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 Introduction

Artificial selection in domestic species has been based
r centuries on the own phenotypes of animals. During the
th century, selection index theory first, then Best Linear
biased Prediction (BLUP–a more sophisticated approach

relying on mixed linear models) allowed the use of
information on phenotypes of relatives to predict ‘‘breed-
ing values’’ of candidates for selection. This led to the
successful selection of easily recorded phenotypic traits
with moderate or high heritability. But to be efficient for
traits difficult to measure or with low heritability required
costly phenotyping investments. During the last 25 years, a
number of Quantitative Trait Loci (i.e. regions of the
genome responsible for a fraction of the genetic variance of
a trait) have been mapped with genetic markers, paving
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A B S T R A C T

The principles of genomic selection are described, with the main factors affecting its

efficiency and the assumptions underlying the different models proposed. The reasons of

its fast adoption in dairy cattle are explained and the conditions of its application to other

species are discussed. Perspectives of development include: selection for new traits and

new breeding objectives; adoption of more robust approaches based on information on

causal variants; predictions of genotype � environment interactions.

� 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

R É S U M É

Cet article décrit les principes de la sélection génomique, avec les principaux facteurs de

variation de son efficacité et les hypothèses sous-jacentes aux différents modèles

proposés. Il présente ensuite les raisons de son adoption rapide en bovins laitiers et les

conditions d’application aux autres espèces pour lesquelles la situation est moins

favorable. Les principales perspectives de développement dans les prochaines années

concernent la sélection de caractères nouveaux, l’adoption d’approches robustes utilisant

l’information des mutations causales et la prédiction des interactions génotype � milieu.

� 2016 Académie des sciences. Publié par Elsevier Masson SAS. Cet article est publié en

Open Access sous licence CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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e way to marker-assisted selection (MAS). A genetic
arker is a polymorphic sequence, usually without

iological effect, but easy to genotype, and, consequently,
idely used in genetic studies. The MAS approach was

uccessful for traits with a simple genetic determinism, but
rovided disappointing results in many more complex
ituations. The two main reasons for this low efficiency were

e limited and always overestimated part of the genetic
ariance explained by these small numbers of QTL, and also
e low association (or linkage disequilibrium) between
arkers and QTL at the population level. In 2001,
euwissen et al. [1] proposed a novel approach where
e breeding value could be estimated from markers

panning the entire genome. With this approach, genetic
ffects are estimated for each marker and then summed up

 predict the overall breeding value of any animal (Fig. 1).
his estimation of marker effects is carried out within a
eference population, i.e. a large group of individuals with
oth phenotypes and marker genotypes information. These
ffects are then applied to candidates for selection with
arker genotype information, but without known pheno-
pes. To be effective, this approach is very demanding in
rms of both number of individuals genotyped and number

f markers on the genome. Its application was unfeasible
ntil the development of large-scale and cheap genotyping
ethods.

. The success story of genomic selection in dairy cattle

Before the genomic era, genetic improvement of dairy
attle was relying on a vast phenotype recording system
istributed over most French farms. The best bulls were
elected after a lengthy progeny test based on the
erformances of more than 100 daughters spread in many
erds. They were used through artificial insemination to

breed the next generation. Each bull was genetically
evaluated on about 40 traits relative to milk production
and composition, resistance to mastitis (i.e. udder infection),
fertility, conformation, calving conditions, longevity, etc. In
2007, just after the first draft of the bovine genome was
assembled, the Illumina Company together with an interna-
tional consortium developed a chip to genotype over
54,000 single nucleotide polymorphisms (SNP) simulta-
neously. These markers represented only a small proportion
of all discovered SNP, but they were highly polymorphic in a
large range of breeds and evenly spaced over the genome.
This chip was immediately used to genotype existing
progeny-tested bulls. With these first reference populations,
genomic breeding values were accurate enough to replace
progeny testing. They were made official in 2009 in different
countries, allowing the dissemination of semen of young
bulls with genomic evaluation only. This revolutionized
selection: progeny testing was no longer necessary, simpli-
fying the selection process and decreasing its cost; due to a
strong reduction in generation interval, the yearly genetic
trend could be doubled; due to their lower production cost, a
much larger number of bulls could be selected and marketed,
leading to a better management of genetic resources,
limiting inbreeding trends [2], and more easily satisfying a
diversity of needs and objectives; selection for more
balanced and sustainable objectives was easier, including
low heritability traits such as fertility or mastitis resistance.
Because good accuracy of breeding values requires large
reference populations, international collaborations started
between breeding cooperatives, leading to the emergence of
large consortia such as Eurogenomics in Holstein (nine
European countries). Then, in order to decrease the
genotyping costs, a low-density chip was designed, with
very good imputation accuracy [3], i.e. with excellent
prediction of missing markers. A virtuous circle was created:
the large number of genotyped animals decreased the cost of
genotyping, leading to an increase in volume. At the farm
level, this tool is now used to optimize within herd selection,
matings and replacement, as each genotyped female is as
accurately evaluated as artificial insemination males. In
December 2015, the French national database included
400,000 genotyped animals, including 100,000 for
2015 alone. Now, this large number of genotyped cows is
the major resource for population reference replacement
and updating. In small dairy breeds or in beef breeds with
fewer artificial insemination bulls, such reference popula-
tions partly consisting of cows with own performances are
the only way to implement genomic selection. In 2016,
12 French cattle breeds, including several small ones, use
genomic selection in their breeding program. This is a crucial
evolution, because initially only the largest breeds were able
to benefit from this innovation, creating a technological gap
with the smaller ones.

3. Factors of variation of genomic selection efficiency

Whatever the domestic species, the yearly genetic gain
depends on four parameters: genetic variability of the trait,
selection intensity, evaluation accuracy, and generation
interval. The three latter can be modified by genomic
selection. The main advantage of genomic selection is that

ig. 1. Principles of genomic selection. Top: a prediction equation is

btained from a reference population with phenotypes and genotypes;

ottom: this prediction equation is used on candidates with genotypic

formation only.
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ndidates can be evaluated and therefore selected
ithout their own phenotypic information, nor on their
ogeny. Therefore, selection can be applied very early, just
ter birth or even on embryos. Therefore, in a number of
ecies and production systems, genomic selection may
ly on a reduced generation interval. When the genotyp-
g cost is low, a large number of candidates can be
reened, and selection intensity can be increased. This
ge-scale screening also allows a better use of the
ailable genetic resources. The evaluation can be carried
t for any trait recorded in the reference population,

hich is of particular interest when the trait is difficult or
possible to record on the candidate itself (sex-limited
its, meat quality traits, disease resistance. . .).
The third determinant of selection efficiency, genomic

aluation accuracy (r) depends, for a given trait (1) on the
curacy of SNP effect estimation and (2) on the linkage
sequilibrium between SNP and causal variants. The first
rameter depends on the size (N) of the reference
pulation and on the heritability of the trait (h2). The
cond parameter depends on the structure of the genome
d the genetic architecture of the trait. A critical
rameter is the number of independent segments
gregating in the population. This number q is a function

 the length of the genome (length = L, in Morgans) and of
e effective size of the population Ne. When Ne is smaller,
e conserved segments are longer and fewer markers are
eded to trace them. In practice, a formula is commonly
ed to evaluate this accuracy [4]: r2 = N h2/(N h2 + q), with
a function of Ne and L.

 Methods of evaluation

Different methods have been proposed to perform
nomic evaluation. Because of the large number of
arkers, all of them consider the marker’s effects as a
ndom one whose value comes from a prior statistical
stribution that differs depending on the method.
nceptually, the statistical models either include the

fect of the markers explicitly or directly describe the
nomic breeding values of all genotyped animals, with a
variance structure based on marker information. These
o kinds of model are fully equivalent but, according to

e situations, one or the other can be more convenient to
plement or to interpret. Genomic Best Linear Unbiased

ediction (or GBLUP), proposed by [5], is a simple
tension of the polygenic BLUP where the relationship
atrix is based on marker information instead of on
digree. In GBLUP, all markers have the same weight: the
odel ignores the true genetic determinism of the trait and
e covariance between the genomic breeding values of
o animals is proportional to their proportion of genome

ey share. GBLUP is especially efficient for very polygenic
its. Other evaluation methods aim at selecting the most

edictive markers, supposedly located close to the causal
riants. Many Bayesian methods have been proposed,
hich give larger weights to SNP potentially close to causal
riants or assume that only a small proportion of the
riants have a non-zero effect. In other words, they try to
tter account for QTL information (these methods are also
ry efficient for multi-marker QTL mapping [6]).

In most approaches, evaluation methods treat each SNP
individually, ignoring their linkage disequilibrium. Haplo-
types (defined by combinations of neighboring SNP) are
more informative than biallelic SNPs and better reflect
identity-by-descent situations. In the approach used in the
French dairy cattle, the model includes several thousand
QTL traced by trait-dependent SNP haplotypes, next to
several thousands of SNPs quantifying the remaining
residual polygenic term in a way comparable to GBLUP.
This comprehensive model is at least as accurate as and
more robust than the other approaches, at the expense of a
higher complexity [7]. It also anticipates future evolutions
with causal variants: when fully known, a causal variant
can easily replace the haplotype used as its proxy.

5. Genomic selection 2.0

After the first pioneering work in dairy cattle, genomic
selection is becoming a reality in an increasing number of
animal and plant populations and species. Nevertheless, it
is still a very recent innovation and many evolutions are
expected in the near future.

5.1. Extension to many populations

In most species, the cost of genomic selection still limits
its extension. Many breeding schemes cannot afford the
investment to create a reference population, and genotyp-
ing costs can still hamper practical implementation: a
critical parameter is the ratio of the genotyping over
phenotyping costs. In very prolific species, genotyping
with a very low-density chip is economically justified:
when all parents in the selection nucleus are genotyped at
a high density, only a few hundred markers are needed to
trace all the chromosome segments in the selection
candidates (their progeny), reducing the overall genotyp-
ing costs. This example shows that the dairy cattle
situation cannot be simply transposed. Genomic selection
must be adapted to the biological and economic condi-
tions.

5.2. Robust methods using biological information and causal

variants

It has been observed that genomic selection efficiency is
strongly dependent on the relationship between the
selection candidates and the reference population. For a
given trait, if the genetic relationships at causal polymor-
phisms were known, selection efficiency would be maximal.
In practice, only a proxy based on genetic markers is used.
This proxy is more accurate when relationships are higher,
and becomes very poor for almost unrelated individuals. In
addition, the marker effects estimated in the reference
population reflect the marker–QTL association in this
population. When the number of generations separating
this population from selection candidates increases, recom-
bination events accumulate between the QTL and their
surrounding markers, leading to a loss in efficiency.
Therefore, it is anticipated that genomic evaluation would
be more robust to lack of close relationships if causal
variants or very close markers would be used.
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For the exact same reason, present genomic prediction
ethods are not efficient for across-breed selection. A

rediction equation built in one breed has nearly no
redictive ability in another breed [8], except when breeds
re closely related. This was initially interpreted as a too
w marker density leading to an observed QTL-markers

nkage disequilibrium in the reference population, which
as not conserved in the candidates. But using a much
igher density (with a HD chip with one marker every 4 kb
r 0.004 cM) did not improve much the situation. It was
en shown through simulations in cattle that the across-

reed genomic relationship coefficient at causal variants
an be well approximated only using very close markers
n the same kilobase interval), whereas the other more
istant markers on the genome generate noise and must be
ft out [9]. Of course, the efficiency will depend on the
roportion of QTL segregating in different populations and
n the stability of their effects. These points are still open
uestions under investigation. However, across-breed
election might be the most appealing for small breeds

 assemble reference populations that are large enough.
After an initial black box strategy, it is believed now that

enomic evaluation can be more accurate and more
ersistent by integrating biological knowledge. Different
ams launched large-scale QTL mapping programs by

ssociation analysis at the complete sequence level to
entify a large number of candidate variants, either causal

r in a very close neighborhood of the causal variants, even
r QTL explaining as low as 1% of the genetic variance.

eference populations assembled for genomic selection,
ith tens of thousands individuals, are used as mapping

esource populations. Mapping resolution is further
proved by combining results from different breeds,

ecause linkage disequilibrium decays must faster across
reeds than within a breed. The full sequences of these
rge resource populations are not directly available, but

an be accurately imputed. This was the primary motiva-
on of the ‘‘1000 bull genomes’’ international project [10],
ith 1682 whole genome sequences already available in
ly 2015. In this project, the sequenced bulls were

rimarily selected as the most influential ancestors of
eir breeds to maximize imputation accuracy.
Assuming many causal variants can be identified, they

an be included in genomic selection in a straightforward
ay. The chips used for genomic selection allow for a

ustom part designed by the users, which includes these
andidate variants. Used on a large scale in commercial
opulations, this chip helps confirm the effect of these
andidate variants and integrate them in the genomic
rediction model.

.3. New phenotypes and new breeding goals

Another major expected evolution is the greater
exibility in the choice of traits to select and of breeding
bjectives. With genomic selection, a trait can be selected as
oon as a reference population of sufficient size can be
ssembled. In cattle, different opportunities are arising [11],
ased on the use of innovative recording techniques (such as
id infrared spectrometry for milk composition and milk

reproduction, behavior. . .), use of commercial data (sanitary
cards, carcass traits from slaughterhouses), or international
collaboration for traits expensive to measure (e.g., feed
efficiency or methane emission). Many initiatives are under
way to generate reference populations for traits that were
long believed to be impossible to select.

6. Conclusion

Genomic selection has been very successful in cattle
because it provides more genetic gain at a similar or lower
cost. But other important and often overlooked conse-
quences are the huge opportunities it offers for traits
difficult to select, for traits not yet selected, but important
for sustainable production, and for a better management of
the genetic variability on the long term. Genomic selection
is a very recent innovation. Strong evolutions have started,
including reduction in genotyping costs, phenotyping
strategies for new traits, approaches for the creation or
the replacement of reference populations, increase in
robustness and persistency of genomic predictions using
causal mutations identified from genome sequences, or
genomic prediction of genetic � environment interactions.
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Bouchez, M.N. Rossignol, C. Klopp, D. Rocha, S. Fritz, A. Eggen, P.
Bowman, D. Coote, A.J. Chamberlain, C. Anderson, C.P. Van Tassell, I.
Hulsegge, M.E. Goddard, B. Guldbrandtsen, M.S. Lund, R.F. Veerkamp, D.
Boichard, R. Fries, B.J. Hayes, Whole-genome sequencing of 234 bulls
facilitates mapping of monogenic and complex traits in cattle, Nat.
Genet. 46 (2014) 858–867.

[11] D. Boichard, M. Brochard, New phenotypes for new breeding goals in

dairy cattle, Animal 6 (2012) 544–550.
roperties), use of precision farming data (for health,

http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0060
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0060
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0060
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0065
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0065
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0065
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0065
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0070
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0070
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0070
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0070
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0075
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0075
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0075
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0080
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0080
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0080
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0080
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0085
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0085
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0090
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0090
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0090
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0090
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0095
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0095
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0100
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0100
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0100
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0105
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0105
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0105
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0105
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0105
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0105
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0105
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0105
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0110
http://refhub.elsevier.com/S1631-0691(16)30030-0/sbref0110

	Genomic selection in domestic animals: Principles, applications and perspectives
	1 Introduction
	2 The success story of genomic selection in dairy cattle
	3 Factors of variation of genomic selection efficiency
	4 Methods of evaluation
	5 Genomic selection 2.0
	5.1 Extension to many populations
	5.2 Robust methods using biological information and causal variants
	5.3 New phenotypes and new breeding goals

	6 Conclusion
	Disclosure of interest
	References


