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ABSTRACT
We have recently identified two genes coding for inorganic phosphate transporters (Pht) in sorghum
(Sorghum bicolor) and flax (Linum usitatissimum) that were induced in roots colonized by arbuscular
mycorrhizal (AM) fungi. Mycorrhizal acquisition of inorganic phosphorus (Pi) was strongly affected by the
combination of plant and AM fungal species, but the expression level of these genes coding for AM-
inducible Pi transporters did not explain differences in plant phosphorus acquisition where flax and
sorghum are sharing a common mycorrhizal network. In the present study, we investigated the possible
role of fungal Pi transporters in the regulation of mycorrhizal Pi acquisition by measuring their expression
in roots of flax and sorghum. One Pi transporter of Rhizophagus irregularis (RiPT5) showed a positive
correlation with mycorrhizal Pi acquisition of sorghum. This indicates that a possible involvement in the
regulation of mycorrhizal Pi acquisition. In general, expression of AMF Pi transporters was more related to
mycorrhizal Pi acquisition of sorghum than of flax, indicating plant species-specific differences in the
regulation of mycorrhizal Pi acquisition.
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The majority of plants is associated with arbuscular mycor-
rhizal fungi (AMF) with which they trade substantial amounts
of photosynthetically-fixed carbon in exchange for mineral soil
nutrients.1 AMF colonize simultaneously several plants from
the same or different species,2 and form thereby far-reaching
common mycorrhizal networks (CMNs). We are particularly
interested in resource exchange within such complex CMNs.
Therefore, we established a model system consisting of 2 differ-
ent host plant species, flax and sorghum, sharing a common
fungal symbiont to investigate experimentally the nutrient
exchange in mycorrhizal networks.3 With the help this model
system, we revealed that resources are exchanged under
unequal terms of trade in CMNs. Depending on the fungal
symbiont, flax was able to acquire the lion’s share of nutrients
delivered by a CMN, while sorghum received only marginal
nutritional benefits, although contributing most of the carbon
allocated to the common fungal partner.3 More recently, we
tried to shed light on the different abilities of flax and sorghum
to acquire nutrients from CMNs depending on the identity of
the fungal symbiont by focusing on the model plant’s phos-
phate acquisition pathways.4

Plants associated with AMF exhibit a specific symbiotic
phosphate uptake pathway, which begins at the extraradical
hyphae in the soil, from where inorganic phosphate (Pi) is
translocated toward the roots and released from the arbuscule
into the periarbuscular space.5 There, it is taken up across the
plant’s periarbuscular membrane by specifically induced

phosphate transporters belonging to the Pht1 family of plant Pi
transporter.6 Remarkably, these mycorrhiza-induced phosphate
transporters have been found to be crucial for mycorrhizal Pi
acquisition in several studies using mutants with reduced or
inhibited mycorrhiza-inducible transporter gene expression.7,8

In order to study the mycorrhiza-induced Pht1 genes in flax
and sorghum, we characterized and analyzed the expression of
Pi transporters of the Pht1 family in both plant species, and
identified a set of mycorrhiza-inducible Pi transporters in both
plants.4 Although mycorrhizal Pi acquisition was strongly
affected by AMF species in our model system, a corresponding
change in the expression of mycorrhiza-inducible Pht1 trans-
porters was only marginally detected. Besides Pi uptake across
the plant’s periarbuscular membrane, the release of Pi from
AMF into the periarbuscular space is another crucial step of
mycorrhizal Pi pathway. However, mechanisms of Pi release
from fungus to the periarbuscular space are less-well studied
and remain obscure up to now.5

In order to reveal the role of fungal Pi transporter in mycor-
rhizal Pi pathway, expression of several fungal Pi transporters
genes of Rhizophagus irregularis (strain TERI commercial) and
Funeliformis mosseae (strain ISCB 22, both kept in our fungal
strain collection9) were investigated in roots of flax and sor-
ghum of the model system used in previously published stud-
ies3,4 (Table S1 and S2). We designed gene expression assays
for different Pi transporters of F. mosseae (FmPT1, FmPT3,
FmPT7) and R. irregularis (RiPT1, RiPT3, RiPT5, RiPT7). The
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targeted genes were homologs of transporters of Saccharomyces
cerevisiae encoding for high- (ScPHO84, PHO89) and low-
(ScPHO87, PHO91) affinity Pi transporters located in the
plasma membrane10 (Fig. 1).

Expression of fungal Pi transporters in roots of flax and sor-
ghum were affected by different plant species and different cul-
ture systems (Fig. 2). The two Pi transporters of R. irregularis
RiPT3 and RiPT7 were significantly more expressed in sorghum
roots than in flax roots over both culture treatments (Fig. 2a).
In contrast, RiPT1 and RiPT5 were more expressed in flax
roots. Contradictory behaved the expression of Pi transporter
genes of F. mosseae; the three transporters investigated were
significantly stronger expressed in flax roots over both cultural
treatments (Fig. 2b). Culture treatments mainly affected the
expression of Pi transporters of R. irregularis in sorghum roots.
RiPT1, RiPT3 and RiPT7 were significantly more expressed in
sorghum roots of mixed culture compared to the monoculture
treatment (Fig. 2a). On the contrary, the expression of RiPT5 in
roots of mixed culture was dramatically reduced compared to
the monoculture treatment. The expression of 4 fungal Pi
transporters showed a high interrelation with mycorrhizal Pi
acquisition in association with sorghum (Fig. 3). Remarkably,
RiPT5 was the only transporter showing a clear tendency for a
positive correlation between mycorrhizal Pi acquisition and
expression level (Fig. 3; Table S3). FmPT3 and FmPT7 showed
a significant negative correlation with mycorrhizal Pi

Figure 1. Neighbor joining tree of the Rhizophagus irregularis phosphate trans-
porter (PT) family, based on the amino acid sequences of their full open reading
frames. Sequence names consist of species code (first letter of genus and first letter
of species name) and the PT number. Species codes; Fm: Funelliformis mosseae; Ri:
Rhizophagus irregularis; Sc: Saccharomyces cerevisiae. Sequence names of R. irregu-
laris correspond to PT characterized in Table S1. Sequence names of F. mosseae
and S. cerevisiae were obtained from NCBI GenBank: ScPho84 (NP_013583),
ScPho86 (NP_012418), ScPho87 (NP_009966), ScPho89 (NP_009855), ScPho91
(NP_014410) and FmPT1 (AAZ22389). We also provide GenBank accession num-
bers for sequences from R. irregularis: RiPT1 (KU219928), RiPT2 (KU219929), RiPT3
(KU219930), RiPT4 (KU219931), RiPT5 (KU219932), RiPT6 (KU219933) and RiPT7
(KU219934). For phylogenetic analysis, the PT amino acid sequences were aligned
with ClustalW (http://www.ebi.ac.uk/Tools/msa/clustalw2/) using the following
multiple alignment parameters: gap opening penalty 15, gap extension penalty
0.3, and delay divergent sequences set to 25%; and the Gonnet series was selected
as the protein weight matrix. Neighbor joining trees were constructed using Pois-
son correction model for distance computation in MEGA4.17

Figure 2. Normalized expression of phosphate (Pi) transporters of Rhizophagus irregularis (a) and Funelliformis mosseae (b) in roots of flax or sorghum. Plants were culti-
vated either in monoculture accompanied by a plant individual of the same species (white bars) or in mixed culture accompanied by a plant individual of the other spe-
cies (gray bars). Translation elongation factor from the fungus (TEF-1 a) was used as the reference transcript. Sequences of primers are given in table S2. Error bars show
standard errors (N D 4 ). Stars indicate significant differences between plant species over both culture treatments, or among culture treatments within plants according
to 2-way t-test (p < 0.05).
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acquisition of sorghum. Generally speaking, gene expression of
fungal transporters in sorghum roots was much stronger
related to mycorrhizal Pi acquisition (mean R2 D 0.259), while
in flax roots no such relation, whether positive nor negative,
could be detected (mean R2 D ¡0.03; Table S1).

RiPT1, RiPT2, RiPT3 and FmPT1 cluster with ScPHO84, a
high affinity Pi:HC symporter from S. cerevisiae (Fig. 1). RiPT1
and RiPT3 were suggested to have different functional charac-
teristics (i.e. different affinities for Pi and/or to different regula-
tion patterns of gene expression with Pi availability; Fig. 1).11

RiPT7 clusters with ScPHO87 from S. cerevisiae, a low-affinity
Pi:HC transporter.10,11 The most promising candidate of AMF
Pi transporters involved in intraradical Pi transfer into periar-
buscular space is RiPT5, which clusters with the high affinity
Pi:NaC transporter ScPHO89 of S. cerevisieae (Fig. 1).11 The
exact role of the putative Pi:NaC transporters in AMF is not yet
clarified. But AMF possess an extensive tubular vacuoles system
involved in the translocation of polyphosphate along hyphae.12

The transporter system operating the Pi exchange between the
tubular vacuoles system and the cytoplasm is not known so far,
but the Pi:NaC transporter system could be involved and
release Pi depending on the plant demand at the plant fungal
interface. Nevertheless, its expression was strongly reduced in
roots of sorghum cultivated in mixed culture with flax. In this
treatment, the mycorrhizal Pi acquisition of sorghum was
much lower compared to the other treatments (for details
see3,4). Additionally, RiPT5 was the only fungal transporter

exhibiting a positive correlation with mycorrhizal Pi acquisition
of sorghum (Fig. 3; Table S3). Hence, there is room for specula-
tion that RiPT5 could be a significant transporter for intraradi-
cal Pi transfer from the AMF to the plant at the plant-fungal
interface. It is unfortunate that the homologous transporter of
F. mosseae (FmPT5) was not surveyed in this study. A similar
correlation between mycorrhizal Pi acquisition and expression
of FmPT5 in sorghum roots could strengthen the importance
of these homologous transporters for the intraradical mycor-
rhizal Pi transfer from AMF to plants. However, expression of
RiPT5 was not affected in flax roots, although flax increased its
mycorrhizal Pi acquisition twofold from mono- to mixed cul-
ture (for details see3,4). Similarly, expression of fungal Pi trans-
porters was generally more related to mycorrhizal Pi
acquisition of sorghum compared to flax (Table S3). We could
speculate that dependent on plant species, mycorrhizal Pi
acquisition could be either more regulated by the fungus or by
the plant.

Fungal regulation of mycorrhizal Pi acquisition may take
place by a suppressed expression of such Pi transporters
responsible for intraradical Pi transfer. This would reduce the
amount of Pi in peri-arbuscular space and consequently reduce
the amount of Pi available for sorghum via the mycorrhizal
pathway. But why would AMF reduce Pi transfer to the periar-
buscular space? It is generally accepted that some plants and
AMF are able to reduce resource transfer to symbiotic partners,
when not receiving a “satisfying” benefit in return.13,14 In the

Figure 3. Relation between fungal Pi transporter expression in sorghum roots and mycorrhizal Pi acquisition. Normalized expression of 4 different Pi transporter of Rhizo-
phagus irregularis and Funnelliformis mossea is shown as function of mycorrhizal Pi acquisition. Translation elongation factor from the fungus (TEF-1 a) was used as the
reference transcript. Mycorrhizal acquisition of inorganic phosphate of sorghum was estimated based on uptake of labeled phosphorus only available for AM fungi.3,4

Twelve data points were used for calculation. Coefficient of determination (R2) and p-value of linear regression model are displayed for each interaction.
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present study sorghum was the main carbon provider to AMF
and consequently Pi transfer from AMF to sorghum should
therefore rather be increase under the assumption of such mar-
ket dynamics.15 However, transcriptional regulation of fungal
Pi transporters could also inhibit the re-uptake of Pi by the fun-
gal cells, leaving Pi in the periarbuscular space and conse-
quently remaining available for the plant. A rather speculative
explanation could be that the expression of plant and fungal Pi
transporters at the arbuscule level could be mediated by com-
plex interactions between the 3 partners (sorghum, flax, AM
fungal species), independently of the availability of Pi.16 A
detailed analysis of the R. irregularis and F. mosseae phosphate
transporters expression would be suitable to clarify this incom-
plete, but first picture.
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