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Display of recombinant proteins at the 
surface of lactic acid bacteria: strategies 
and applications
C. Michon1, P. Langella1, V. G. H. Eijsink2, G. Mathiesen2 and J. M. Chatel1*

Abstract 

Lactic acid bacteria (LAB) are promising vectors of choice to deliver active molecules to mucosal tissues. They are 
recognized as safe by the World Health Organization and some strains have probiotic properties. The wide range of 
potential applications of LAB-driven mucosal delivery includes control of inflammatory bowel disease, vaccine deliv-
ery, and management of auto-immune diseases. Because of this potential, strategies for the display of proteins at the 
surface of LAB are gaining interest. To display a protein at the surface of LAB, a signal peptide and an anchor domain 
are necessary. The recombinant protein can be attached to the membrane layer, using a transmembrane anchor or a 
lipoprotein-anchor, or to the cell wall, by a covalent link using sortase mediated anchoring via the LPXTG motif, or by 
non-covalent liaisons employing binding domains such as LysM or WxL. Both the stability and functionality of the dis-
played proteins will be affected by the kind of anchor used. The most commonly surfaced exposed recombinant pro-
teins produced in LAB are antigens and antibodies and the most commonly used LAB are lactococci and lactobacilli. 
Although it is not necessarily so that surface-display is the preferred localization in all cases, it has been shown that for 
certain applications, such as delivery of the human papillomavirus E7 antigen, surface-display elicits better biological 
responses, compared to cytosolic expression or secretion. Recent developments include the display of peptides and 
proteins targeting host cell receptors, for the purpose of enhancing the interactions between LAB and host. Surface-
display technologies have other potential applications, such as degradation of biomass, which is of importance for 
some potential industrial applications of LAB.
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Background
Lactic acid bacteria (LAB) have been used for thou-
sands of years in food products where their fermenta-
tive properties promote natural conservation and taste 
development [1]. LAB are a heterogeneous group of 
gram-positive bacteria, including species of Lactococcus, 
Lactobacillus and Streptococcus, which during fermen-
tation of carbohydrates produce lactic acid as a major 
end product. The majority of LAB strains are capable of 
surviving the harsh conditions in the gastro-intestinal 
tract (GIT), and some are capable of colonizing certain 

intestinal tissues. It has to be noticed that Lactococ-
cus lactis, the most used LAB for heterologous protein 
expression, only survive for a few hours in the human 
GIT [2] whereas survival times for some lactobacilli are 
much higher until 7  days. This physiological character-
istic could be an asset for L. lactis as genetically modi-
fied organism (GMO) because, as the bacterium dies in 
the GIT, it cannot be spread in the environment. Since 
LAB have been consumed for ages and are commonly 
found in food products they are considered as safe by the 
World Health Organization. Several LAB, and especially 
members of the genus Lactobacillus, have health pro-
moting properties. Strong resistance to harsh conditions, 
innocuous activity and beneficial properties make LAB 
excellent candidates to deliver active molecules such as 
vaccines or cytokines to the GIT mucosa [3].
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Over the last 20  years, wide and numerous health 
applications of LAB have been demonstrated. For exam-
ple, a L. lactis strain producing recombinant Elafin, a pro-
tease inhibitor, has been shown to have a positive effect 
on gluten-related disorders and in the control of inflam-
matory bowel disease in an induced colitis model [4, 5]. 
LAB have also been used to produce medically interest-
ing proteins like tetanus toxin [6, 7], insulin [8] or leptin 
[9], to deliver cDNA to eukaryotic cells [10] and several 
recombinant LAB have entered clinical studies [11, 12].

Recombinant protein can be produced in the cyto-
plasm, end up in the cell membrane or be exported from 
the cells to end up in the surroundings (secreted) or to 
become anchored at the bacterial surface. Secreted pro-
teins are diluted in the environment and are likely to be 
prone to proteolytic degradation as well as effects of low 
pH and bile salts, all of which may weaken the activity 
and functionality of the protein [13, 14]. To protect the 
protein from harsh conditions and to increase its on-site 
concentration, strategies based on anchoring the protein 
to the microbial surface are gaining increasing attention. 
It is conceivable that a protein attached to the bacterial 
surface, is more protected than a free protein, especially 
if the protein is embedded in the bacterial cell wall.

In this review we describe the diverse techniques to 
display functional proteins at LAB surfaces, review com-
parative studies of strains directing the same protein to 
different locations, and discuss specific advantages of 
protein surface display.

Strategies to display proteins at the surface 
of lactic acid bacteria
The first heterologous bacterial display system was con-
structed almost 30 years ago [15, 16]. In these early stud-
ies, short, heterologous gene fragments were inserted into 
genes encoding outer membrane proteins of Escherichia 
coli leading to peptide display at the bacterial surface. 
It was suggested that surface display would open up for 
development of oral live vaccines using non-pathogenic 
strains [15]. Later on, several systems have been estab-
lished for surface-anchoring and displaying heterologous 
proteins, including systems for gram-positive bacteria 
[17, 18]. Gram-positive bacteria have only one cytoplas-
mic cell membrane, meaning that protein export only 
involves one membrane translocation. Both the single 
cell membrane and the relatively thick cell wall of Gram-
positive bacteria offer anchoring opportunities. There are 
two principally different ways to anchor secreted proteins 
to the bacterial surface, by covalent binding to surface 
components or by non-covalent binding to the cell mem-
brane or cell wall components through specialized bind-
ing domains [19] (Fig. 1).

Display of proteins implies a trade-off between high 
exposure, which will improve interactions with the GIT, 
and a low exposure, which will protect the displayed pro-
tein. Proteins displayed as compact properly folded mol-
ecules are likely to be less susceptible to degradation than 
engineered fusion proteins such as multi-epitope antigen 
fusions. Exposure of the protein will depend on the type 
of anchor used, although the degree of exposure and its 
effect on e.g. immunogenicity cannot be measured or 
rationalized. Fact is that the use of different anchoring 
systems can result in distinctly different host responses 
[20, 21]; this should be taken into consideration when 
designing LAB-based delivery strategies.

Expression and export of a heterologous protein con-
taining the desired anchoring signal is at the basis of most 
display strategies. The success of these steps is a major 
determinant of both the viability of the recombinant 
strain and the amount of protein displayed on its surface. 
Assuming that the primary gene product is produced at 
desirable levels, its proper secretion and post-translational 
processing are by no means assured. Insufficiently effective 
secretion may lead to overloading of the secretion machin-
ery and secretion stress, which may cause reduced growth 
of the host and/or promote intracellular or extracellular 
proteolytic degradation [22, 23]. Unfortunately, the secre-
tion efficiency for heterologous proteins is difficult to pre-
dict. It depends not only on the signal peptide, but also on 
an optimal combination between the signal peptide and 
the target protein and, most likely, the interplay between 
expression rate, folding rate and secretion rate [23–27]. 
Since it is not possible to predict which signal peptide 
works best for a certain protein, it is generally advisable 
to test several to find the most optimal one, possibly by 
evaluating genome-wide signal peptide libraries in modu-
lar cloning systems (see below). In early work in the field, 
Dieye et al. [27] showed that replacement of the M6 signal 
peptide with the Usp45 signal peptide from L. lactis dou-
bled the amount of a staphylococcal nuclease reporter pro-
tein (NucA) that was successfully anchored to the cell wall 
[27]. It has also been shown that insertion of a negatively 
charge synthetic pro-peptide immediately downstream of 
the signal peptidase cleavage site increases secretion effi-
ciency [28]. The optimization of secretion efficiency and 
the reduction of secretion stress are of utmost importance 
when the aim is surface display. Notably, several of the 
recombinant strains appearing in the examples discussed 
below showed impaired growth, meaning that further 
optimization, e.g. by adjusting expression levels and/or 
secretion and anchoring signals, may be useful.

In LAB, expression, secretion and surface display of 
heterologous target proteins have been explored quite 
extensively [27, 29–37]. The nisin-based NICE system is 
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a well-known system for inducible expression in L. lactis 
and several other LAB [32]. A system similar to the NICE 
system and primarily developed for use in lactobacilli is 
the pSIP system [38, 39] In recent years, this modular 
vector system for inducible gene expression has been 
developed for protein secretion and anchoring [21, 23, 
40–44], exploiting signals from L. plantarum WCFS1.

Below, the varying anchoring strategies displayed in 
Fig.  1 are discussed in detail and references illustrating 
the use of these strategies are provided. All these strate-
gies have to some extent been implemented in the pSIP 
system.

N‑terminal transmembrane anchors
Many secreted proteins have a Sec-type N-terminal sig-
nal peptide [45] which is recognized intracellularly and 
guided to a translocation machinery that transports pro-
teins over the cell membrane in an unfolded state. After 
or during translocation, the signal peptide is cleaved off 
and the mature protein is released into the surroundings, 
ending up in the culture medium or remaining associated 
to the cells by covalent anchoring or looser forms of asso-
ciation (Fig. 1) [46]. Some proteins with a secretory signal 
sequence lack the signal peptidase cleavage site. In these 
proteins, the signal peptide (SP), with its central stretch 
of hydrophobic residues, acts as an N-terminal trans-
membrane helix anchoring the protein to the membrane. 
Whereas the absence of a signal peptidase cleavage site 
strongly influences the localization of the protein, it is 

not straightforward to predict with certainty which signal 
peptides are cleaved off and which are not [47].

To achieve N-terminal transmembrane anchoring, the 
protein of interest needs to be translationally fused to the 
anchoring sequence and the length of the latter needs 
careful consideration. One may vary from using very 
short anchors, comprising the SP followed by a few addi-
tional residues functioning as linker, to fusing the protein 
of interest to a complete N-terminally anchored pro-
tein. A short anchor may leave the target protein totally 
embedded in the cell wall, which may lead to protec-
tion but also to lack of accessibility. In early work based 
on randomly screening export-signals from a genomic 
library of L. lactis and using the Staphylococcus aureus 
nuclease as reporter protein, Poquet et al. [48] detected 
two anchors predicted to contain a single N-terminal 
transmembrane helix, varying in size from 40 to 234 resi-
dues. One of the most exploited N-terminal transmem-
brane helix anchors is the PgsA protein from Bacillus 
subtilis, which is part of the poly-γ-glutamate synthetase 
complex. Several reports describe coupling of antigens 
to the C-terminus of PgsA, leading to successful surface 
display in L. casei and L. lactis [12, 33, 49–54]. In these 
studies, surface-display was confirmed using fluores-
cence microscopy or flow cytometry. For some of the 
engineered strains specific immune responses in animal 
models, mostly mice, could be demonstrated, indicating 
that this type of anchoring gives proper localization, sta-
bility and accessibility of the antigens [49, 50].
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Fig. 1 Methods for protein display in lactobacilli. A schematic view of the most exploited anchoring methods that are based on covalent or non-
covalent interactions with components of the cell membrane or the cell wall. Dark red shows anchor domains/motifs, which are coupled to the 
to-be-displayed protein. The various routes for display are discussed in the main text. Additional variants based on using a binding domain (i.e. 
similar to the LysM domain-based strategy) are also discussed in the text. Note that the LysM domain may have various positions relative to the 
to-be expressed protein; see text
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Lipoprotein‑anchors
Lipoproteins contain an N-terminal signal peptide with a 
so-called lipobox motif in the C-terminal part of the sig-
nal peptide [55, 56]. After secretion via the Sec-pathway, 
diacylglycerol transferase catalyzes a coupling reaction 
between a conserved cysteine in the lipobox and a phos-
pholipid of the membrane. The SP is then cleaved off by 
a lipobox specific signal peptidase, SPase II. The modi-
fied cysteine now forms the N-terminus of the mature 
lipoprotein which is covalently bound to a phosholipid 
of the cell membrane [56, 57]. Fusing a heterologous pro-
tein sequence to a lipoprotein downstream of the lipobox 
is thus a method for membrane anchoring and surface 
display.

In LAB, the exploitation of lipoproteins as anchor for 
heterologous proteins has received little attention com-
pared to other anchoring methods. In their screening 
study with the NucA reporter (see above) Poquet et  al. 
[48] found four Lactococcus lipoprotein fragments that 
served as surface anchors, varying in length from 91 to 
140 residues (note that the actual N-terminal signal pep-
tides are about 25 residues).

Successful anchoring and display in L. lactis has 
also been achieved using the lactococcal basic mem-
brane protein A (BmpA) [58, 59]. Interestingly, reduc-
tion of the length of the BmpA anchor from full length 
(352 residues) to versions shortened to 44–104 residues 
led to increased detection of the reporter protein (the 
B-domain of staphylococcal protein A) on the bacterial 
surface [59]. This indicates that not only anchor length, 
but also other anchor features such as the orientation of 
the C-terminus (and, thus, of the displayed protein) play 
a role in determining the overall efficiency of the display 
system.

In Lactobacillus, fragments of the 547 residue oligo-
peptide ABC transporter (Lp_1261) and the 298 resi-
due peptidylprolyl isomerase PrsA (Lp_1452) have been 
used successfully as lipo-anchors in order to display a 
protein responsible for invasivity of Yersinia pseudotu-
berculosis called invasin [21]. The lengths of the anchor 
sequences were 75 and 142 residues, respectively, includ-
ing the signal peptide (22 and 19 residues, respectively) 
and regions N-terminal of the catalytic domains of these 
proteins as they were predicted by Pfam. In both cases, 
surface display of both the complete extracellular part 
of invasin (domains D1-D5) and the D4-D5 fragment 
was demonstrated. Surprisingly, the lipo-anchored pro-
teins were not evenly detected over the cell surface, but 
appeared mainly in and near the septum. For other cell 
wall anchors explored in the same study (an N-terminal 
transmembrane anchor, see above, and a LysM anchor, 
see below) such an asymmetric distribution was not 
observed. Recombinant strains expressing lipo-anchored 

full length invasin induced a strong pro-inflammatory 
response in monocytes similar to the response induced 
by the positive control, bacterial lipopolysaccharides 
(LPS) [21].

Covalent anchoring to the cell wall through LPXTG anchors
Targeting proteins to the cell wall can be done by fusing 
the carrier protein to an LPXTG-type cell wall anchor 
[60, 61]. These C-terminal anchors contain an LPXTG 
sequence motif followed by hydrophobic amino acids and 
a short tail of positively charged residues (Fig. 2). LPXTG 
anchored proteins harbor an N-terminal signal sequence 
that directs export across the cell membrane via the Sec-
pathway. Upon secretion, a transpeptidase called sortase 
cleaves between Thr and Gly in the LPXTG motif and the 
protein is covalently attached to the cell wall peptidogly-
can via the threonine [62] (Fig. 2). Directly upstream of 
the LPXTG motif, i.e. between the anchoring point and 
the catalytic domain of the anchored protein, one usu-
ally finds a low complexity linker region of about 50–150 
residues which is rich in proline/glycine and/or threo-
nine/serine residues [18]. There are two major differences 
between sortase-mediated anchoring and the anchoring 
methods described before: (1) the anchored protein is 
attached to cell wall which is more peripheral and (2) the 
protein is attached to the surface via its C-terminus. Lit-
erature contains several examples of successful sortase-
mediated cell-wall anchoring of heterologous proteins in 
both Lactobacillus and L. lactis [20, 41, 63–67].

The Streptococcus pyogenes M6 protein has been 
extensively used for anchoring proteins in LAB [27, 64, 
65, 68]. The length of the linker region was shown to 
be important for both surface exposure and stability of 
the target protein. In a landmark study, Dieye et al. [27] 
used the M6 protein as anchor for displaying the NucA 
reporter. When using anchoring fragments includ-
ing the complete low-complexity linker region, several 
NucA-containing protein bands were detected in the cell 
wall fraction, indicating proteolytic degradation. After 
deletion of the 105 residue linker region preceding the 
anchoring motif one major band was found in the cell 
wall fraction. These authors also showed that NucA con-
taining the linker was efficiently translocated and N-ter-
minally processed, but that sortase processing was slow, 
possibly resulting in limited anchoring and higher pro-
teolytic susceptibility [27].

As part of the development of the pSIP vector sys-
tem, Fredriksen et  al. [41] used various variants of the 
LPXTG anchor of Lp_2578, a 705 residue protein anno-
tated as “cell wall surface adherence protein” from L. 
plantarum WCFS1 (Fig. 2). The 37 k Da human oncofetal 
antigen (OFA) was N-terminally fused to a selected sig-
nal peptide (from Lp_0373) and C-terminally fused to 
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N-terminally truncated variants of Lp_2578. The length 
of the “linker region”, i.e. the length of the Lp_2578 frag-
ment counted from the cell wall anchored threonine 
and backwards, was 644, 194 or 128 residues (full length 
N-terminally processed and cell-wall anchored Lp_2578 
is 647 residues). The 194 residue linker contains the com-
plete low-complexity region upstream of the LPXTG 
motif, whereas this region is truncated in the shorter 128 
residues variant. In all cases OFA was detected in the cell 
wall fraction, but the constructs differed in terms of the 
amount of protein produced, the degree of proteolytic 
degradation and the amount of OFA observed in the 
supernatant (indicating shedding and/or limited sortase 
processing). The differences show that the lengths of the 
anchors and linker sequences affect anchoring efficiency 
and proteolytic stability, but that it is as yet difficult to 
predict the magnitude and direction of such differences. 
Hence, a modular vector system, such as the pSIP system, 
allowing rapid testing of various anchors, as well as test-
ing of other factors such as promoter strength and the 
signal peptide, can be useful.

Available data clearly show that expression of these 
complex fusion proteins is not straightforward and tends 
to lead to reduced bacterial fitness and/or proteolytic 
stress on the displayed protein. Reduction of proteolytic 
degradation could be obtained by deleting proteases as 
demonstrated for L. lactis, which showed reduced pro-
teolysis of several heterologously expressed antigens 
and enzymes upon deletion of the HtrA protease [69]. 
Another variable of interest is the choice of the expres-
sion host, since hosts may show varying proteolytic activ-
ities as well as varying secretion and anchoring abilities. 

For example, lactococci generally show stronger proteo-
lytic activity compared to lactobacilli [27]. Proper trans-
location and subsequent surface location of the target 
protein also depend on the secretion signal, meaning that 
the choice of signal peptide is of utmost importance, as 
alluded to above.

Non‑covalent binding‑domain‑mediated anchoring
Proteins can be non-covalently attached to the cell wall of 
gram-positive bacteria by being appended to a variety of 
cell wall binding domains, including surface layer proteins 
and surface layer homology domains (SLPs and SLHDs), 
LysM domains, GW modules, WxL domains, and various 
other cell wall binding domains, including choline-bind-
ing domains, as reviewed in [70, 71]. Notably, whereas 
several lactobacilli produce SLPs and, thus, S-layers, none 
seem to contain proteins carrying SLHDs [72].

Several Lactobacillus species have S-layers, i.e. a 
porous two-dimensional lattice of self-assembled pro-
teins varying in size from 40 to 200  k  Da that entirely 
coats the bacterial surface. In some lactobacilli, up to 
10–15 % of the total proteins are S-layer proteins, indi-
cating high production and efficient secretion of these 
proteins. Since S-layer proteins are produced in high 
amounts, the cognate promoters and/or signal peptides 
have been exploited for expression and secretion of het-
erologous proteins in LAB [73–77]. S-layer proteins 
contain a region that binds strongly to the cell envelope. 
Another region is involved in self-assembly of the S-layer 
and is most likely surface exposed [72].

Only few studies have explored the possibility of 
using SLPs as carrier for surface-display of heterologous 

Fig. 2 Covalent anchoring to the lactobacillal cell wall. The picture shows a schematic overview of the expression cassette for cell wall anchoring 
of a protein of interest, using an anchoring sequence derived from the Lp_2578 protein of L. plantarum. The cassette is translationally fused to the 
inducible PsppA promoter and all parts are easily interchangeable using introduced restriction sites (NdeI, SalI, MluI and multiple cloning site, MCS). 
The primary gene product comprises a signal peptide (indigo), which in this example is derived from Lp_2578, but which could be any peptide 
from a signal peptide library [23]. The predicted signal peptide cleavage site is indicated by an arrow. The protein of interest is inserted between 
SalI and MluI restriction sites that were engineered into the vector for this purpose (i.e. two two-residue linker sequences, in green). The protein of 
interest is C-terminally fuses to a C-terminal fragment of Lp_2578 including the LPxTG anchoring domain consisting of the LPxTG motif (red; the 
consensus sequence in L. plantarum is LPQTxE [148]), followed by a highly hydrophobic stretch (black) and positively charged C-terminal arginine 
residues (blue). The length of the Lp_2578 linker may be varied and so far three variants have been constructed, all of which were shown to work 
[41]. Full length N-terminally processed and cell-wall anchored Lp_2578 is 647 residues of which the last 194 residues are a region of low complex-
ity. The three available linkers comprise 128, 194 and 644 residues, corresponding to a truncated low-complexity region, the complete low complex-
ity region, and almost the complete protein, respectively
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proteins in Lactobacillus and Lactococcus. It has been 
shown that insertion of short heterologous epitopes in 
the surface layer sequence results in surface exposure, 
without significantly affecting S-layer assembly [78, 79]. 
In another approach, Hu et al. [80] fused the C-terminal 
region of the SLP of L. crispatus K2-4-3 to Green Fluores-
cent Protein (GFP), and expressed the GFP-SLP hybrid in 
E. coli. The purified fusion protein was shown to bind to 
the surfaces of several S-layer-free Lactobacillus strains 
as well as L. lactis. In addition, the GFP-SLP fusion pro-
tein was successfully expressed in L. lactis, where anchor-
ing to the surface was achieved. These studies, few as 
they may be, clearly show the potential of using the SLP 
anchor for surface display in hosts that do not produce 
SLPs themselves [80].

Proteins may also be bound non-covalently to the cell 
surface of LAB by LysM domains. These domains are 
widespread and may be present in single or multiple cop-
ies in a protein. LysM domains are most often located in 
the N-terminal or the C-terminal part of proteins, and 
less frequently in a central region. LysM domains vary 
in length from 44 to 65 residues and bind to peptidogly-
can and chitin [18, 81–83]. The peptidoglycan binding 
properties have been widely used for surface display, as 
recently reviewed by Visweswaran et  al. [84]. The LysM 
anchor can be used for non-GMO strategies that are 
based on producing LysM-containing hybrid proteins 
in a producer strain e.g. E. coli or L. lactis, followed by 
charging a suitable LAB with this recombinant protein 
[85–88]. Alternatively, a hybrid protein consisting of a 
signal peptide, the LysM domain(s) and the target pro-
tein may be expressed directly in lactobacilli or lactococci 
[21, 89–91]. LysM domains are often separated from each 
other and from the other domains by linker sequences 
rich in Ser-, Asn-, and Thr residues. When designing 
LysM containing hybrid proteins for surface display, 
these linker regions should be considered to be included 
in the hybrid protein. The linker region may convey flex-
ibility and mobility to the fused target protein, which may 
allow this protein to attain an optimal orientation in the 
cell wall.

Importantly, as shown in the work referred to above, 
the LysM anchoring motif can also be exploited for devel-
oping GMO-free carrier systems, by over-expressing the 
LysM-containing hybrid protein in one expression strain 
followed by immobilization onto another non-recom-
binant host, e.g. a LAB [85–88]. The LysM-containing 
hybrid protein can be purified using conventional easy-
to-use methods, e.g. by using a N- or C-terminal purifi-
cation tag, or a crude protein extract can be mixed with 
the carrier host [85]. Notably, compared to recombi-
nant production, this approach allows easier control 
over the amount of protein loaded onto the cell surface. 

A non-GMO strategy not depending on LysM domains 
was described by Brinster et al. in 2007 who showed that 
a hybrid protein of NucA fused to a WxL domain from 
Enterococcus faecalis bound to several gram-positive 
bacteria, including L. johnsonii [92]. In this study, it was 
convincingly shown that the binding target for the hybrid 
protein was peptidoglycan of the cell wall.

Application of lactic acid bacteria for displaying 
proteins
The remainder of this review will address various appli-
cations of the anchoring strategies discussed above, and 
will address the potential advantages of the anchoring 
approach compared to other protein delivery strategies 
such as secretion or cytosolic production. Figure 3 pro-
vides a schematic overview of possible applications of 
protein-displaying LAB.

Quantification of surface display
It is important to note that studies on protein surface 
display in LAB or more generally heterologous protein 
expression are usually not quantitative. Quantitative 
informations may be obtained using semi-quantitative 
analytical tools such as western blotting, flow cytometry 
or fluorescence microscopy. Indeed within single stud-
ies, using the same analytical tools to compare different 
engineered strains, some degree of relative quantification 
can be obtained. Consequently, in many of the examples 
discussed below, differences observed between different 
strains and anchoring techniques may relate not only to 
the localization and stability of the expressed protein, but 
also to the level of protein expression.

LAB displaying antigens
In the last decade several studies have successfully shown 
delivery of different kinds of antigens by LAB. The tar-
geted pathogens include HPV-16, avian influenza viruses 
and different kinds of parasites [3]. One of the strategies 
used is the display of antigens at the surface of LAB. Pio-
neering work in the field concerned production of the tet-
anus toxin from Clostridium tetani in L. lactis. This toxin 
has been regularly used as a model antigen, for exam-
ple in comparative studies of strains targeting the toxin 
to different locations. In 1997, Norton et  al. expressed 
the tetanus toxin fragment C (TTFC) in L. lactis [6] 
and showed that intranasal administration of the bac-
teria mice elicited a specific immune response reflected 
in production of both serum and secreted specific anti-
bodies. In a second study, the TTFC was expressed in 
L. plantarum and directed to all three possible loca-
tions: surface-exposed (using the M6 anchor), secreted 
or cytoplasmic [93]. All three types of localization led 
to specific immune responses. Protein quantification is 
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a challenging aspect in this type of studies. In this pio-
neering work, it was noted that the highest IgG serum 
antibody titers were obtained with the strain producing 
the largest amounts of TTFC in the cytoplasm. This led 
the authors to suggest that the intensity of the response 
is mainly driven by the quantity of the produced antigen.

The most detailed study on LAB-based vaccines con-
cerns vaccination against human papillomavirus-16 
(HPV). HPV is the causative agent of cervical cancer and 
oncoprotein E7 produced in tumor cells is known to be 
an efficient antigen [94]. There exist numerous studies on 
the development of vaccines against HPV that are based 
on using E7 [95–97]. E7 has been successfully displayed 
on the surface of L. lactis [98] and intranasal immuni-
zation of C57BL/6 mice with the recombinant bacteria 
induced an E7 specific immune response [67]. Optimiza-
tion of the expression system, by using a nisin-induced 
promoter to control E7 expression, led to enhanced E7 
production and a better immune response, which clearly 
showed that the antigen level is important for effective-
ness [14]. In a follow-up study, a L. lactis strain display-
ing E7 on its surface was co-administered with L. lactis 
secreting pro-inflammatory interleukin 12 [99], leading 
to a strongly increased immune response. A strain co-
expressing both proteins showed therapeutic effects on 
HPV-16-induced tumors in mice [100]. Building on these 
promising results Ribelles et  al. recently explored the 
possibility to generate a non-genetically modified LAB 
displaying the oncoprotein. To achieve this, E7 fused to 
a His-tag (for protein purification) and the cell wall bind-
ing domain from the A2 phage lysin of Lactobacillus 

casei was produced in E. coli, purified and attached to the 
surface of (non-recombinant) L. lactis or L. casei [101]. 
Administration of these strains did elicit an immune 
response in C57BL/6 mice, but the response was weaker 
compared to responses seen for the genetically-modified 
strains.

A priori, one would expect that the localization of 
the antigen in the expression host affects the immune 
response. Intracellular localization may protect the anti-
gen from the harsh conditions in the GIT, however the 
antigen will only be accessible for interactions with the 
target cells after cell lysis. Secreted and surface-anchored 
proteins are more prone to degradation, but also more 
accessible to host cells. Comparison of immune responses 
elicited in mice by various recombinant LAB expressing E7 
showed that the higher antigen-specific cellular response 
was obtained after nasal administration of LAB producing 
cell wall anchored E7 compared to LAB producing intra-
cellular or secreted E7 [14]. The authors hypothesized that 
proteoglycan compounds found in the cell wall could act 
as adjuvant, thus potentially strengthening the response 
elicited by surface-displayed E7. Supporting a possible role 
of cell wall components, it has been shown that the probi-
otic properties of L. salivarius Ls33 are driven by compo-
nents in the cell wall, in particular a peptidoglycan-derived 
muropeptide [102]. This study, as well as other studies 
cited below do clearly show that localization plays a role, 
but do not reveal a general trend as to what type of locali-
zation is generally most promising.

Interestingly, lactobacilli expressing surface-anchored 
E7 are one of the few strains which have been evaluated 

Fig. 3 Global view of applications of protein display at surface of LAB. Antigen display at surface of LAB can be used for various goals as: increasing 
the immune response (antigen display; adhesive protein display; antibodies display), metabolic engineering (enzyme display) or provide a passive 
immune response (antibodies display)
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in a human clinical study. The strain was used as thera-
peutic vaccines in a single-center, single-arm (non-con-
trolled), observational phase I/IIa study. It was shown 
that, after oral administration, heat inactivated L. casei 
producing the E7 antigen with a PgsA N-terminal trans-
membrane helix anchor elicits an E7-specific mucosal 
immune response, but not systemic cell-mediated 
immune response [12]. The treatment was safe and 
adverse effects on patients were not observed. This study 
thus showed that heat attenuated recombinant lacto-
bacilli can induce an immune response in humans. This 
is an interesting result because there is an ongoing dis-
cussion on the importance of using live bacteria rather 
than non-viable cells. In another study, oral immuniza-
tion with the heat inactivated strain was shown to elicit 
E7-specific IFN-γ-producing cells in mice [54].

Rotaviruses are the main cause of diarrhea in children 
around the world. It has been shown that L. lactis with 
surface displayed rotavirus VP8 antigen using the M6 cell 
wall anchor, induced secretion of antigen specific anti-
bodies in mice, both in the intestine and at the systemic 
level. L. lactis producing VP8* intracellularly induced 
only mucosal secretion of IgA [103], suggesting that sur-
face exposed localization of the antigen is most efficient. 
In another study, it was shown that L. lactis strain secret-
ing VP7 elicited production of neutralizing antibodies 
after oral administration of the recombinant bacteria to 
mice. In contrast to other studies, in this case, strains 
expressing the cell wall anchored antigen did not elicit an 
immune response. The authors suggested that in this case 
no adjuvant effect was provided by other components of 
the Lactococcus cell wall, while the efficiency of the intra-
cellular localization was explained by lysis of the bacteria 
[104]. It was shown that the VP7 protein was degraded, 
which may imply that the protein is sensitive to the con-
ditions in the GIT, which again could explain why surface 
localization was not efficient. This study underpins two 
important aspects of LAB-based vaccine delivery: (1) the 
final localization of the target antigen has great impact on 
the immune response and (2) while surface-display a pri-
ori seems promising, it is not necessarily so that surface-
display is the method of choice in all situations.

Hugentobler and colleagues have engineered L. lactis 
strains expressing the Leishmania major antigen LACK 
in the cytoplasm, in a secreted form or with a cell wall 
anchor, with or without concomitant IL-12 secretion. 
After oral administration, only the strain secreting the 
antigen and co-expressing IL-12 induced protection 
against the parasite [105]. In another study these same 
authors showed that subcutaneous co-administration 
of L. lactis secreting IL-12 with either a strain secreting 
LACK or a strain with a cell wall anchored (CWA)-LACK 
led to induction of protective immunity [106]. The lack of 

effectiveness of the CWA-LACK strain in oral immuni-
zation could be due to the fact that the expression strain 
was an alr mutant, which could lead to impaired cell-wall 
strength and, possibly, antigen anchoring.

In an attempt to develop a protective agent against 
Giardia lambia, the cyst wall protein 2 from the parasite 
was produced in L. lactis, either in the cytoplasm, dis-
played at the surface or secreted. Mice trials were done 
with the strain harboring cell wall anchored antigen 
which elicited a specific mucosal IgA antibody response 
[107]. Importantly, challenge experiments showed that 
mice immunized with the recombinant strain were partly 
protected from infection.

LAB displaying antibodies
Immunization strategies based on antigen delivery 
require a strong response from the host immune system. 
Alternatively, antibodies produced by LAB can be used to 
generate passive immunity, thus providing a more direct 
method, with fast response time.

In a landmark study, Krüger et  al. [30] engineered L. 
zeae strains producing a single-chain antibody fragment 
(ScFv) targeting the SAI/II antigen from Streptococcus 
mutans. They explored secreted ScFv as well as cell-wall 
anchored ScFv with either a short or a long anchoring 
sequence. Production of a functional ScFv fragment was 
confirmed for all strains. In agglutination tests, only the 
strain producing ScFv with the long anchoring fragment 
showed good efficiency. This latter strain was also tested 
in a rat model of dental caries development. After admin-
istration of the ScFv producing strain, both dental caries 
and the number of oral S. mutans were markedly reduced 
[30]. This was the first demonstration of the possibility of 
using LAB for generation of effective passive immunity.

Porphyromonas gingivali, is one of the major etiologic 
agents of periodontitis, an inflammation of the tissue 
surrounding the teeth [108]. A functional ScFv targeting 
the RgpA protease from P. gingivali has been successfully 
produced and surface displayed in L. paracasei using a 
long anchor sequence [109]. The ScFv expressing strains 
were able to agglutinate to P. gingivali.

Building on these successes in expressing ScFv’s more 
recent studies have explored the potential use of LAB 
in handling the threats of bioterrorism. The protective 
antigen (PA) from Bacillus anthracis is a perfect target 
for efforts to neutralize pathogenicity [110]. In a recent 
study, an anti-PA ScFv was secreted or cell wall anchored 
in L. paracasei, using an LPxTG anchor or non-covalent 
anchoring through an SLP-like domain. In  vitro stud-
ies showed that when macrophages were exposed to 
a lethal dose of toxin, addition of L. paracasei secret-
ing or displaying the ScFv gave almost full protection. 
In vivo experiments with mice showed that L. paracasei 
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displaying the ScFv at the surface through non-covalent 
attachment induced protection, whereas strains secret-
ing the ScFv or with the ScFv covalently anchored to the 
surface did not. The authors suggested that, in non-cova-
lent attachment, the ScFv is both cell wall displayed and 
secreted into the supernatant, which may have been ben-
eficial in their experimental set-up [111].

Infliximab®, one of the most efficient drugs against 
inflammatory bowel diseases (IBD), is a recombinant 
antibody targeting TNF-α, a major pro-inflammatory 
cytokine. An effective recombinant affibody targeting 
TNF-α composed of an affinity domain for TNF-α and 
a peptidoglycan binding domain, AcmA, has been suc-
cessfully produced and displayed at the surface of L. lac-
tis [91]. The authors of this study do not report any test 
of efficiency of the strain in  vitro or in  vivo. However, 
another team has shown that a recombinant strain of 
L. lactis secreting MT1, a nanobody binding to TNF-α, 
has a beneficial effect on dextran sodium sulfate (DSS)-
induced colitis and IL-10 knock-out mice [112]. In the 
latter study, it was shown that only a small quantity of 
antibody was needed to induce protection, and that pro-
tection occurred even in the very early stage of the devel-
opment of colitis.

Display of proteins to increase interactions between LAB 
and host cells
In order to obtain strong responses to LAB expressing 
therapeutic molecules it may be beneficial to modify the 
bacteria with factors that increase their interactions with 
appropriate host cells. Therefore, several studies have 
explored the potential of adding such factors to LAB, be 
it separately expressed adhesive factors, such as fibronec-
tin-binding protein, or factors fused to the therapeutic 
protein.

Fibronectin-binding protein A (FnBPA) is a surface-
located adhesin and virulence factor from S. aureus, 
which enables the bacterium to adhere to host cells 
and facilitates bacterial internalization. FnBPA binds to 
fibronectin, which is produced in the extracellular matrix 
of various eukaryotic cells [113]. Another protein that 
promotes binding and internalization is Internalin A 
(InlA) from Listeria monocytogenes. InlA binds specifi-
cally to human E-cadherin, which is present in epithelial 
cells [114], but has low affinity for its murine counterpart 
[115]. A mutated form of InlA (mInIA) has been devel-
oped which has increased affinity for murine E-cadherin 
[115–117].

Both FnBPA and mInlA have been successfully 
expressed and displayed at the surface of L. lactis. Fur-
thermore, it has been shown that lactococci harboring 
mInlA or FnBPA at the surface were more efficiently 
internalized by caco-2 cells, compared to the wild-type 

strains [118, 119]. In these studies surface display was 
achieved by using LPXTG domain anchors.

Wild type lactococci are naturally able to transfer plas-
mids to eukaryotic cells at a low rate [119]. This offers a 
potential for gene therapy. The transferred plasmid can 
be used for delivery of a cDNA containing a target gene 
under transcriptional control of an eukaryotic promoter, 
such as the human cytomegalovirus (CMV) promoter, 
to elicit expression of a protein of interest by the host 
cells. Using gene transfer for monitoring internalization, 
it has been shown that expression of FnBPA or mInlA 
at the surface of L. lactis increases bacterial internaliza-
tion in  vitro and in  vivo in mice. Successful expression 
of genes transferred to eukaryotic cells has been demon-
strated with different proteins, including the major milk 
allergen, beta-lactoglobulin, GFP or IL-10 [116, 120, 121]. 
These initial studies clearly show the potential of using 
LAB for the delivery of cDNA for subsequent intracel-
lular production of medically interesting proteins in the 
host cells.

In another study, also aiming at gene transfer, lacto-
bacilli were made to express an ScFv called aDec that 
targets Dec205, a receptor on the surface of dendritic 
cells (DCs) [122]. Three anchoring strategies were used: 
covalent anchoring to the cell membrane (Lipobox), 
covalent anchoring to the cell wall through an LPXTG 
anchor (CWA) and non-covalent anchoring to the cell 
wall using a LysM domain (LysM). This study revealed 
clear differences between the anchoring strategies. Sur-
face location of the antibody could only be demonstrated 
for the strains with cell wall anchors (CWA and LysM) 
and only these two strains showed increased uptake into 
DCs in vitro, as well as increased plasmid transfer from 
the lactobacilli to DCs. Interestingly, in mice experi-
ments, the highest plasmid transfer was observed for the 
strain in which aDec was coupled to the cell membrane 
(Lipobox). It is conceivable that in the case of Lipobox 
anchoring aDec is more embedded in the cell wall and 
thus better protected from the harsh conditions in the 
GIT of the mice.

Another illustration of the functional implications 
of different anchoring strategies comes from the stud-
ies on expression of the invasin (Inv) of Y. pseudotuber-
culosis in lactobacilli. Inv was displayed at the surface 
using LPXTG-based covalent binding, or via fusion to 
LysM or lipoanchor domains. In vitro experiments with 
U937 cells stably transfected with the NF-κB reporter 
plasmid 3x-κB-luc [123] showed that the most effective 
NF-κB response was obtained with constructs in which 
the complete Inv extracellular domain was fused to a 
lipoanchor [21].

Microfold cells (M-cells) are found at the top of the 
Peyer’s patches in the epithelial membrane of the small 
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intestine. They sample antigens and bacteria from the 
lumen and mediate subsequent transfer to the Peyer’s 
patches, via a process called transcytosis. Sigma C is a 
protein from avian reovirus that binds specifically to 
M-cells and which could thus be used for targeting these 
cells. Lin et  al. explored this option by fusing both the 
Sigma C protein and a sub-fragment of the spike protein 
from the avian Infectious Bronchitis Virus, a known anti-
gen for vaccination purposes, to a LysM domain derived 
from lactococcal AcmA. After production of the two pro-
teins in E. coli and subsequent purification using a His-
tag, they charged a non-pathogenic Enterococcus faecium 
with one or both of the LysM-anchored proteins. In vitro 
and in  vivo (mice) experiments showed that enterococ-
cal cells carrying both proteins elicited a better immune 
response against the virus than bacteria charged with the 
spike sub-fragment only [124]. Thus, targeting of M-cells 
seems to be a promising strategy to enhance immune 
responses.

Targeting dendritic cells, e.g. by targeting the Dec205 
receptor described above, is generally considered highly 
promising in vaccine development and there are many 
examples in the literature, including several examples 
involving the targeting of LAB [125]. One of the most 
promising studies in the field Lactobacillus-based vac-
cines concerns the development of lactobacilli capable 
of protecting mice against B. anthracis [126, 127]. In this 
study, L. acidophilus and L. gasseri strains secreting the 
B. anthracis PA were developed. The key of the success 
was to fuse the PA to a peptide with known high affin-
ity for DCs [128]. Apart from revealing protective effects 
of a LAB-based vaccine, this pioneering work from the 
Klaenhammer team showed that targeting the antigen-
displaying LAB to DCs has a strong positive effect on 
immunostimulation. DC-binding peptides are currently 
receiving considerable attention, including the discovery 
of novel peptide sequences [125, 129]. Recent studies, as 
well as our own as yet unpublished data confirm the use-
fulness of adding a DC-binding peptide sequence to anti-
gens displayed on LAB-surfaces [130].

Enzyme display and metabolic engineering
LAB have the ability to metabolize various nutrients, 
including a range of pentose and hexose sugars. There-
fore, there is increasing interest in developing LAB as cell 
factories for industrial enzymes and for use in consoli-
dated biomass bioconversion processes [131]. Although 
LAB are not known as high-efficiency secretion hosts, 
their ability to simultaneously secrete and/or anchor sev-
eral enzymes and their robustness do make them interest-
ing candidates for such purposes. A potential limitation 
concerns the fact that the main product of fermentation 
is lactic acid. While lactic acid has considerable value, 

rerouting of metabolic pathways will be needed if other 
products are to be made, such as ethanol [132].

Promising results have been obtained in endorsing LAB 
with amylolytic capacity, mainly through making bacteria 
secreting amylases [131]. For example, Narita et al. used 
the N-terminal transmembrane PgsA anchor to display 
α-amylase from S. bovis on the surface of L. casei. They 
showed that the recombinant strain was capable of con-
verting soluble starch to lactic acid [33]. This study was 
one of the first to show the feasibility of displaying active 
recombinant enzymes on the surface of LAB.

Conversion of lignocellulose requires multiple enzymes 
with different substrate specificities. Literature contains 
a number of studies describing the expression and secre-
tion of individual cellulases in LAB [137], which certainly 
is not enough for efficient biomass conversion. In anaero-
bic bacteria, the various enzymes are organized in cellu-
losomes, i.e. protein complexes containing a multitude of 
enzymes [133].

In a cellulosome, multiple enzymes containing so-called 
dockerin domains are assembled on a scaffold, which is 
often anchored to the cell surface and containing so-called 
cohesion domains that bind the dockerins. One strategy 
would be to make LAB producing mini-cellulosomes, 
i.e. cellulosomes comprising a small scaffold and only a 
few enzymes [134]. Such a strategy has been successfully 
applied to yeast [135, 136] but in LAB only some first 
steps into this direction, have been described [65, 137]. 
In particular, it has been shown that a scaffold, anchored 
to the surface of L. lactis using an LPxTG anchor, binds 
specifically to enzymes containing a dockerin domain and 
that the bound enzymes are active [65, 137] (Fig.  4). By 
analogy to the cellulosome paradigm, it would be benefi-
cial if the LAB bind to the lignocellulose substrate. This 
has been achieved for L. lactis by surface-display of the 
cellulose-binding domain of XylA, a xylanase from Cell-
vibrio japonicas using a LPXTG or a LysM anchor [138].

In a very recent study, Morais et  al. used the versatil-
ity of the pSIP expression system to produce what could 
be called the first functional minicellulosome in LAB 
[139]. In one part of this study, strains producing cell-
wall anchored variants of the previously used xylanase 
and cellulase were generated using previously developed 
LPxTG anchors [41]. In another part of the study, the car-
bohydrate-binding modules of the (non-anchored) cel-
lulase and xylanase were replaced by dockerins, whereas 
a third strain was engineered that expressed an LPxTG-
anchored scaffoldin with two cohesin domains (i.e. dock-
ing positions for dockerins) and a carbohydrate-binding 
module. The mix of the three strains led to assembly of 
a minicellulosome and resulted in wheat straw degrading 
activity similar to the one observed when mixing the two 
individual enzyme-producing strains.
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Conclusions
Taken together, the accumulated results of in vivo stud-
ies show that while it is not straightforward to predict 
the best localization of the target protein, surface-display 
tends to be a good strategy for reasons that are likely 
related to the accessibility and stability of the displayed 
protein. Importantly, the studies described above are 
by and large non-quantitative, meaning that it remains 
mostly unclear whether functional differences between 
different strategies simply relate to the amount of pro-
tein expressed rather than to the localization and sta-
bility of the expressed protein. There is a clear need 
for approaches with more focus on quantification, to 
discriminate between localization effects and dose–
response effects. Interesting open questions that relate 
to the quantification issue concern the potentially inter-
related effects of the anchoring-type on in vivo stability 
and proteolytic susceptibility of the displayed protein and 
on protein accessibility for host cells. Varying anchoring 
strategies will lead to varying degrees of protein shed-
ding, which also may have (quantitative) effects on strain 
functionality.

High production levels of the to-be-displayed pro-
tein may seem beneficial and may be achieved by using 
strong inducible or constitutive promoters, as well as by 

codon optimization of the to-be-expressed gene. How-
ever, unbalance in the transcription-translation-secretion 
machinery, caused by e.g. too high transcription levels or 
suboptimal translation rates may cause problems, lead-
ing to retarded growth of the producer strain and/or 
to secretion stress, or leading to reduced secretion effi-
ciency and proteolytic degradation of the target protein. 
The choice of signal peptide affects also the secretion 
efficiency. Signal peptide performance shows consider-
able variation and is partly dependent on the target pro-
tein [23]. Unfortunately, signal peptide performance and 
secretion efficiencies are notoriously difficult to predict, 
meaning that the best strategy for strain development 
is to use an expression vector system that allows rapid 
screening of numerous variants. Clearly, deeper func-
tional insight into the factors that govern the efficiency of 
the secretion of heterologous proteins in LAB would be 
highly useful.

Rapid screening of various expression constructs 
should also allow variation of the anchors since the data 
accumulated so far do not pinpoint to one particular type 
of localization or anchoring mode as superior. Depend-
ing on its localization, the translocated recombinant pro-
tein will be exposed to the harsh conditions in the GIT 
and one would expect a trade-off between being vul-
nerable for proteolysis and being visible to the immune 
system of the host. Unanswered questions include: Will 
membrane-anchored proteins be more protected from 
the harsh conditions in the GIT, compared to cell wall 
anchored proteins? Which significance has the length of 
the linker between the cell wall-anchoring motif and the 
recombinant protein?

When it comes to application of the engineered LAB, 
one open question is whether live and replicating or 
non-viable bacteria should be used. Clinical studies have 
shown that both attenuated [12] and living bacteria are 
promising [140] delivery vehicles. In replicating bacteria, 
it is important that the promoter is active in situ, other-
wise recombinant surface located proteins will be diluted 
from the surface, which will likely result in a reduced 
immune stimulatory effect. Promoters whose expression 
is induced during passage through the GIT of mice [141] 
may be good candidates for in situ expression.

To date, several recombinant LAB have reached clini-
cal studies [11]. The first clinical study was completed 
in 2006 using L. lactis for secretion of human IL-10 
in patients with Crohn’s disease [142]. Ten patients 
were included in a placebo-uncontrolled phase I trial. 
The treatment was shown to be safe and was well tol-
erated by the patients, while Crohn’s disease symp-
toms were reduced. However, the beneficial effects of 
this engineered L. lactis strain could not be confirmed 
in a following phase II clinical study. Another more 

Fig. 4 Display of a mini-cellulosome. The picture, taken from Morais 
et al. [139], BfB, shows how a consortium of recombinant lactobacilli 
may be used to create LAB displaying a mini-cellulosome. Two strains 
produce one secreted glycoside hydrolase each; the enzymes are 
fused to dockerin domains. A third strain produces a scaffoldin that 
is anchored to the cell surface. The secreted glycoside hydrolases will 
dock onto the scaffoldin through their dockerin domains, thus form-
ing a mini-cellulosome
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recent study concerned L. lactis secreting trefoil fac-
tor (TFF), which is an anti-inflammatory protein. It has 
been shown that TFFs reduce the severity of radiation-
induced oral mucositis when administrated in hamsters 
[143]. In a phase 1b, single blinded, placebo-controlled 
experiment, the patient received recombinant L. lac-
tis secreting TFF 1(AG013) orally. The results dem-
onstrated that AG013 was safe and well tolerated, and 
reduced oral mucositis [140]. A phase II study has been 
designed to further validate the efficacy of AG013. The 
last known example is an ongoing clinical study using 
a recombinant L.lactis, AG014, which secretes anti-
TNF-alpha Fab to treat inflammatory bowel disease. 
An example of clinical studies with L. casei has been 
described above [12].

Much of the pioneering work in this area was done 
using L. lactis, a well-known bacterium in dairy prod-
ucts which does not survive in the GIT more than a few 
hours [2]. In contrast, some lactobacilli survive the GIT; 
they can reside in the body for several days and some 
of them are even considered commensal, meaning that 
they are part of our intestinal microbiota. Many have 
been described with beneficial effects [144, 145]. It has to 
be noted that the genetic toolbox for lactobacilli is well 
developed and that many of the most recent and most 
promising studies on functional display of proteins in 
LAB concern lactobacilli.

Further insight into lactobacilli is emerging from mas-
sive genomics efforts, while the emergence of CRISPR-
Cas technologies provides novel genetic engineering 
tools of unprecedented quality, safety and precision [146, 
147]. These bacteria, with their ecological versatility, 
robustness and known beneficial effects, are likely to 
become major players in further development of LAB-
based vaccines and cell factories.

Abbreviations
LAB: lactic acid bacteria; GIT: gastro-intestinal tract; WHO: World Health Organi-
zation; SP: signal peptide; NucA: staphylococcal nuclease reporter protein; 
BmpA: basic membrane protein A; LPS: lipopolysaccharides; OFA: oncofetal 
antigen; SLPs: surface layer proteins; SLHDs: surface layer homology domains; 
GFP: green fluorescent protein; TTFC: tetanus toxin fragment C; HPV: human 
papillomavirus-16; CWA: cell wall anchored; ScFv: single-chain antibody frag-
ment; PA: protective antigen; IBD: inflammatory bowel diseases; DSS: dextran 
sodium sulfate; FnBPA: fibronectin-binding protein A; InlA: internalin A; mInIA: 
mutated form of InlA; CMV: human cytomegalovirus; DCs: dendritic cells; Inv: 
invasin of Yersinia pseudotuberculosis; M-cells: microfold cells.

Authors’ contributions
CM and GM drafted the paper. GM and VGHE made the figures. GM, VGHE, PL, 
CM and JMC revised the manuscript. JMC coordinated the project. All authors 
read and approved the final manuscript.

Author details
1 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 
78350 Jouy-en-Josas, France. 2 Department of Chemistry, Biotechnology 
and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway. 

Acknowledgements
GM and VGHE are grateful for support from the Globvac program of the 
Norwegian Research Council, grant number 234502. CM was recipient of an 
Yggdrasil Norwegian mobility (Grant Number 227257) and a mobility Grant 
from AgroParisTech.

Competing interests
The authors declare that they have no competing interests.

Received: 22 December 2015   Accepted: 21 April 2016

References
 1. Gareau M, Sherman P, Walker W. Probiotics and the gut microbiota 

in intestinal health and disease. Nat Rev Gastroenterol Hepathology. 
2010;7:503–14.

 2. Vesa T, Pochart P, Marteau P. Pharmacokinetics of Lactobacillus plan-
tarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis 
MG 1363 in the human gastrointestinal tract. Aliment Pharmacol Ther. 
2000;14:823–8.

 3. Bermúdez-Humarán LG, Aubry C, Motta J-P, Deraison C, Steidler L, 
Vergnolle N, Chatel J-M, Langella P. Engineering lactococci and lactoba-
cilli for human health. Curr Opin Microbiol. 2013;16:278–83.

 4. Motta J-P, Bermúdez-Humarán LG, Deraison C, Martin L, Rolland C, 
Rousset P, Boue J, Dietrich G, Chapman K, Kharrat P, Vinel J-P, Alric L, Mas 
E, Sallenave J-M, Langella P, Vergnolle N. Food-grade bacteria express-
ing elafin protect against inflammation and restore colon homeostasis. 
Sci Transl Med. 2012;4:158ra144.

 5. Galipeau HJ, Wiepjes M, Motta J-P, Schulz JD, Jury J, Natividad JM, Pinto-
Sanchez I, Sinclair D, Rousset P, Martin-Rosique R, Bermudez-Humaran 
L, Leroux JC, Murray JA, Smecuol E, Bai JC, Vergnolle N, Langella P, Verdu 
EF. Novel role of the serine protease inhibitor elafin in gluten-related 
disorders. Am J Gastroenterol. 2013;2014:1–9.

 6. Norton PM, Wells JM, Brown HWG, Macpherson AM, Le Page RWF. 
Protection against tetanus toxin in mice nasally immunized with 
recombinant Lactococcus lactis expressing tetanus toxin fragment C. 
Vaccine. 1997;15:616–9.

 7. Robinson K, Chamberlain LM, Lopez MC, Rush CM, Marcotte H, Le Page 
RWF, Wells JM. Mucosal and cellular immune responses elicited by 
recombinant Lactococcus lactis strains expressing tetanus toxin frag-
ment C. Infect Immun. 2004;72:2753–61.

 8. Chen S, Zhong J, Huan L. Expression of human insulin in lactic acid 
bacteria and its oral administration in non-obese diabetic mice. Wei 
Sheng Wu Xue Bao. 2007;47:987–91.

 9. Bermúdez-Humarán LG, Nouaille S, Zilberfarb V, Corthier G, Gruss A, 
Langella P, Issad T. Effects of intranasal administration of a leptin-secret-
ing Lactococcus lactis recombinant on food intake, body weight, and 
immune response of mice. Appl Environ Microbiol. 2007;73:5300–7.

 10. Chatel J-M, Pothelune L, Ah-Leung S, Corthier G, Wal J-M, Langella P. 
In vivo transfer of plasmid from food-grade transiting lactococci to 
murine epithelial cells. Gene Ther. 2008;15:1184–90.

 11. Daniel C, Roussel Y, Kleerebezem M, Pot B. Recombinant lactic acid 
bacteria as mucosal biotherapeutic agents. Trends Biotechnol. 
2011;29:499–508.

 12. Kawana K, Adachi K, Kojima S, Taguchi A, Tomio K, Yamashita A, 
Nishida H, Nagasaka K, Arimoto T, Yokoyama T, Wada-Hiraike O, 
Oda K, Sewaki T, Osuga Y, Fujii T. Oral vaccination against HPV E7 for 
treatment of cervical intraepithelial neoplasia grade 3 (CIN3) elicits 
E7-specific mucosal immunity in the cervix of CIN3 patients. Vaccine. 
2014;32:6233–9.

 13. Wells JM, Mercenier A. Mucosal delivery of therapeutic and pro-
phylactic molecules using lactic acid bacteria. Nat Rev Microbiol. 
2008;6:349–62.

 14. Bermúdez-Humarán LG. An inducible surface presentation system 
improves cellular immunity against human papillomavirus type 16 E7 
antigen in mice after nasal administration with recombinant lactococci. 
J Med Microbiol. 2004;53:427–33.



Page 13 of 16Michon et al. Microb Cell Fact  (2016) 15:70 

 15. Charbit A, Boulain JC, Ryter A, Hofnung M. Probing the topology of a 
bacterial membrane protein by genetic insertion of a foreign epitope; 
expression at the cell surface. EMBO J. 1986;5:3029–37.

 16. Freudl R, MacIntyre S, Degen M, Henning U. Cell surface exposure of 
the outer membrane protein OmpA of Escherichia coli K-12. J Mol Biol. 
1986;188:491–4.

 17. Ståhl S, Uhlén M. Bacterial surface display: trends and progress. Trends 
Biotechnol. 1997;15:185–92.

 18. Leenhouts K, Buist G, Kok J. Anchoring of proteins to lactic acid bacte-
ria. Antonie Van Leeuwenhoek. 1999;76:367–76.

 19. Diep DB, Mathiesen G, Eijsink VG, Nes IF. Use of lactobacilli and their 
pheromone-based regulatory mechanism in gene expression and drug 
delivery. Curr Pharm Biotechnol. 2009;10:62–73.

 20. Kajikawa A, Nordone SK, Zhang L, Stoeker LL, LaVoy AS, Klaenhammer 
TR, Dean GA. Dissimilar properties of two recombinant Lactobacillus 
acidophilus strains displaying Salmonella FliC with different anchoring 
motifs. Appl Environ Microbiol. 2011;77:6587–96.

 21. Fredriksen L, Kleiveland CR, Olsen Hult LT, Lea T, Nygaard CS, Eijsink 
VG, Mathiesen G. Surface display of N-terminally anchored invasin by 
Lactobacillus plantarum activates NF-kB in monocytes. Appl Environ 
Microbiol. 2012;78:5864–71.

 22. Bolhuis A, Tjalsma H, Smith HE, de Jong A, Meima R, Venema G, Bron S, 
van Dijl JM. Evaluation of bottlenecks in the late stages of protein secre-
tion in Bacillus subtilis. Appl Environ Microbiol. 1999;65:2934–41.

 23. Mathiesen G, Sveen A, Brurberg MB, Fredriksen L, Axelsson L, Eijsink VG. 
Genome-wide analysis of signal peptide functionality in Lactobacillus 
plantarum WCFS1. BMC Genom. 2009;10:425.

 24. Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermudez-
Humaran LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE, Guimaraes 
VD, Oliveira MN, Charlier C, Gautier M, Langella P. Protein secretion in 
Lactococcus lactis: an efficient way to increase the overall heterologous 
protein production. Microb Cell Fact. 2005;4:2.

 25. Brockmeier U, Caspers M, Freudl R, Jockwer A, Noll T, Eggert T. System-
atic screening of all signal peptides from Bacillus subtilis: a powerful 
strategy in optimizing heterologous protein secretion in Gram-positive 
bacteria. J Mol Biol. 2006;362:393–402.

 26. Mathiesen G, Sveen A, Piard JC, Axelsson L, Eijsink VGH. Heterologous 
protein secretion by Lactobacillus plantarum using homologous signal 
peptides. J Appl Microbiol. 2008;105:215–26.

 27. Dieye Y, Usai S, Clier F, Gruss A, Piard JC. Design of a protein-targeting 
system for lactic acid bacteria. J Bacteriol. 2001;183:4157–66.

 28. Le Loir Y, Gruss A, Ehrlich SD, Langella P. A nine-residue synthetic 
propeptide enhances secretion efficiency of heterologous proteins in 
Lactococcus lactis. J Bacteriol. 1998;180:1895–903.

 29. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, 
Remaut E. Treatment of murine colitis by Lactococcus lactis secreting 
interleukin-10. Science (80−). 2000;289:1352–5.

 30. Krüger C, Hu Y, Pan Q, Marcotte H, Hultberg A, Delwar D, Van Dalen PJ, 
Pouwels PH, Leer RJ, Kelly CG, Van Dollenweerd C, Ma JK, Hammarström 
L. In situ delivery of passive immunity by lactobacilli producing single-
chain antibodies. Nat Biotechnol. 2002;20:702–6.

 31. Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris 
B, Cox E, Remon JP, Remaut E. Biological containment of genetically 
modified Lactococcus lactis for intestinal delivery of human interleukin 
10. Nat Biotechnol. 2003;21:785–9.

 32. Mierau I, Kleerebezem M. 10 years of the nisin-controlled gene expres-
sion system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol. 
2005;68:705–17.

 33. Narita J, Okano K, Kitao T, Ishida S, Sewaki T, Sung M, Fukuda H, Kondo 
A. Display of a-amylase on the surface of Lactobacillus casei cells by use 
of the PgsA anchor protein, and production of lactic acid from starch. 
Appl Environ Microbiol. 2006;72:269–75.

 34. Hu S, Kong J, Kong W, Guo T, Ji M. Characterization of a novel LysM 
domain from Lactobacillus fermentum bacteriophage endolysin and its 
use as an anchor to display heterologous proteins on the surfaces of 
lactic acid bacteria. Appl Environ Microbiol. 2010;76:2410–8.

 35. Bermúdez-Humarán LG, Kharrat P, Chatel J-MM, Langella P. Lactococci 
and lactobacilli as mucosal delivery vectors for therapeutic proteins 
and DNA vaccines. Microb Cell Fact. 2011;10(Suppl 1):S4.

 36. Wells J. Mucosal vaccination and therapy with genetically modified 
lactic acid bacteria. Annu Rev Food Sci Technol. 2011;2:423–45.

 37. Şimşek Ö, Sabanoğlu S, Çon A, Karasu N, Akçelik M, Saris PJ. Immo-
bilization of nisin producer Lactococcus lactis strains to chitin with 
surface-displayed chitin-binding domain. Appl Microbiol Biotechnol. 
2013;97:4577–87.

 38. Sørvig E, Mathiesen G, Naterstad K, Eijsink VGH, Axelsson L. High-level, 
inducible gene expression in Lactobacillus sakei and Lactobacillus 
plantarum using versatile expression vectors. Microbiology. 2005;151(Pt 
7):2439–49.

 39. Sørvig E, Grönqvist S, Naterstad K, Mathiesen G, Eijsink VGH, Axelsson L. 
Construction of vectors for inducible gene expression in Lactobacillus 
sakei and L. plantarum. FEMS Microbiol Lett. 2003;229:119–26.

 40. Kolandaswamy A, George L, Sadasivam S. Heterologous expression of 
oxalate decarboxylase in Lactobacillus plantarum NC8. Curr Microbiol. 
2008.

 41. Fredriksen L, Mathiesen G, Sioud M, Eijsink VGH. Cell wall anchor-
ing of the 37-Kilodalton oncofetal antigen by Lactobacillus plan-
tarum for mucosal cancer vaccine delivery. Appl Environ Microbiol. 
2010;76:7359–62.

 42. Nguyen T-T, Mathiesen G, Fredriksen L, Kittl R, Nguyen T-H, Eijsink VGH, 
Haltrich D, Peterbauer CK. A food-grade system for inducible gene 
expression in Lactobacillus plantarum using an alanine racemase-
encoding selection marker. J Agric Food Chem. 2011;59:5617–24.

 43. Moraïs S, Shterzer N, Grinberg IR, Mathiesen G, Eijsink VGH, Axelsson L, 
Lamed R, Bayer EA, Mizrahi I. Establishment of a simple Lactobacillus 
plantarum cell consortium for cellulase-xylanase synergistic interac-
tions. Appl Environ Microbiol. 2013;79:5242–9.

 44. Karlskås IL, Maudal K, Axelsson L, Rud I, Eijsink VGH, Mathiesen G. Het-
erologous protein secretion in Lactobacilli with modified pSIP vectors. 
PLoS One. 2014;9:e91125.

 45. von Heijne G. The signal peptide. J Membr Biol. 1990;115:195–201.
 46. Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos 

R, Dubois JY, Westers H, Zanen G, Quax WJ, Kuipers OP, Bron S, Hecker M, 
van Dijl JM. Proteomics of protein secretion by Bacillus subtilis: separating 
the «secrets» of the secretome. Microbiol Mol Biol Rev. 2004;68:207–33.

 47. Yuan Z, Davis MJ, Zhang F, Teasdale RD. Computational differentiation 
of N-terminal signal peptides and transmembrane helices. Biochem 
Biophys Res Commun. 2003;312:1278–83.

 48. Poquet I, Ehrlich SD, Gruss A. An export-specific reporter designed for 
gram-positive bacteria: application to Lactococcus lactis. J Bacteriol. 
1998;180:1904–12.

 49. Lee J-S, Poo H, Han DP, Hong S-P, Kim K, Cho MW, Kim E, Sung M-H, Kim 
C-J. Mucosal immunization with surface-displayed severe acute respira-
tory syndrome coronavirus spike protein on Lactobacillus casei induces 
neutralizing antibodies in mice. J Virol. 2006;80:4079–87.

 50. Hou X-L, Yu L-Y, Liu J, Wang G-H. Surface-displayed porcine epi-
demic diarrhea viral (PEDV) antigens on lactic acid bacteria. Vaccine. 
2007;26:24–31.

 51. Lei H, Sheng Z, Ding Q, Chen J, Wei X, Lam DM-K, Xu Y. Evaluation of oral 
immunization with recombinant avian influenza virus HA1 displayed on 
the Lactococcus lactis surface and combined with the mucosal adjuvant 
cholera toxin subunit B. Clin Vaccine Immunol. 2011;18:1046–51.

 52. Yoon S-W, Lee T-Y, Kim S-J, Lee I-H, Sung M-H, Park J-S, Poo H. Oral 
administration of HPV-16 L2 displayed on Lactobacillus casei induces 
systematic and mucosal cross-neutralizing effects in Balb/c mice. Vac-
cine. 2012;30:3286–94.

 53. Song B, Ju L, Li Y, Tang L. Chromosomal Insertions in the upp gene of 
Lactobacillus casei useful for the expression of vaccines. Appl Environ 
Microbiol. 2014. In Press.

 54. Adachi K, Kawana K, Yokoyama T, Fujii T, Tomio A, Miura S, Tomio K, 
Kojima S, Oda K, Sewaki T, Yasugi T, Kozuma S, Taketani Y. Oral immuni-
zation with a Lactobacillus casei vaccine expressing human papil-
lomavirus (HPV) type 16 E7 is an effective strategy to induce mucosal 
cytotoxic lymphocytes against HPV16 E7. Vaccine. 2010;28:2810–7.

 55. von Heijne G. The structure of signal peptides from bacterial lipopro-
teins. Protein Eng. 1989;2:531–4.

 56. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-
dependent protein transport in Bacillus subtilis: a genome-based survey 
of the secretome. Microbiol Mol Biol Rev. 2000;64:515–47.

 57. Pragai Z, Tjalsma H, Bolhuis A, van Dijl JM, Venema G, Bron S. The signal 
peptidase II (Isp) gene of Bacillus subtilis. Microbiology. 1997;143(Pt 
4):1327–33.



Page 14 of 16Michon et al. Microb Cell Fact  (2016) 15:70 

 58. Berlec A, Zadravec P, Jevnikar Z, Štrukelj B. Identification of candidate 
carrier proteins for surface display on Lactococcus lactis by theoreti-
cal and experimental analyses of the surface proteome. Appl Environ 
Microbiol. 2011;77:1292–300.

 59. Zadravec P, Mavrič A, Bogovič Matijašić B, Štrukelj B, Berlec A. Engineer-
ing BmpA as a carrier for surface display of IgG-binding domain on 
Lactococcus lactis. Protein Eng Des Sel. 2014;27:21–7.

 60. Fischetti VA, Pancholi V, Schneewind O. Conservation of a hexapeptide 
sequence in the anchor region of surface proteins from gram-positive 
cocci. Mol Microbiol. 1990;4:1603–5.

 61. Pancholi V, Fischetti VA. Isolation and characterization of the cell-
associated region of group A streptococcal M6 protein. J Bacteriol. 
1988;170:2618–24.

 62. Mazmanian SK, Liu G, Ton-That H, Schneewind O. Staphylococcus aureus 
sortase, an enzyme that anchors surface proteins to the cell wall. Sci-
ence. 1999;285:760–3.

 63. Minic R, Gavrovic-Jankulovic M, Petrusic V, Zivkovic I, Eijsink VGH, 
Dimitrijevic L, Mathiesen G. Effects of orally applied Fes p1-displaying 
L. plantarum WCFS1 on Fes p1 induced allergy in mice. J Biotechnol. 
2015;199:23–8.

 64. Cortes-Perez NG, Azevedo V, Alcocer-Gonzalez JM, Rodriguez-Padilla C, 
Tamez-Guerra RS, Corthier G, Gruss A, Langella P, Bermudez-Humaran 
LG. Cell-surface display of E7 antigen from human papillomavirus 
type-16 in Lactococcus lactis and in Lactobacillus plantarum using a new 
cell-wall anchor from lactobacilli. J Drug Target. 2005;13:89–98.

 65. Wieczorek AS, Martin VJJ. Engineering the cell surface display of 
cohesins for assembly of cellulosome-inspired enzyme complexes on 
Lactococcus lactis. Microb Cell Fact. 2010;9:69.

 66. Dieye Y, Oxaran V, Ledue-Clier F, Alkhalaf W, Buist G, Juillard V, Lee CW, 
Piard JC. Functionality of sortase A in Lactococcus lactis. Appl Environ 
Microbiol. 2010;76:7332–7.

 67. Cortes-Perez NG, Bermúdez-Humarán LG, Le Loir Y, Rodriguez-Padilla C, 
Gruss A, Saucedo-Cárdenas O, Langella P, Montes-De-Oca-Luna R. Mice 
immunization with live lactococci displaying a surface anchored HPV-
16 E7 oncoprotein. FEMS Microbiol Lett. 2003;229:37–42.

 68. Ribeiro LA, Azevedo V, Le Loir Y, Oliveira SC, Dieye Y, Piard JC, Gruss A, 
Langella P. Production and targeting of the Brucella abortus antigen L7/
L12 in Lactococcus lactis: a first step towards food-grade live vaccines 
against brucellosis. Appl Environ Microbiol. 2002;68:910–6.

 69. Miyoshi A, Poquet I, Azevedo V, Commissaire J, Bermudez-Humaran 
L, Domakova E, Le Loir Y, Oliveira SC, Gruss A, Langella P. Controlled 
production of stable heterologous proteins in Lactococcus lactis. Appl 
Environ Microbiol. 2002;68:3141–6.

 70. Desvaux M, Hebraud M, Talon R, Henderson IR. Secretion and subcel-
lular localizations of bacterial proteins: a semantic awareness issue. 
Trends Microbiol. 2009;17:139–45.

 71. Desvaux M, Dumas E, Chafsey I, Hebraud M. Protein cell surface display 
in Gram-positive bacteria: from single protein to macromolecular 
protein structure. FEMS Microbiol Lett. 2006;256:1–15.

 72. Hynönen U, Palva A. Lactobacillus surface layer proteins: structure, func-
tion and applications. Appl Microbiol Biotechnol. 2013;97:5225–43.

 73. Savijoki K, Kahala M, Palva A. High level heterologous protein produc-
tion in Lactococcus and Lactobacillus using a new secretion system 
based on the Lactobacillus brevis S-layer signals. Gene. 1997;186:255–62.

 74. Kahala M, Palva A. The expression signals of the Lactobacillus brevis slpA 
gene direct efficient heterologous protein production in lactic acid 
bacteria. Appl Microbiol Biotechnol. 1999;51:71–8.

 75. Kajikawa A, Ichikawa E, Igimi S. Development of a highly efficient 
protein-secreting system in recombinant Lactobacillus casei. J Microbiol 
Biotechnol. 2010;20:375–82.

 76. Zhang Q, Zhong J, Liang X, Liu W, Huan L. Improvement of human 
interferon alpha secretion by Lactococcus lactis. Biotechnol Lett. 
2010;32:1271–7.

 77. Chen Z, Lin J, Ma C, Zhao S, She Q, Liang Y. Characterization of pMC11, 
a plasmid with dual origins of replication isolated from Lactobacillus 
casei MCJ and construction of shuttle vectors with each replicon. Appl 
Microbiol Biotechnol. 2014;98:1–13.

 78. Smit E, Jager D, Martinez B, Tielen FJ, Pouwels PH. Structural and func-
tional analysis of the S-layer protein crystallisation domain of Lactobacil-
lus acidophilus ATCC 4356: evidence for protein–protein interaction of 
two subdomains. J Mol Biol. 2002;324:953–64.

 79. Åvall-Jääskeläinen S, Kylä-Nikkilä K, Kahala M, Miikkulainen-Lahti T, Palva 
A. Surface display of foreign epitopes on the Lactobacillus brevis S-Layer. 
Appl Environ Microbiol. 2002;68:5943–51.

 80. Hu S, Kong J, Sun Z, Han L, Kong W, Yang P. Heterologous protein dis-
play on the cell surface of lactic acid bacteria mediated by the S-layer 
protein. Microb Cell Fact. 2011;10:86.

 81. Steen A, Buist G, Leenhouts KJ, El Khattabi M, Grijpstra F, Zomer AL, Ven-
ema G, Kuipers OP, Kok J. Cell wall attachment of a widely distributed 
peptidoglycan binding domain is hindered by cell wall constituents. J 
Biol Chem. 2003;278:23874–81.

 82. Buist G, Steen A, Kok J, Kuipers OP. LysM, a widely distributed protein 
motif for binding to (peptido)glycans. Mol Microbiol. 2008;68:838–47.

 83. Mesnage S, Dellarole M, Baxter NJ, Rouget J-B, Dimitrov JD, Wang N, 
Fujimoto Y, Hounslow AM, Lacroix-Desmazes S, Fukase K, Foster SJ, Wil-
liamson MP. Molecular basis for bacterial peptidoglycan recognition by 
LysM domains. Nat Commun. 2014;5:4269.

 84. Visweswaran G, Leenhouts K, Roosmalen M, Kok J, Buist G. Exploiting 
the peptidoglycan-binding motif, LysM, for medical and industrial 
applications. Appl Microbiol Biotechnol. 2014:1–15.

 85. Raha AR, Varma NR, Yusoff K, Ross E, Foo HL. Cell surface display system 
for Lactococcus lactis: a novel development for oral vaccine. Appl Micro-
biol Biotechnol. 2005;68:75–81.

 86. Bosma T, Kanninga R, Neef J, Audouy SAL, van Roosmalen ML, Steen 
A, Buist G, Kok J, Kuipers OP, Robillard G, Leenhouts K. Novel surface 
display system for proteins on non-genetically modified gram-positive 
bacteria. Appl Environ Microbiol. 2006;72:880–9.

 87. Xu W, Huang M, Zhang Y, Yi X, Dong W, Gao X, Jia C. Novel surface 
display system for heterogonous proteins on Lactobacillus plantarum. 
Lett Appl Microbiol. 2011;53:641–8.

 88. Audouy SAL, van Roosmalen ML, Neef J, Kanninga R, Post E, van 
Deemter M, Metselaar H, van Selm S, Robillard GT, Leenhouts KJ. Lacto-
coccus lactis GEM particles displaying pneumococcal antigens induce 
local and systemic immune responses following intranasal immuniza-
tion. Vaccine. 2006;24:5434–41.

 89. Turner MS, Hafner LM, Walsh T, Giffard PM. Identification and charac-
terization of the novel LysM domain-containing surface protein Sep 
from Lactobacillus fermentum BR11 and its use as a peptide fusion 
partner in Lactobacillus and Lactococcus. Appl Environ Microbiol. 
2004;70:3673–80.

 90. Okano K, Zhang Q, Kimura S, Narita J, Tanaka T, Fukuda H, Kondo 
A. System using tandem repeats of the cA peptidoglycan-binding 
domain from Lactococcus lactis for display of both N- and C-terminal 
fusions on cell surfaces of lactic acid bacteria. Appl Environ Microbiol. 
2008;74:1117–23.

 91. Ravnikar M, Strukelj B, Obermajer N, Lunder M, Berlec A. Engineered lac-
tic acid bacterium Lactococcus lactis capable of binding antibodies and 
tumor necrosis factor alpha. Appl Environ Microbiol. 2010;76:6928–32.

 92. Brinster S, Furlan S, Serror P. C-terminal WxL domain mediates cell wall 
binding in Enterococcus faecalis and other gram-positive bacteria. J 
Bacteriol. 2007;189:1244–53.

 93. Reveneau N, Geoffroy MC, Locht C, Chagnaud P, Mercenier A. Compari-
son of the immune responses induced by local immunizations with 
recombinant Lactobacillus plantarum producing tetanus toxin fragment 
C in different cellular locations. Vaccine. 2002;20:1769–77.

 94. Walboomers. Human papillomavirus is a necessary cause. 
1999;19(May):129.

 95. Kaufmann AM, Nieland JD, Jochmus I, Baur S, Friese K, Gabelsberger J, 
Gieseking F, Gissmann L, Glasschröder B, Grubert T, Hillemanns P, Höpfl 
R, Ikenberg H, Schwarz J, Karrasch M, Knoll A, Küppers V, Lechmann M, 
Lelle RJ, Meissner H, Müller RT, Pawlita M, Petry KU, Pilch H, Walek E, Sch-
neider A. Vaccination trial with HPV16 L1E7 chimeric virus-like particles 
in women suffering from high grade cervical intraepithelial neoplasia 
(CIN 2/3). Int J Cancer. 2007;121:2794–800.

 96. Roman LD, Wilczynski S, Muderspach LI, Burnett AF, O’Meara A, Brink-
man JA, Kast WM, Facio G, Felix JC, Aldana M, Weber JS. A phase II study 
of Hsp-7 (SGN-00101) in women with high-grade cervical intraepithelial 
neoplasia. Gynecol Oncol. 2015;106:558–66.

 97. Garcia F, Petry KU, Muderspach L, Gold MA, Braly P, Crum CP, Magill M, 
Silverman M, Urban RG, Hedley ML, Beach KJ. ZYC101a for treatment of 
high-grade cervical intraepithelial neoplasia: a randomized controlled 
trial. Obstet Gynecol. 2004;103:317–26.



Page 15 of 16Michon et al. Microb Cell Fact  (2016) 15:70 

 98. Bermúdez-Humarán LG, Langella P, Miyoshi A, Gruss A, Tamez Guerra 
R, de Montes Oca-Luna R, Le Loir Y. Production of human papilloma-
virus type 16 E7 protein in Lactococcus lactis. Appl Environ Microbiol. 
2002;68:917–22.

 99. Bermudez-Humaran L, Langella P, Cortes-Perez N, Gruss A, Tamez-
Guerra R, Oliveira S. Production., Intranasal immunization with recom-
binant Lactococcus lactis secreting murine interleukin- 12 enhances 
antigen-specific Th1 cytokine. Infect Immun. 2003;71:1887–96.

 100. Bermúdez-Humarán LG, Cortes-Perez NG, Lefèvre F, Guimarães V, 
Rabot S, Alcocer-Gonzalez JM, Gratadoux J-J, Rodriguez-Padilla C, 
Tamez-Guerra RS, Corthier G, Gruss A, Langella P. A novel mucosal 
vaccine based on live lactococci Expressing E7 antigen and IL-12 
induces systemic and mucosal immune responses and protects mice 
against human papillomavirus type 16-induced tumors. J Immunol. 
2005;175(11):7297–302.

 101. Ribelles P, Benbouziane B, Langella P, Suárez JE, Bermúdez-Humarán LG. 
Protection against human papillomavirus type 16-induced tumors in 
mice using non-genetically modified lactic acid bacteria displaying E7 
antigen at its surface. Appl Microbiol Biotechnol. 2013;97:1231–9.

 102. Macho FE, Valenti V, Rockel C, Hermann C, Pot B, Boneca I, Grangette 
C. Anti-inflammatory capacity of selected lactobacilli in experimental 
colitis is driven by NOD2-mediated recognition of a specific peptidogly-
can-derived muropeptide. Gut. 2011;60:1050–9.

 103. Marelli B, Perez AR, Banchio C, de Mendoza D, Magni C. Oral 
immunization with live Lactococcus lactis expressing rotavirus VP8 
subunit induces specific immune response in mice. J Virol Methods. 
2011;175:28–37.

 104. Perez CA, Eichwald C, Burrone O, Mendoza D. Rotavirus vp7 antigen 
produced by Lactococcus lactis induces neutralizing antibodies in mice. 
J Appl Microbiol. 2005;99:1158–64.

 105. Hugentobler F, Di Roberto RB, Gillard J, Cousineau B. Oral immuni-
zation using live Lactococcus lactis co-expressing LACK and IL-12 
protects BALB/c mice against Leishmania major infection. Vaccine. 
2012;30:5726–32.

 106. Hugentobler F, Yam K, Gillard J, Mahbuba R, Olivier M, Cousineau B. 
Immunization against Leishmania major infection using LACK- and IL-12 
expressing Lactococcus lactis induces delay in footpad swelling. PLoS 
One. 2012;7:e30945.

 107. Lee P, Faubert GM. Expression of the Giardia lamblia cyst wall protein 2 
in Lactococcus lactis. Microbiology. 2006;152(Pt 7):1981–90.

 108. Slots J, Ting M. Actinobacillus actinomycetemcomitans and Porphy-
romonas gingivalis in human periodontal disease: occurrence and 
treatment. Periodontol. 2000;1999(20):82–121.

 109. Marcotte H, Kõll-Klais P, Hultberg A, Zhao Y, Gmür R, Mändar R, Mikelsaar 
M, Hammarström L. Expression of single-chain antibody against RgpA 
protease of Porphyromonas gingivalis in Lactobacillus. J Appl Microbiol. 
2006;100:256–63.

 110. Abrami L, Reig N, van der Goot FG. Anthrax toxin: the long and winding 
road that leads to the kill. Trends Microbiol. 2005;13:72–8.

 111. Andersen KK, Marcotte H, Álvarez B, Boyaka PN, Hammarström L. In situ 
gastrointestinal protection against anthrax edema toxin by single-chain 
antibody fragment producing lactobacilli. BMC Biotechnol. 2011;11:126.

 112. Vandenbroucke K, de Haard H, Beirnaert E, Dreier T, Lauwereys M, Huyck 
L, Van Huysse J, Demetter P, Steidler L, Remaut E, Cuvelier C, Rottiers P. 
Orally administered L. lactis secreting an anti-TNF Nanobody demon-
strate efficacy in chronic colitis. Mucosal Immunol. 2010;3:49–56.

 113. Wann ER. The fibronectin-binding mscramm fnbpa of staphylococcus 
aureus is a bifunctional protein that also binds to fibrinogen. J Biol 
Chem. 2000;275:13863–71.

 114. Mengaud J, Ohayon H, Gounon P, Mège R-M, Cossart P. E-Cadherin is 
the receptor for internalin, a surface protein required for entry of L. 
monocytogenes into epithelial cells. Cell. 1996;84:923–32.

 115. Wollert T, Pasche B, Rochon M, Deppenmeier S, van den Heuvel J, 
Gruber AD, Heinz DW, Lengeling A, Schubert W-D. Extending the 
host range of Listeria monocytogenes by rational protein design. Cell. 
2007;129:891–902.

 116. Del Carmen S, de Moreno de LeBlanc A, Martin R, Chain F, Langella P, 
Bermúdez-Humarán LG, LeBlanc JG. Genetically engineered immu-
nomodulatory Streptococcus thermophilus strains producing antioxidant 
enzymes exhibit enhanced anti-inflammatory activities. Appl Environ 
Microbiol. 2014;80:869–77.

 117. Monk IR, Casey PG, Hill C, Gahan CGM. Directed evolution and targeted 
mutagenesis to murinize Listeria monocytogenes internalin A for 
enhanced infectivity in the murine oral infection model. BMC Microbiol. 
2010;10:318.

 118. Innocentin S, Guimarães V, Miyoshi A, Azevedo V, Langella P, Chatel J-M, 
Lefèvre F. Lactococcus lactis expressing either Staphylococcus aureus 
fibronectin-binding protein A or Listeria monocytogenes internalin A can 
efficiently internalize and deliver DNA in human epithelial cells. Appl 
Environ Microbiol. 2009;75:4870–8.

 119. Guimarães VD, Innocentin S, Lefèvre F, Azevedo V, Wal J-M, Langella P, 
Chatel J-M. Use of native lactococci as vehicles for delivery of DNA into 
mammalian epithelial cells. Appl Environ Microbiol. 2006;72:7091–7.

 120. de Azevedo M, Karczewski J, Lefévre F, Azevedo V, Miyoshi A, Wells JM, 
Langella P, Chatel J-M. In vitro and in vivo characterization of DNA deliv-
ery using recombinant Lactococcus lactis expressing a mutated form of 
L. monocytogenes Internalin A. BMC Microbiol. 2012;12:299.

 121. Pontes D, Innocentin S, Del Carmen S, Almeida JF, Leblanc J-G, de 
Moreno de Leblanc A, Blugeon S, Cherbuy C, Lefèvre F, Azevedo V, 
Miyoshi A, Langella P, Chatel J-M. Production of fibronectin binding 
protein A at the surface of Lactococcus lactis increases plasmid transfer 
in vitro and in vivo. PLoS One. 2012;7:e44892.

 122. Michon C, Kuczkowska K, Langella P, Eijsink VGH, Mathiesen G, Chatel 
J-M. Surface display of an anti-DEC-205 single chain Fv fragment in 
Lactobacillus plantarum increases internalization and plasmid transfer 
to dendritic cells in vitro and in vivo. Microb Cell Fact. 2015;14:95.

 123. Carlsen H, Moskaug JØ, Fromm SH, Blomhoff R. In vivo imaging of 
NF-κB activity. J Immunol. 2002;168(3):1441–6.

 124. Lin K-H, Hsu A-P, Shien J-H, Chang T-J, Liao J-W, Chen J-R, Lin C-F, Hsu 
W-L. Avian reovirus sigma C enhances the mucosal and systemic 
immune responses elicited by antigen-conjugated lactic acid bacteria. 
Vaccine. 2012;30:5019–29.

 125. Owen JL, Sahay B, Mohamadzadeh M. New generation of oral mucosal 
vaccines targeting dendritic cells. Curr Opin Chem Biol. 2013;17:918–24. 
doi:10.1016/j.cbpa.2013.06.013.

 126. Mohamadzadeh M, Duong T, Sandwick SJ, Hoover T, Klaenhammer 
TR. Dendritic cell targeting of Bacillus anthracis protective antigen 
expressed by Lactobacillus acidophilus protects mice from lethal chal-
lenge. Proc Natl Acad Sci U S A. 2009;106:4331–6.

 127. Mohamadzadeh M, Durmaz E, Zadeh M, Pakanati CK, Gramarossa M, 
Cohran V, Klaenhammer TR. Targeted expression of anthrax protective 
antigen by Lactobacillus gasseri as an anthrax vaccine. Future Microbiol. 
2010;5:1289–96.

 128. Curiel TJ, Morris C, Brumlik M, Landry SJ, Finstad K, Nelson A, Joshi V, 
Hawkins C, Alarez X, Lackner A, Mohamadzadeh M. Peptides identified 
through phage display direct immunogenic antigen to dendritic cells. J 
Immunol. 2004;172:7425–31.

 129. Sioud M, Skorstad G, Mobergslien A, Sæbøe-Larssen S. A novel peptide 
carrier for efficient targeting of antigens and nucleic acids to dendritic 
cells. FASEB J. 2013;27(8):3272–83.

 130. Shi S-H, Yang W-T, Yang G-L, Zhang X-K, Liu Y-Y, Zhang L-J, Ye L-P, Hu 
J-T, Xing X, Qi C, Li Y, Wang C-F. Lactobacillus plantarum vaccine vector 
expressing hemagglutinin provides protection against H9N2 challenge 
infection. Virus Res. 2016;211:46–57.

 131. Mazzoli R, Bosco F, Mizrahi I, Bayer EA, Pessione E. Towards lactic acid 
bacteria-based biorefineries. Biotechnol Adv. 2014;32:1216–36.

 132. Kleerebezem M, Hugenholtz J. Metabolic pathway engineering in lactic 
acid bacteria. Curr Opin Biotechnol. 2003;14:232–7.

 133. Bayer E, Lamed R, White B, Flint H. From cellulosomes to cellulosomics. 
Chem Rec. 2008;8:364–77.

 134. Bayer EA, Lamed R, Himmel ME. The potential of cellulases and cel-
lulosomes for cellulosic waste management. Curr Opin Biotechnol. 
2007;18:237–45.

 135. Fan L-H, Zhang Z-J, Yu X-Y, Xue Y-X, Tan T-W. Self-surface assembly of 
cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for 
cellulosic ethanol production. Proc Natl Acad Sci. 2012;109(33):13260–5.

 136. Liang Y, Si T, Ang EL, Zhao H. Engineered pentafunctional minicellulo-
some for simultaneous saccharification and ethanol fermentation in 
Saccharomyces cerevisiae. Appl Environ Microbiol. 2014;80:6677–84.

 137. Wieczorek AS, Martin VJJ. Effects of synthetic cohesin-containing scaf-
fold protein architecture on binding dockerin-enzyme fusions on the 
surface of Lactococcus lactis. Microb Cell Fact. 2012;11:160.

http://dx.doi.org/10.1016/j.cbpa.2013.06.013


Page 16 of 16Michon et al. Microb Cell Fact  (2016) 15:70 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

 138. Kylä-Nikkilä K, Alakuijala U, Saris PEJ. Immobilization of Lactococcus 
lactis to cellulosic material by cellulose-binding domain of Cellvibrio 
japonicus. J Appl Microbiol. 2010;109:1274–83.

 139. Moraïs S, Shterzer N, Lamed R, Bayer E, Mizrahi I. A combined cell-
consortium approach for lignocellulose degradation by specialized 
Lactobacillus plantarum cells. Biotechnol Biofuels. 2014;24:112.

 140. Limaye SA, Haddad RI, Cilli F, Sonis ST, Colevas AD, Brennan MT, Hu KS, 
Murphy BA. Phase 1b, multicenter, single blinded, placebo-controlled, 
sequential dose escalation study to assess the safety and toler-
ability of topically applied AG013 in subjects with locally advanced 
head and neck cancer receiving induction chemotherapy. Cancer. 
2013;119:4268–76.

 141. Benbouziane B, Ribelles P, Aubry C, Martin R, Kharrat P, Riazi A, Langella 
P, Bermúdez-Humarán LG. Development of a Stress-Inducible Con-
trolled Expression (SICE) system in Lactococcus lactis for the production 
and delivery of therapeutic molecules at mucosal surfaces. J Biotech-
nol. 2013;168:120–9.

 142. Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, 
van Deventer SJH, Neirynck S, Peppelenbosch MP, Steidler L. A phase 
I trial with transgenic bacteria expressing interleukin-10 in Crohn’s 
disease. Clin Gastroenterol Hepatol. 2006;4:754–9.

 143. Caluwaerts S, Vandenbroucke K, Steidler L, Neirynck S, Vanhoenacker 
P, Corveleyn S, Watkins B, Sonis S, Coulie B, Rottiers P. AG013, a mouth 
rinse formulation of Lactococcus lactis secreting human Trefoil Factor 

1, provides a safe and efficacious therapeutic tool for treating oral 
mucositis. Oral Oncol. 2010;46:564–70.

 144. Bron PA, van Baarlen P, Kleerebezem M. Emerging molecular insights 
into the interaction between probiotics and the host intestinal mucosa. 
Nat Rev Microbiol. 2012;10:66–78.

 145. Lebeer S, Vanderleyden J, De Keersmaecker SCJ. Genes and molecules 
of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev. 
2008;72:728–64.

 146. van Pijkeren JP, Britton RA. Precision genome engineering in lactic acid 
bacteria. Microb Cell Fact. 2014;13(Suppl 1):S10.

 147. Sun Z, Harris HMB, McCann A, Guo C, Argimón S, Zhang W, Yang X, 
Jeffery IB, Cooney JC, Kagawa TF, Liu W, Song Y, Salvetti E, Wrobel A, 
Rasinkangas P, Parkhill J, Rea MC, O’Sullivan O, Ritari J, Douillard FP, Paul 
Ross R, Yang R, Briner AE, Felis GE, de Vos WM, Barrangou R, Klaenham-
mer TR, Caufield PW, Cui Y, Zhang H, et al. Expanding the biotechnology 
potential of lactobacilli through comparative genomics of 213 strains 
and associated genera. Nat Commun. 2015;6:8322.

 148. Boekhorst J, de Been MWHJ, Kleerebezem M, Siezen RJ. Genome-wide 
detection and analysis of cell wall-bound proteins with LPxTG-like sort-
ing motifs. J Bacteriol. 2005;187:4928–34.


	Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications
	Abstract 
	Background
	Strategies to display proteins at the surface of lactic acid bacteria
	N-terminal transmembrane anchors
	Lipoprotein-anchors
	Covalent anchoring to the cell wall through LPXTG anchors
	Non-covalent binding-domain-mediated anchoring

	Application of lactic acid bacteria for displaying proteins
	Quantification of surface display
	LAB displaying antigens
	LAB displaying antibodies
	Display of proteins to increase interactions between LAB and host cells
	Enzyme display and metabolic engineering

	Conclusions
	Authors’ contributions
	References




