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Abstract

Fast-growing chickens have a limited ability to tolerate high temperatures. Thermal manipulation during embryogenesis
(TM) has previously been shown to lower chicken body temperature (Tb) at hatching and to improve thermotolerance until
market age, possibly resulting from changes in metabolic regulation. The aim of this study was to evaluate the long-term
effects of TM (12 h/d, 39.5uC, 65% RH from d 7 to 16 of embryogenesis vs. 37.8uC, 56% RH continuously) and of a
subsequent heat challenge (32uC for 5 h at 34 d) on the mRNA expression of metabolic genes and cell signaling in the
Pectoralis major muscle and the liver. Gene expression was analyzed by RT-qPCR in 8 chickens per treatment, characterized
by low Tb in the TM groups and high Tb in the control groups. Data were analyzed using the general linear model of SAS
considering TM and heat challenge within TM as main effects. TM had significant long-term effects on thyroid hormone
metabolism by decreasing the muscle mRNA expression of deiodinase DIO3. Under standard rearing conditions, the
expression of several genes involved in the regulation of energy metabolism, such as transcription factor PGC-1a, was
affected by TM in the muscle, whereas for other genes regulating mitochondrial function and muscle growth, TM seemed to
mitigate the decrease induced by the heat challenge. TM increased DIO2 mRNA expression in the liver (only at 21uC) and
reduced the citrate synthase activity involved in the Krebs cycle. The phosphorylation level of p38 Mitogen-activated-
protein kinase regulating the cell stress response was higher in the muscle of TM groups compared to controls. In
conclusion, markers of energy utilization and growth were either changed by TM in the Pectoralis major muscle and the liver
by thermal manipulation during incubation as a possible long-term adaptation limiting energy metabolism, or mitigated
during heat challenge.
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Introduction

Increased ambient temperature is one of the major constraints

for poultry production causing lower productivity, morbidity and

mortality and thus leading to economic loss [1]. European and

American fast-growing strains of chickens are the main genotypes

used in meat-type poultry production worldwide and they exhibit

limited ability to tolerate high environmental temperatures,

probably because of poorer development of cardio-vascular and

respiratory organs compared to muscle [2].

Exposure of fast-growing chickens to heat induces several

physiological and behavioral readjustments aimed at restoring

homeostasis by reducing their resting metabolic rate [3]. Acute

heat exposure induces hyperthermia [4] and causes changes in

respiratory physiology and plasma ion concentrations [5], affects

the thyroid axis, and increases stress markers [6] and oxidative

stress in mitochondria [7]. These changes can cause metabolic

disorders and may lead to a cascade of irreversible thermoregu-

latory events and finally death.

Different strategies have been established in order to reduce the

potentially negative impact of heat exposure, including thermal

manipulation during embryogenesis (TM). The technique of

Piestun et al. [6] consisted of increasing the incubation temper-

ature and relative humidity (RH) from 37.8uC and 56% RH to

39.5uC and 65% RH, 12 h/d from embryonic day (E)7 to E16.
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This treatment had no effect on hatching parameters but had

long-term consequences for chicken physiology. It improved their

acquisition of thermotolerance by reducing body temperature in

the long term and the mortality of male chickens during heat

challenge [6,8–9]. A lower Tb has been associated with a better

ability to adapt to heat exposure [10].

At d 34 post-hatching, the glycaemia level of TM broilers

submitted to a heat challenge was increased, and TM had

significant effects on respiratory parameters, increasing O2

saturation percentage and decreasing CO2 partial pressure in

venous blood [9]. The mechanisms underlying this acquisition of

thermotolerance have hardly been explored. It has been shown

that heat manipulation during embryogenesis reduces O2

consumption and heart rate in embryos, suggesting a lower

resting metabolic rate and changes in the vasomotor response [11–

12]. It has also been shown to enhance breast meat yield and

decrease abdominal fat pad content [9,13]. However, the

molecular mechanisms underlying such changes in metabolic rate

and body composition of TM animals have not been identified to

date. Muscle, a major tissue for metabolic heat production in

endotherms [14–15], and liver, a major site of lipogenesis in avian

species [16], warrant specific attention. We therefore investigated

the effects of TM during embryogenesis on the expression of genes

and activity of enzymes regulating energy (cell signaling,

mitochondrial functions…) and protein (proteolysis and protein

synthesis…) metabolisms in the Pectoralis major (PM) muscle and

livers of chickens reared in standard conditions or exposed to a

heat challenge at marketing age. Tissue samples were obtained

from the TM broilers with lowest body temperature and control

broilers with highest body temperature.

Materials and Methods

Chemicals
Nitrocellulose membrane, polyacrylamide solution and protein

standards were purchased from Bio-Rad Laboratories (Hercules,

CA, USA). Antibodies against phospho-extracellular signal-regu-

lated protein kinase p-ERK [T202/Y204], phospho-AMP-acti-

vated protein kinase p-AMPK [T172], phospho-p38 mitogen-

activated protein (MAP) kinase p-p38 [T180/Y182], phospho-

ribosomal protein S6 p-S6 [S235/S236] and S6 were obtained

from Cell Signaling Technology (Beverly, MA, USA). Anti-p70S6

kinase or 70 kDa ribosomal protein S6 kinase S6K1 [T389], anti-

p38a and anti-ERKa antibodies were from Santa Cruz Biotech-

nology (Santa Cruz, CA, USA), anti-vinculin from Sigma

Chemical Company (St Louis, MO, USA) and anti-AMPKa from

Millipore (Paris, France). Alexa Fluor secondary antibodies were

purchased from Molecular Probes (Invitrogen, Carlsbad, CA,

USA).

Experimental design
All experiments were carried out in accordance with the

legislation governing the ethical treatment of animals and

approved by the Ethics Committee (‘‘Comité d’Ethique en

Expérimentation Animale Val de Loire’’, Tours, France, Nu
2011-9).

One thousand Cobb 500 broiler breeder eggs were incubated in

semi-commercial incubators (type 360 E, SMA Coudelou,

Rochecorbon, France). Control eggs (C) were maintained at

37.8uC and 56% relative humidity (RH) during the whole

incubation period [17]. Thermal manipulation treatment (TM)

was applied at 39.5uC and 65% RH for 12 h/d from embryonic

day (E)7 to E16 [6]. All eggs were turned through 90u every hour.

At hatching, chicks were distributed in floor pens at 33uC and the

temperature was gradually decreased to 21uC at d 25 and were

maintained at 21uC until d 34. Water and standard feeds were

supplied ad libitum.

At d 32, 375 C and 363 TM animals were divided into heat-

challenged and non-challenged sub-treatments. Chickens of the

heat-challenged group (CCh and TMCh, respectively) were

exposed at d 34 to 32uC for 5 hours, whereas non-challenged

chickens remained under standard conditions (C and TM groups,

respectively). The average Tb of the groups was 40.960.1uC
(n = 10), 40.760.1uC (n = 11), 42.660.2uC (n = 10) and

42.660.2uC (n = 9), for C, TM, CCh and TMCh, respectively

[9]. In earlier studies, Piestun et al. [6,8] reported lower Tb in TM

animals than in controls reared in standard conditions and chicken

with the lowest Tb were shown to have a better ability to adapt to

high ambient temperature [10]. The regulation of energy and

protein metabolism was therefore investigated in subsets of 8 birds

among 9 to 11 per group per treatment exhibiting the lowest body

temperatures in the TM groups (potentially the best acclimated)

and the highest temperatures in the control groups to highlight

thermoregulatory differences (C: 41.160.1uC, TM: 40.660.2uC
(incubation effect: P,0.05), CCh: 42.860.1uC; TMCh:

42.560.2uC (incubation effect: non-significant) [9]. Chickens were

slaughtered by cervical dislocation at d 34.

Tissue sampling
To characterize the pattern of expression of different candidate

genes, glycolytic breast PM muscle and livers were removed and

snap frozen at d 34 of age in 8 males per treatment. Breast muscle

(representing 21% of body mass [9]) was studied in view of the

importance of muscle mass in generating metabolic heat. The liver

was chosen as a major organ regulating metabolism in birds and

mammals, with an additional role in lipogenesis.

RNA extraction, reverse transcription and qPCR
RNA was simultaneously treated with DNAse and Proteinase

K, and extracted from both types of tissue using the Qiagen

RNAeasy mini kit (Qiagen, The Netherlands) according to the

manufacturer’s instructions. The amounts and purity of RNA

samples were quantified using a NanoDrop ND-1000 UV-Vis

Spectrophotometer (Palaiseau, France) and the integrity was

checked by electrophoresis.

Five micrograms of total RNA samples were reverse-transcribed

using the superscript II kit (Invitrogen, Cergy Pontoise, France)

and random hexamers (GE Healthcare, Uppsala, Sweden). Real-

time PCR was performed using primers reported in Table S1 that

also describes the target gene functions. These genes were chosen

on the basis of their involvement in the regulation of thyroid

hormone and mitochondrial metabolism [18–19], their response

to heat exposure [19] and their role in the regulation of nutrient

utilization and cell defense against oxidative stress [20–21]. cDNA

samples were subsequently amplified in real time using Sybr Green

I Master kit (Roche, Mannheim, Germany) with the LightCycler

480 apparatus (Roche Diagnostics, Meylan, France). A melting

curve program was applied from 65 to 95uC in 1 min for each

individual sample. Each run included ultrapure water as negative

control, samples in triplicate, and control cDNA corresponding to

a pool of cDNA from all samples per tissue in duplicate, in

addition to the real-time PCR mix.

The relative expression of each target gene was calculated

according to the delta-Ct method: Ct (threshold cycle) values for a

target gene were normalized to the specimen with the highest

expression (minimum Ct value) for that gene, calculated according

to the formula: Q = E6(minCt - sampleCt), where Q is the relative

Ct value for a given gene, E the PCR efficiency (ranging from 1 to
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2 with 100% = 2) calculated from the standard curve, minCt the

minimum Ct value for the gene among all specimens, and

sampleCt the Ct value of the gene for the current specimen.

To determine a normalization factor (NF), b-actin, Cytochrome

b and 18S were checked for expression stability as non-

differentially expressed genes using the geNorm software [22].

Figure 1. Levels of mRNA of genes affected by thermal manipulation during embryogenesis in the Pectoralis major muscle of broiler
chickens at d 34. Values were standardized using geNorm factor calculated from the expression of 18S ribosomal RNA, Cytochrome b and b-actin.
A) DIO3: deiodinase 3; HK1: hexokinase 1; SCOT: succinyl-CoA: 3-ketoacid CoA transferase; *: P,0.05; {: P,0.10. B) Chickens were incubated and
reared in standard conditions (Controls C), thermally manipulated during embryogenesis and reared in standard conditions (TM), or incubated in
standard conditions and exposed to heat challenge at d 34 (CCh) or thermally manipulated during embryogenesis and exposed to heat challenge at
d 34 (TMCh). MYOD: myoblast determination protein; GLUT 8: glucose transporter 8; PGC-1a: peroxisome-proliferator-activated receptor (PPAR) c
coactivator 1a; CS: citrate synthase; DIO2: deiodinase 2. Different letters indicate significant differences between treatments (a–b, P,0.05) or only a
tendency (A–B, P,0.10) when both incubation and challenge (incubation) effects or challenge(incubation) effect alone were significant (n = 8 per
treatment).
doi:10.1371/journal.pone.0105339.g001
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Normalized expression (NE) was calculated as the ratio of Q to

NF.

Measurement of levels of b-hydroxyacyl CoA
dehydrogenase (HAD), citrate synthase (CS) and lactate
dehydrogenase (LDH) activity in PM muscle and liver

HAD, CS and LDH are key enzymes involved in mitochondrial

b-oxidation, Krebs cycle and anaerobic glycolysis, respectively.

For activity measurement, samples were thawed and homogenized

in ice-cold phosphate buffer using an ultra-turrax homogenizer

(Ultraturrax, Ilka-Verke, Staufen, Germany). The homogenates

were sonicated for 2 minutes at 8.5–8.8 Watts and centrifuged

(1,500 g, 10 minutes at 4uC) before collecting the supernatant.

The activity levels of HAD, CS and LDH were determined at

30uC using the spectrophotometric method of Bass et al. [23].

Western blotting
Western blotting (WB) was performed on muscle and liver

lysates from 34-day-old chickens to analyze the effects of thermal

treatments on signaling pathways involved in the regulation of

protein translation and of cell stress response. Muscle and liver

lysates were prepared as previously described [20]. Protein

concentrations were determined using the Bio-Rad protein assay

kit (Bio-Rad, USA). Tissue lysates (60 mg protein) were subjected

to SDS-PAGE gel electrophoresis and Western blotting using the

appropriate antibody. Membranes were also probed with an anti-

vinculin antibody to monitor gel loading and to normalize data.

Figure 2. Levels of mRNA of genes affected by heat challenge in the Pectoralis major muscle of broiler control chickens at d 34.
Chickens were incubated and reared in standard conditions (Controls C), thermally manipulated during embryogenesis and reared
in standard conditions (TM), incubated in standard conditions and exposed to heat challenge at d 34 (CCh) or thermally
manipulated during embryogenesis and exposed to heat challenge at d 34 (TMCh). Values were standardized using geNorm factor
calculated from the levels of expression of 18S ribosomal RNA, Cytochrome b and b-actin. HAD: b -hydroxyacyl-CoA dehydrogenase; COX4: unit 4 of
cytochrome c oxidase; IGF-2: insulin growth factor 2; IGFBP5: insulin growth factor binding protein 5. Different letters indicate significant differences
between treatments (a–b, P,0.05) when both incubation and challenge(incubation) effects or challenge(incubation) effect alone were significant
(n = 8 per treatment).
doi:10.1371/journal.pone.0105339.g002
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After washing, membranes were incubated with an Alexa Fluor

secondary antibody (Molecular Probes, Interchim, Montluçon,

France). Bands were visualized by Infrared Fluorescence using the

Odyssey Imaging System (LI-COR Inc. Biotechnology, Lincoln,

NE, USA) and quantified by Odyssey infrared imaging system

software (Application software, version 1.2).

Statistical analysis
All data of mRNA expression, protein expression and enzyme

activity were analyzed using the GLM procedure of SAS (SAS

Inst. Inc., Cary, NC) with the following model: yijk = m+ITi+
R(IT)ij+eijk, where yijk is the parameter considered for animal k at

d 34, m the general mean, ITi the fixed effect of incubation

treatment (i = Control, TM), R(IT)ij the fixed effect of temperature

at d 34 during the challenge j nested within incubation treatment i

(j = non-challenged or heat-challenged) and eijk the residual

pertaining to animal k. The results are presented as least square

means (lsmeans) of main effects: incubation treatment (TM during

embryogenesis) and the heat challenge within incubation (nested

effect). The gene expression values of PGC-1a, LDHA, avian

UCP3, HAD, M-CPT1, COX, IGF-1, MSTN in the muscle and

of DIO3 and DIO2 in the liver were log-transformed before being

analyzed due to heterogeneity of variance between groups

measured with the Levene’s test using SAS (SAS Inst. Inc., Cary,

NC).

Expression profile
The MeV software (MultiExperiment Viewer, http://www.

tm4.org/mev/) was used to describe the global expression pattern

of genes regulating energy metabolism that were differentially

expressed as measured by qPCR for at least one of the factors

(incubation effect and/or challenge intra incubation effect).

Results

Messenger RNA expression of metabolic genes in the PM
muscle

Levels of messenger RNA expression in the PM muscle that

were significantly affected by TM and/or heat challenge within

incubation condition are presented in Figures 1 to 3. The

expression of other genes studied that were not significantly

affected by treatment is reported in Table S2.

Different expression profiles were observed according to the

genes. Expression of the first group of genes (Figure 1A) was lower

in TM than in control birds. Indeed, TM during incubation

decreased the expression of three genes encoding metabolic

enzymes, i.e., deiodinase 3 (DIO3) controlling the local availability

of T3, hexokinase 1 (HK1) regulating entry into the glycolytic

pathway (P,0.05), and succinyl-CoA-3-ketoacid CoA transferase

(SCOT), involved in the production of ketone bodies from fatty

acids (P = 0.09, Figure 1A). In the other groups of genes

(Figures 1B, 2 and 3) there was an interaction between TM and

heat stress at 34 d. In the second group, TM decreased (P,0.05)

the expression of four genes but only in unchallenged birds

(Figure 1B). These genes were myogenic differentiation factor 1

protein (MYOD), citrate synthase (CS), transcription factor

peroxisome-proliferator-activated-receptor gamma coactivator 1

alpha (PGC-1a) and myostatin (MSTN). In the third group

mRNA expression was decreased following heat challenge but

only in the control chickens (C.CCh; Figure 2). They encoded

mitochondrial proteins such as muscle isoform of carnitine

palmitoyl transferase (M-CPT1) involved in the entry of fatty

acids into mitochondria, HAD and the cytochrome oxidase

subunit 4 (COX4), but also insulin-like growth factor 2 (IGF-2)

and IGF binding protein 5 (IGFBP5) regulating muscle growth. By

contrast, the expression of avian uncoupling protein 3 (avian

UCP3) involved in the regulation of oxidative stress was increased

(P,0.05) by heat challenge but only in TM birds (TMCh.TM;

Figure 3A). Expression of myogenic transcription factor 5 (Myf5)

was significantly higher (P,0.05) in the TMCh group than in the

CCh group (Figure 3B).

Messenger RNA expression of metabolic genes in the
liver

No effect of the incubation treatment alone was observed on the

expression of the candidate genes studied in liver tissue. However,

the mRNA expression of some genes was affected by heat

challenge within incubation conditions, as already observed in PM

muscle. The hepatic mRNA expression of 5 genes involved in lipid

Figure 3. Other patterns of mRNA expression in the Pectoralis
major muscle of broiler chickens at d 34. Chickens were
incubated and reared in standard conditions (Controls C), or
thermally manipulated during embryogenesis and reared in
standard conditions (TM), incubated in standard conditions
and exposed to heat challenge at d 34 (CCh) or thermally
manipulated during embryogenesis and exposed to heat
challenge at d 34 (TMCh). Values were standardized using geNorm
factor calculated from the expression of 18S ribosomal RNA,
Cytochrome b and b-actin. A) avian UCP3: avian uncoupling protein;
AdMyHC: adult isoform of myosin heavy chain; Atrogin-1. B) Myf5:
myogenic factor 5. Different letters indicate significant differences
between treatments (a–b, P,0.05) or only a tendency (A–B, P,0.10)
when both incubation and challenge(incubation) effects or challen-
ge(incubation) effect alone were significant (n = 8 per treatment).
doi:10.1371/journal.pone.0105339.g003
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metabolism was lower (P,0.05) in CCh compared to the C group:

i.e. fatty acid synthase (FASN) involved in lipogenesis, and CS, M-

CPT1, SCOT and b-adrenergic receptor 2 (ADRB2R), all of

which are involved in the regulation of fatty acid utilization

(Figure 4). However, the expression of these genes was not

different between TM and TMCh chickens. The mRNA

expression of DIO3 was 25-fold higher (P,0.05) in heat-

challenged (CCh and TMCh) than in non-challenged (C and

TM) birds (Figure 5). Deiodinase DIO2 mRNA expression was

increased 10 to 21 fold (P,0.05) in TM chickens compared to all

other groups (Figure 5). The expression of other candidate genes

was not significantly changed in the liver. These are presented in

Table S3.

Enzyme activity
Levels of HAD, LDH and CS activity in the Pectoralis major

muscle were not affected by incubation or by heat challenge within

incubation treatment (Table 1). The levels of activity of HAD and

LDH in the liver were not affected by treatment, whereas CS

activity was decreased (P,0.05) by the incubation treatment in

liver tissue (Table 1).

Figure 4. Levels of mRNA of genes affected by heat challenge in the livers of d34 control broiler chickens. Chickens were incubated
and reared in standard conditions (Controls C), thermally manipulated during embryogenesis and reared in standard conditions
(TM), incubated in standard conditions and exposed to heat challenge at d 34 (CCh), or thermally manipulated during
embryogenesis and exposed to heat challenge at d 34 (TMCh). Values were standardized using geNorm factor calculated from the
expression of 18S ribosomal RNA, Cytochrome b and b-actin. FASN: fatty acid synthase; CS: citrate synthase; M-CPT1: muscle isoform of carnitine
palmitoyltransferase 1; SCOT: succinyl-CoA: 3-ketoacid CoA transferase; ADRB2R: beta-adrenergic receptor 2; HK2: hexokinase 2. Different letters
indicate significant differences between treatments (a–b, P,0.05) or only a tendency (A–B, P,0.10) when both incubation and challenge(incubation)
effects or challenge(incubation) effect alone were significant (n = 8 per treatment).
doi:10.1371/journal.pone.0105339.g004

Metabolic Programing Due to Incubation Conditions in Birds

PLOS ONE | www.plosone.org 6 September 2014 | Volume 9 | Issue 9 | e105339



Kinase phosphorylation in the muscle
In the PM muscle, phosphorylation of the extracellular signal-

regulated protein kinase (ERK) that is involved in cell survival,

proliferation, differentiation and in insulin signaling (Figure 6)

tended to be greater (P = 0.06) in TM than in control birds

whether challenged or not (Figure 7A). Similarly, the phosphor-

ylation level of p38 MAP (mitogen-activated protein) kinase, that is

involved in apoptosis and cellular stress, was higher (P,0.05) in

TM than in control birds (Figure 7A). The phosphorylation level

of the energy sensor AMP-activated protein kinase (AMPK) was

increased (P,0.01) in the TMCh group compared to all other

groups (Figure 7B). In the signaling pathway regulating protein

translation, lower phosphorylation levels of p70S6 kinase (i.e.

S6K1) and of ribosomal protein S6 (P,0.01) were found after heat

challenge for both control and TM birds (Figure 7C).

Kinase phosphorylation in the liver
The p-S6/S6 ratio in the liver was significantly higher in

controls than in all other groups (Figure 8; Pincubation,0.01;

Pchallenge(incubation),0.05). This was due to both a lower phosphor-

ylation level of p-S6/vinculin in TM than in C (P,0.10) and a

lower S6/vinculin ratio in C and TM than in TMCh chickens.

The phosphorylation levels of other kinases studied in the liver

(AMPK, ERK, p38) were not significantly affected, regardless to

the nature of the incubation treatment or the challenge within

incubation treatment (Table S4).

Discussion

The aim of this study was to investigate the effects of TM during

embryogenesis, combined or not with a subsequent post-hatching

heat challenge on candidate genes and pathways controlling body

composition, muscle biology, protein and energy metabolism.

Previous studies using the same experimental model have provided

evidence that the chicken physiology and nutritional partition can

be affected by such treatments [6,9]. Chickens with lowest Tb for

TM and with highest Tb for C were chosen in larger groups in

order to better highlight differences between the potentially most

and less thermotolerant chickens, respectively. One striking result

was that four major patterns of response to thermal treatments

were observed among the genes and pathways investigated. First,

for a large number of genes or pathways tested there were no

significant differences in the responses of chickens to either

treatment, or the response to the heat challenge was similar in

both TM and control birds. Secondly, mRNA expression or

activity for a group of genes or enzymes was clearly reduced by the

TM of the embryo, most differences being observed at 21uC, and

more rarely at 32uC. This pattern of expression was mainly found

in the muscle tissue. A third group comprised genes for which

expression was affected by heat challenge in control but not in TM

birds, suggesting a specific impact of TM of the embryo on bird’s

response to heat stress. This pattern of expression occurred in both

tissue types. Finally, some genes were affected by the heat

challenge only in TM chickens, also suggesting a role of TM in

defining the chicken’s response to heat challenge.

Response of TM birds related to the control of body
composition and muscle biology

Previous results [8–9,11] have shown positive effects of TM on

breast muscle yield and abdominal fat content. We therefore

investigated the effects of TM on key genes involved in muscle

growth and properties, and in the regulation of body fatness in the

present study. Interestingly, under standard conditions at 21uC the

muscle mRNA expression of MYOD, a transcription factor

involved in the regulation of muscle differentiation [24], decreased

in TM chickens. This result suggests that the TM treatment could

interfere with the transition between proliferation and differenti-

ation of myoblasts in the muscle. Previous results have shown that

TM during late embryogenesis [25] or early post-hatching [26]

enhances muscle cell proliferation compared to control conditions

and, in the case of posthatch treatment, breast muscle IGF-1

mRNA expression. In our study, Myf 5, that regulates early muscle

development events, was not different between TM and control

groups when studied under standard rearing conditions (21uC),

but was significantly increased following heat challenge in TM

birds. The expression of MSTN, a negative regulator of muscle

growth, was decreased in the TM group at 21uC, while the mRNA

expression of IGF-1, a positive regulator of growth, also tended to

decrease in this condition (Table S2). In this study, the heat

challenge also affected certain regulators of muscle growth and

development, lowering both IGF-2 and IGFBP5 mRNA expres-

sion involved in controlling cell survival, differentiation and

apoptosis [27], but only in control broilers. These results together

suggest that the thermal treatment of embryos may durably affect

Figure 5. Levels of mRNA of genes altered by heat challenge within incubation treatment in the liver of d 34 broiler chickens.
Chickens were incubated and reared in standard conditions (Controls C), thermally manipulated during embryogenesis and reared
in standard conditions (TM), incubated in standard conditions and exposed to heat challenge at d 34 (CCh), thermally manipulated
during embryogenesis and exposed to heat challenge at d 34 (TMCh). Values were standardized using geNorm factor calculated from the
expression of 18S ribosomal RNA, Cytochrome b and b-actin. DIO3: deiodinase 3; DIO2: deiodinase 2; SREBP1: sterol regulatory element binding
protein 1. Different letters indicate a tendency to differences between treatments (A–B, P,0.10) when both incubation and challenge(incubation)
effects or challenge(incubation) effect alone were significant (n = 8 per treatment).
doi:10.1371/journal.pone.0105339.g005
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the regulation of muscle development, which could contribute to

the differential breast yields observed in previous studies between

TM and control chickens [9,25]. However, they also indicate

possible interference of incubation conditions with the response to

subsequent heat challenge, as shown by results concerning the IGF

system.

We further studied the regulation of muscle growth and

metabolism by measuring the mRNA expression of some key

genes involved in proteolysis and by investigating the phosphor-

ylation levels of several kinases regulating protein translation.

Indeed, previous studies in our laboratory [19,28] had provided

evidence of the regulation of both protein synthesis and

degradation by chronic heat exposure. In our experimental

conditions, the thermal manipulation of embryos did not

significantly affect regulators of protein degradation and synthesis.

However, acute heat exposure at d 34 affected some of the genes

and proteins involved in protein turnover. The phosphorylation

levels of S6K1 and S6, two kinases regulating protein synthesis

[29], were dramatically decreased following heat challenge,

suggesting lower stimulation of protein synthesis in challenged

birds, as already described in the skeletal muscle of heat-exposed

chickens by Temim et al. [28]. A tendency was also observed for

atrogin-1, involved in protein degradation, to be upregulated

during heat challenge. Incubation conditions thus do not seem to

affect protein turnover in the breast muscle of 34-day-old chickens

directly nor their response to acute heat stress that did not have

different effects on regulators of protein turnover in both the

control and TM birds.

As reported by Ain Baziz et al. [30] and Lu et al. [31], carcass

adiposity is either unchanged or higher in heat-exposed chickens

than in control fast-growing chickens. On the other hand,

abdominal fatness is lower in TM than in control broilers [9,13].

We therefore investigated the regulation of lipogenic and lipolytic

pathways in the liver, the main site of lipid synthesis in birds [16].

Surprisingly, there was no effect of the incubation conditions on

the hepatic mRNA expression of FASN, a key enzyme controlling

hepatic lipogenesis in chickens, or on SREBP-1, M-CPT1, SCOT,

HAD or PPARd that are all involved in fatty acid utilization. This

suggests that post-transcriptional regulation of lipogenic enzyme

content or activity and blood lipid transfer may explain the

decrease in adiposity previously observed in TM compared to

control chickens. Regulation of lipid metabolism by heat exposure

was observed. Indeed, a 50% decrease in mRNA expression of

FASN was induced by heat challenge, suggesting a considerable

negative effect on liver lipogenic activity. Concomitantly, the

expression of M-CPT1 and SCOT genes, that regulate fatty acid

oxidation and ketone body production, respectively, was also

decreased by heat challenge, especially in the control group.

Therefore, the regulation of both lipogenic and lipolytic pathways

appeared to be affected by acute heat stress, although no change in

body composition due to heat challenge was observed in our

previous study [9].

Control of heat production and energy metabolism
Thermal manipulation during embryogenesis was reported to

decrease body temperature and the plasma triiodothyronine (T3)

concentration that controls heat production and metabolism [32–

33], until 28 d in fast-growing chickens [9]. In the present study, a

subsample of TM chickens originating from the same study but

specifically chosen for low body temperatures did not show lower

plasma T3 concentrations than controls. Deiodinase DIO2 is

involved in the conversion of inactive thyroid hormones T4 and

reverse T3 (rT3) into active thyroid hormones T3 and diiodothyr-

onine T2. Deiodinase DIO3 converts T3 into T2 and T4 into rT3
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[34]. Our results showed higher DIO3 expression in the liver, the

major organ converting plasma T4 into T3 [34], after heat

challenge. This is consistent with the decrease in plasma T3

previously reported during heat exposure in birds and mammals

[6,35]. However, the lack of difference between C and TM

chickens for DIO3 expression and the specific increase in DIO2

expression in TM birds at 21uC might explain why plasma T3

concentrations of TM birds were not lower than those of control

birds in the present conditions.

Nevertheless, TM has been shown to decrease O2 consumption

of embryos, indicating a potentially lower metabolic rate in these

animals [11–12]. It has also been suggested that TM could affect

heat production via active local thyroid hormone concentrations.

Our study showed that the DIO3 mRNA expression in the breast

muscle was significantly decreased by TM in challenged and

unchallenged groups, while DIO2 tended to be decreased by TM

only in non-challenged chickens (Table S2). These findings suggest

that TM has a long-term overall negative effect on thyroid

hormone metabolism in the breast muscle. However, the

physiological impact of such changes remains to be determined,

since the activity of deiodinase enzymes is not necessarily

correlated with their mRNA expression.

As a transcriptional gene coactivator, T3 binds to its receptor

(TR) to interact with thyroid hormone receptor response elements

on DNA. A candidate gene for regulating thyroid-stimulated

metabolic pathways and mitochondrial biogenesis is transcription

factor Peroxisome-Proliferator-Activated-Receptor c Coactivator

1 a (PGC-1a) [36–37]. Indeed, the increase in plasma T3 levels

and functional maturation of thyroid hormones in chickens

coincides with an upregulation of PGC-1a during embryogenesis

[38]. It has also been reported that cold exposure upregulates

PGC-1a expression in skeletal muscle during establishment of

endothermy in birds (around E15; [39]), while one week of chronic

heat exposure reduced its mRNA expression in 4-wk-old broiler

chickens [19]. In our conditions, PGC-1a was significantly lower

in the PM muscle of TM animals than in C, suggesting subsequent

modifications in the regulation of genes involved in mitochondrial

function. Energy production pathways might thus be modified in

the long term by incubation conditions in chickens reared at 21uC,

as indicated by decreased levels of gene expression of HK1 (key

enzyme in glycolysis), and CS (a key enzyme in the Krebs cycle) in

TM, as compared to C chicken muscles. SCOT, involved in the

production of ketone bodies, also tended to be affected in muscle

by the TM treatment. The heat challenge had no additional effect

on the expression of these genes in the muscle of TM animals.

These results suggest that the regulation of both mitochondrial

metabolism and glycolysis may have been affected in the long term

by TM, probably contributing to an overall decrease in energy

metabolism in the muscle tissue of TM animals characterized by

lower body temperature.

Levels of expression of M-CPT1, HAD and COX4 mRNA

were decreased by the heat challenge in the PM muscle of control

but not of TM chickens. This indicates that the TM treatment

may limit the impact of the heat challenge on the expression of

these genes involved in the regulation of the b-oxidation of lipids

and of the respiratory chain, respectively [18]. Although Azad et

al. [40] had previously reported decreased HAD activity in the

muscle of chickens exposed to 34uC for 15 d we did not observe

any effect of TM or heat challenge on the activity of enzymes

involved in muscle energy metabolism in the present study,

probably due to the lower intensity and shorter duration of the

thermal exposure applied.

In order to obtain an overall picture of the expression pattern of

target genes regulating energy metabolism in the PM muscle

(controlling mitochondrial metabolism, fatty acid utilization or

glycolytic metabolism), we represented differentially expressed

genes for at least one factor (incubation and/or challenge intra

incubation condition) on the same Figure. Our results showed that

expression of genes regulating energy metabolism tended overall to

be lower in TM, TMCh and CCh chickens than in controls

(Figure S1). Metabolic heat production may thus be as reduced in

TM broilers as in heat-challenged animals. This suggests that

Figure 6. Stress and insulin signaling pathways. ERK: extracellular signal-regulated protein kinase; p38: p38 mitogen-activated protein kinase
(p38 MAPK); AMPK: AMP-activated protein kinase; S6K1: p70 S6 kinase or 70 kDA ribosomal protein S6 kinase; S6: ribosomal protein S6. B)
Phosphorylation levels of ERK and p38 MAPK (n = 8 per treatment).
doi:10.1371/journal.pone.0105339.g006
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effective thermal manipulation inducing low Tb may already

prepare animals to tolerate high ambient temperatures by

downregulating key genes involved in energy production pathways,

meaning that subsequent acute heat exposure induces no or only

slight further modification of the expression of these genes.

Figure 7. Phosphorylation levels of kinases involved in the regulation of protein and energy metabolism and cellular stress in the
Pectoralis major muscle. Chickens were incubated and reared in standard conditions (Controls C), thermally manipulated during
embryogenesis and reared in standard conditions (TM), incubated in standard conditions and exposed to heat challenge at d 34
(CCh), or thermally manipulated during embryogenesis and exposed to heat challenge at d 34 (TMCh). All western-blots were
performed using anti-vinculin antibody as protein loading control. Results are presented as phosphorylated (p-) to total protein ratios. ERK:
extracellular signal-regulated protein kinase; p38: p38 mitogen-activated protein kinase (p38 MAPK); AMPK: AMP-activated protein kinase; S6K1: p70
S6 kinase or 70 kDA ribosomal protein S6 kinase; S6: ribosomal protein S6. A) Phosphorylation levels of ERK and p38 MAPK. B) Phosphorylation level
of AMPK. C) Phosphorylation levels of S6K1 and S6. Different letters indicate significant differences (P,0.05) between treatments (a–b) when both
incubation and challenge(incubation) effects or challenge(incubation) effect alone were significant (n = 8 per treatment).
doi:10.1371/journal.pone.0105339.g007
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The changes in mRNA expression observed in the muscle in

response to TM were concomitant with modifications of the

activation of AMPK involved in energy sensing. Indeed, in the

present study, we found an increase in AMPK phosphorylation in

TMCh chickens as compared to all other groups. AMPK has been

shown to trigger skeletal muscle glucose utilization in chicken

embryos [41]. In mammals activation of AMPK induces the

membrane translocation of the GLUT transporter in skeletal

muscle [42]. We previously demonstrated that the regulation of

glucose utilization was modulated by combined embryo and

postnatal thermal treatment, with higher plasma glucose concen-

trations in TMCh chickens than in all other groups, despite

unchanged plasma insulin concentrations in TMCh and CCh

chickens [9]. The higher phosphorylation level of AMPK in

TMCh chickens might thus represent a signal inducing the

transport of glucose to the skeletal muscle via translocation of the

glucose transporter in response to high glycaemia. This might also

be the result of an increased need for energy production pathways

in response to the acute heat challenge in TM chickens

characterized in standard conditions by down-regulated ATP-

generating pathways as suggested by lower levels of PGC-1a
mRNA expression.

In order to characterize the metabolic changes induced by our

treatments in major organs regulating body composition and

animal metabolism, we also focused on target pathways controlling

hepatic lipogenesis and energy utilization. In the liver, citrate

synthase activity was lower in TM than in C animals, possibly

reflecting lower intensity of energy transfer in mitochondria

affected by the embryo treatment, and consistent with an overall

decrease in metabolic intensity in TM birds. This effect was

however not the same as that observed at the mRNA level, where

the expression of CS was lower at 32uC than at 21uC only in

control chickens. Moreover, gene expression in the muscle and in

the liver was affected differently by treatments, and only DIO2

mRNA expression in the latter was changed by TM. In

accordance with previous results [43–44] showing hepatic

metabolic modifications during heat exposure, lower levels of

mRNA expression of SCOT, M-CPT1, the b-adrenergic receptor

ADRB2R and of HK2, were found in the liver following heat

challenge. However, these lower expression levels were mainly

observed in control birds, and were intermediate in TM chickens.

This might reflect a possible limitation of the heat challenge effect

on fatty acid mitochondrial utilization, production of ketone

bodies, response to b-adrenergic pathway and glycolysis, in the

livers of TM chickens compared to control chickens.

Figure 8. Phosphorylation levels of kinases involved in the regulation of protein metabolism in the liver. Chickens were incubated
and reared in standard conditions (Controls C), thermally manipulated during embryogenesis and reared in standard conditions
(TM), incubated in standard conditions and exposed to heat challenge at d 34 (CCh), or thermally manipulated during
embryogenesis and exposed to heat challenge at d 34 (TMCh). All western-blots were performed using anti-vinculin antibody as protein
loading control. Results are presented as phosphorylated (p-) to total protein ratios. S6: ribosomal protein S6. Different letters indicate significant
differences between treatments (a–b, P,0.05) or only a tendency (A–B, P,0.10) when both incubation and challenge(incubation) effects or
challenge(incubation) effect alone were significant (n = 8 per treatment).
doi:10.1371/journal.pone.0105339.g008
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Mechanisms involved in the stress responses of chickens
Thermal manipulation during incubation induced specific

effects on mechanisms controlling stress responses and apoptosis

in the PM muscle, but not in the liver. One of these was the MAP

kinase signaling pathway. It was recently shown that the activation

of p38 MAPK is induced by oxidative stress and that its

upregulation is responsible for the downregulation of generation

of free radicals and for in vitro survival of mammalian cell lines

[45]. The upregulation of p38 MAPK observed in TM chickens

and, to a lesser extent, of the MAP kinase ERK also involved in

cell stress response, may represent an adaptive mechanism for

regulating oxidative stress and cell survival in both thermoneutral

and heat challenge conditions. UCP is also known to control

oxidative stress. Expression of avian UCP3 mRNA was upregu-

lated in the muscle of TMCh compared to TM birds. Avian UCP3

has previously been shown to be affected by nutrition [46],

genotype [18,47], and ambient temperature [48–50], and its

expression is regulated by the thyroid axis and the beta-adrenergic

pathway [20–21,51]. It is thought to protect muscle tissue from

oxidative injury by reducing oxidative stress that is particularly

increased during acute heat exposure [52]. The overexpression of

avian UCP3 in the muscle during heat challenge in TM animals

may thus contribute to protection against oxidative stress, whereas

this pathway seemed not to be affected in heat-challenged control

chickens. In addition to these different responses to heat-induced

oxidative stress, we have previously reported potentially lower

stress responses in TM animals during heat challenge, as indicated

by modified plasma corticosterone concentration and blood

heterophil to lymphocyte ratio [9], a well-known marker of the

stress response in avian species [53].

To conclude, chickens submitted to TM during embryogenesis

and characterized by low Tb exhibited long-term modifications of

their metabolism. TM may contribute to a decrease in the

intensity of energy metabolism in the liver and breast muscle,

potentially resulting in lower heat production, or may mitigate the

effects of heat stress later in life. We also report modifications of

pathways regulating muscle cell stress responses and development

that may contribute to the greater tolerance of thermal-manipu-

lated chickens subsequently exposed to heat stress. These

potentially ‘‘programing’’ effects of thermal manipulation of the

embryo may be partly due to epigenetic regulation that has

already been suggested to be involved in the modification of gene

expression in the case of early post-hatch thermal exposure.

Whether such mechanisms are involved in the regulation observed

in the present study remains to be elucidated.

Supporting Information

Figure S1 Expression profiles of target genes involved
in energy metabolism and differentially expressed in at
least one condition (whether incubation treatment and/
or heat challenge (intra incubation)). Genes included were

peroxisome proliferator activated receptor coactivator 1 alpha,

citrate synthase, glucose transporter 8, hexokinase 1, succinyl-

CoA: 3-ketoacid CoA transferase, cytochrome oxidase subunit 4,

b-hydroxyl-acyl CoA dehydrogenase, muscle isoform of carnitine

palmitoyl transferase 1 with the average expression of these genes

in red. Blue dashes correspond to the highest or lowest points of

the average line (n = 8 per treatment).

(TIF)

Table S1 Primers used for qRT-PCR.
(DOCX)

Table S2 Levels of m-RNA expression in the Pectoralis
major muscle of 34-day-old broiler chickens.
(DOCX)

Table S3 Levels of m-RNA expression in the livers of 34-
day-old broiler chickens.
(DOCX)

Table S4 Levels of phosphorylation of kinases in the
livers of 34-day-old broiler chickens.
(DOCX)

File S1 Individual data of mRNA expressions, phos-
phorylation levels of kinases and metabolic enzyme
activities in the Pectoralis major muscle and in the livers
of 34-day-old broiler chickens.
(XLS)
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