. Raw data and best linear unbiased

predictors (BLUPs) for the metabolite data used in this analysis.

(ZIP)

Dataset S2 Chromosome-specific residuals. Existing best linear

unbiased predictors (BLUPs) for each inbred line were used to fit a

joint-linkage model across all chromosomes. The hits from this

model were then used to create chromosome-specific residual

values by accounting for all markers except those on the

chromosome in question. (See Methods for details.) These

residuals are the phenotypic input for the NAM-GWAS analysis.

(ZIP)

Dataset S3 Bioinformatic scripts. This file contains the various

bioinformatics scripts that were used to perform the NAM-GWAS

analysis and the subsequent analyses that form the basis for this

paper.

(GZ)
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