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ABSTRACT 48 

Background: 2S-albumin Ara h 2 is the most potent peanut allergen and a good predictor of 49 

clinical reactivity in allergic children. Post-translational hydroxylation of proline residues 50 

occurs in DPYSPOHS motifs, which are repeated two or three times in different isoforms. 
51 

Objectives: We investigated the impact of proline hydroxylation on IgE-binding and the 52 

relative contributions of linear and conformational epitopes to Ara h 2 allergenicity. 53 

Methods: Peptides containing DPYSPOHS motifs were synthesized. A recombinant variant of 54 

Ara h 2 without DPYSPOHS motifs was generated by deletion mutagenesis. IgE reactivity of 55 

18 French and 5 American peanut-allergic patients toward synthetic peptides and recombinant 56 

allergens was assessed by IgE-binding inhibition assays and by degranulation tests of 57 

humanized rat basophilic leukemia cells. 
58 

Results: Hydroxyproline-containing peptides exhibited an IgE-binding activity equivalent to 59 

that of the unfolded Ara h 2. In contrast, corresponding peptides without hydroxyproline 60 

displayed a very weak IgE-binding capacity. Despite removal of the DPYSPOHS motifs, the 61 

deletion variant still displayed Ara h 2 conformational epitopes. The IgE-binding capacity of 62 

Ara h 2 was then recapitulated with an equimolar mixture of a hydroxylated peptide and the 63 

deletion variant. Hydroxylated peptides of 15 and 27 amino acid residues were also able to 64 

trigger cell degranulation. 65 

Conclusions: Sensitization toward linear and conformational epitopes of Ara h 2 is variable 66 

among peanut-allergic patients. Optimal IgE-binding to linear epitopes of Ara h 2 requires 67 

post-translational hydroxylation of proline residues. The absence of hydroxyproline could 68 

then affect the accuracy of component-resolved diagnostics using recombinant Ara h 2. 69 

 70 

 71 

 72 
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INTRODUCTION 73 

Peanut is one of the most common causes of severe allergic reactions to food 
(1;2)

. The 74 

IgE-mediated peanut allergy affects more than 1% of the children and is outgrown by only 75 

20% of the patients 
(3)

. 76 

Until now, twelve allergens, e.g. Ara h 1 to 13, with Ara h 3/4 describing the same 77 

protein, have been identified in peanut (Arachis hypogea)
(4)

. Ara h 1, 2 and 3 were initially 78 

recognized as the major peanut allergens 
(5-7)

. Recently, Ara h 2 and Ara h 6 were described as 79 

being the most clinically relevant peanut allergens as observed in vitro with effector cell-80 

based assays and in vivo with skin prick test 
(8-17)

. Accordingly, the IgE response to Ara h 2 81 

has been reported to be a good predictor of clinical allergy in children 
(18;19)

 and the IgE 82 

response to Ara h 6 could also provide good diagnostic performance 
(20;21)

. 83 

Ara h 2 and Ara h 6 belong to the 2S-albumin family. They share a compact 84 

conformation characterized by five α-helical structures and stabilized by a network of four 85 

conserved disulfide bridges 
(22)

. This arrangement provides a core structure highly resistant to 86 

proteolysis so that treatment of 2S-albumins with digestive enzymes does not affect 87 

significantly their allergenicity 
(23-27)

. Ara h 2 and Ara h 6 are 59% homologous but compared 88 

to Ara h 6, two insertions of 14 and 26 amino acid residues occur in Ara h 2 major isoforms, 89 

i.e. Ara h 2.01 and Ara h 2.02 
(6;28)

. These insertions are exposed on a flexible surface loop 90 

and comprise the repeated DPYSPOHS motif, with the second proline being hydroxylated 91 

(23;29)
. The DPYSPOHS-containing domain has been reported to be a major linear IgE-binding 92 

epitope 
(30;31)

. The impact of proline hydroxylation on Ara h 2 IgE reactivity has not yet been 93 

investigated, although this post-translational modification has been shown to influence the 94 

IgE-binding to Phl p 1, a major allergen from timothy grass pollen 
(32)

. On the other hand, 95 

conformation of 2S-albumins is also essential for the allergenic potency since suppression of 96 

disulfide bridge formation in Ara h 2 and Ara h 6 by chemical reduction or by site-directed 97 



5  Bernard et al. 

 

 

mutagenesis reduced their IgE reactivity significantly 
(26;30;33-35)

. In this regard, some studies 98 

reported a predominance of IgE recognition of conformational epitopes on Ara h 2 while 99 

others suggested a higher proportion of IgE-binding to linear epitopes 
(30;33;36)

. 100 

In the present work, we aimed to determine the relative contributions of linear and 101 

conformational epitopes to the allergenic potency of Ara h 2. For this purpose, we first 102 

characterized the IgE-reactivity of a stably unfolded Ara h 2 and of a properly refolded 103 

recombinant Ara h 2. Discrepancies of IgE-binding capacity between the recombinant and 104 

native allergens led us to investigate particularly the influence of proline hydroxylation. We 105 

therefore compared the IgE reactivity of 18 French and 5 American peanut-allergic patients 106 

toward native and recombinant Ara h 2 and toward synthetic peptides containing DPYSPOHS 107 

motifs with or without hydroxyproline. Moreover, considering that the DPYSPOHS-containing 108 

domain is located on a flexible surface loop in Ara h 2 and is absent in Ara h 6, this domain 109 

was not expected to contribute significantly to the stability of the global fold of 2S-albumins 110 

(23;37)
. We thus generated a recombinant variant of Ara h 2 lacking the DPYSPOHS motifs in 111 

order to investigate the contribution of conformational epitopes to the IgE-reactivity of Ara h 112 

2 without any IgE-binding to the linear hydroxyproline-containing epitopes. 113 

   114 
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METHODS 115 

Human sera 116 

French sera for this retrospective study were collected from 18 peanut-allergic children 117 

recruited at the Paediatric Allergy Clinic of Hopital Necker-Enfants Malades after informed 118 

consent from patient’s parents (see Table E1 in the Online Repository and 
(38)

). All serum 119 

samples were collected during routine clinical practice and were studied in accordance with 120 

the purpose of the initial study. Based on their medical history, symptoms of the IgE-mediated 121 

peanut allergy involved skin, respiratory tract, gastrointestinal tract and cardiovascular 122 

system. Five sera from American peanut-allergic patients with a strong history of peanut-123 

induced immediate hypersensitivity and peanut-specific IgE ≥ 13 KAU/L (ImmunoCap, 124 

Phadia; Uppsala, Sweden) in serum were collected within 6 months of this study (see Table 125 

E2 in the Online Repository). All adult patients and the parents or guardians of minors signed 126 

informed consent. Minors who were >6 years of age, signed an assent. The University of 127 

Colorado Denver Institutional Review Board approved this study.   128 

 129 

Allergen preparations  130 

The 2S-albumins Ara h 2 and Ara h 6 were purified from whole peanut protein extract 131 

prepared with commercially roasted peanuts (Virginian variety) as previously described 
(35)

. 132 

Separation of the different isoforms of Ara h 2 is described in the Online Repository. 133 

 The gene encoding Ara h 2.01 (Swiss-Prot accession number Q6PSU2-2, Fig. 1) was 134 

synthesized by using codons optimized for bacterial expression (Genscript USA Inc., 135 

Piscataway, NJ, USA) and inserted into the E.coli expression plasmid pET9c (Novagen-136 

Merck, Damstadt, Germany). The variant recAra h 2.Δ was obtained by replacing the domain 137 

GRDPYSPSQDPYSPSP of recAra h 2.01 by the dipeptide DS naturally occurring in Ara h 6 138 

(Fig. 1). Expression, purification and refolding of recombinant proteins are described in the 139 
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Online Repository. Refolding of the recombinant proteins was verified by circular dichroism 140 

(CD) spectroscopy as previously described 
(26)

. 141 

 Reduction and S-alkylation of Ara h 2 (all isoforms) and Ara h 6 was performed as 142 

previously described in order to prepare stably unfolded 2S-albumins 
(35)

. 143 

 144 

Peptides 145 

 Several peptides comprising major linear IgE-binding epitopes, as initially reported by 146 

Stanley et al 
(31)

, were synthesized by taking into account the post-translational hydroxylation 147 

of proline residues. The peptide (pep) 1-21: RQQWELQGDRRCQSQLERANL covered the N-148 

terminal part of Ara h 2 (Fig. 1). The peptide containing two hydroxyprolines (pep 2POH) 149 

corresponded to the domain found in Ara h 2.01 isoform: DPYSPOHSQDPYSPOHSPY. The 150 

peptide containing three hydroxyprolines (pep 3POH) corresponded to the domain found in Ara 151 

h 2.02 isoform: DPYSPOHSQDPYSPOHSQDPDRRDPYSPOHSPY (Fig. 1). Corresponding 152 

peptides control without hydroxyproline (pep 2P and pep 3P) were also synthesized. The 153 

different peptides were purified by RP-HPLC and analysed by MALDI-TOF (see in the 154 

Online Repository). Characterization of the synthetic peptides by CD spectroscopy did not 155 

reveal a significant presence of α-helix or β-sheet secondary structures (Fig. E1). Gel 156 

permeation chromatography did not evidence the formation of peptide aggregates under 157 

physiological conditions (Fig. E2). 158 

 159 

IgE-immunoreactivity analysis 160 

 In agreement with the assumption from Albrecht et al. that “fluid-phase binding of IgE 161 

antibodies is more relevant in relation to in vivo allergenicity” 
(30)

, we developed a reverse 162 

enzyme allergo-sorbent test that is not based on the binding capacity of allergens immobilized 163 

on solid phase but measures the binding of labelled allergens by patients’ IgE antibodies 164 
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captured by an anti-human IgE monoclonal antibody immobilized on the solid phase 
(39)

. In 165 

this test, plates were first coated with anti-human IgE monoclonal antibody LE27. Fifty 166 

µL/well of serum from each patient at adequate dilutions were incubated overnight at 4°C. 167 

After washing, 25 μL of inhibitors (i.e. increasing concentrations of the tested molecule) and 168 

25 µL of labelled native Ara h 2 were mixed and incubated for 4 h at room temperature. 169 

Labelled Ara h 2 (all isoforms) used for this IgE-binding assay were prepared by covalent 170 

linkage of the native protein to the tetrameric form of acetylcholinesterase (AChE) 
(40)

. 171 

Ellman’s reagent was then used as AChE chromogenic substrate and absorbance at 414 nm 172 

was measured 
(41)

. Results were expressed as B/B0. B0 and B represent the amount of labelled 173 

Ara h 2 bound to immobilised IgE antibodies in the absence or presence of a known 174 

concentration of inhibitor, respectively. The concentration inhibiting 50% of the IgE binding 175 

to labelled allergen (IC50) was evaluated by using GraphPad Prism 5.01 (GraphPad Software, 176 

Inc., La Jolla, CA, USA). 177 

 178 

Mediator release assay 179 

Degranulation assay was performed with rat basophilic leukemia (RBL) SX -38 cells 180 

as previously described 
(9)

. Cells were passively sensitized with IgE antibodies 181 

immunopurified from indivividual serum as previously described 
(9)

. Mediator release was 182 

induced by incubation with different concentrations of synthetic peptides, native or 183 

recombinant allergens and was determined by measuring the β-hexosaminidase activity. 184 

Results were expressed as a percentage of the reference release induced with anti-human IgE 185 

(LE27 clone; 100 ng/mL). 186 

 187 

Statistical analysis 188 
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Data were analyzed using the non-parametric Wilcoxon matched pairs signed rank 189 

test. Statistical analyses were performed with GraphPad Prism 5.01 software.  190 
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RESULTS 191 

 192 

Impact of reduction and alkylation on Ara h 2 IgE-reactivity 193 

We first wanted to evaluate the loss of IgE-reactivity induced by chemical reduction of 194 

the disulfide bridges and the resulting suppression of the conformational epitopes. Stable 195 

unfolding of Ara h 2 was performed by reduction and alkylation (r/a). The unfolded state of 196 

r/a Ara h 2 was confirmed by CD spectroscopy with a single spectrum minimum close to 200 197 

nm instead of the two broad minima at 208 and 222 nm, typical for α-helical secondary 198 

structures largely present in native Ara h 2 (Fig. 2). This denaturing treatment reduced 199 

considerably the IgE-binding capacity of Ara h 2 (Fig. 3). However, for 9 of 18 patients (sera 200 

313, 576, 101, 102, 486, 572, 841, 109 and 907), r/a Ara h 2 retained a significant IgE-201 

reactivity with an IC50 ranging from 0.5 to 750 nM. Two patients (109 and 907) even 202 

displayed an IgE response to r/a Ara h 2 comparable to that against the native allergen. Of 203 

note, the isoform Ara h 2.02 displayed a slightly but significantly higher IgE-binding capacity 204 

than Ara h 2.01 (p=0.0003). As illustrated in Fig. 4A, with four representative sera, and in 205 

Fig. E3, the difference of IgE-reactivity between Ara h 2.01 and Ara h 2.02 increased 206 

concomitantly with the IgE-binding capacity of r/a Ara h 2. 207 

 208 

IgE-binding capacity of native and recombinant Ara h 2 209 

We then wanted to assess whether a recombinant form of Ara h 2.01 shared similar 210 

allergenic properties with its native counterpart. It thus appeared that recombinant and native 211 

Ara h 2 displayed different patterns of IgE-reactivity among the patients (Fig. 4A and Fig. 212 

E3). Interestingly, the IgE-reactivity of recAra h 2.01 was inversely proportional to that of r/a 213 

Ara h 2. While native and recombinant Ara h 2 were similarly bound by IgE antibodies from 214 

patient 847, r/a Ara h 2 was not recognized, thus indicating that most of Ara h 2-specific IgE 215 
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antibodies from patient 847 recognized conformational epitopes. In this regard, recAra h 2.01 216 

also appeared to be properly refolded, as confirmed by CD analysis with the predominance of 217 

α-helical structures (Fig. 2). Conversely, recAra h 2.01 was poorly recognized by IgE 218 

antibodies from patient 907 whereas r/a Ara h 2 displayed an IgE reactivity almost as high as 219 

that of the native allergen. In this case, most of Ara h 2-specific IgE antibodies from patient 220 

907 recognized linear epitopes. Patients 432 and 841 displayed intermediate IgE-reactivity 221 

toward recAra h 2.01 and r/a Ara h 2 (see also Fig. E3). It was then noteworthy that even 222 

when recombinant and native Ara h 2 were reduced and alkylated, the IgE-binding capacity of 223 

the recombinant allergen remained lower than that of the native form. The influence of post-224 

translational modifications that naturally occurs in peanut seeds but not in prokaryotes was 225 

then further investigated. 226 

 227 

Impact of proline hydroxylation on Ara h 2 IgE-reactivity 228 

Four peptides containing two or three DPYSPOHS motifs, as found in Ara h 2.01 and 229 

Ara h 2.02 respectively, were synthesized with or without hydroxyprolines (Fig. 1). As 230 

illustrated by patients 841 and 907, peptides with hydroxyprolines displayed an IgE-binding 231 

capacity at least 1000-fold higher than that of peptides without hydroxyprolines (Fig. 4B). 232 

Inhibition of IgE-binding to Ara h 2 was always more efficient with the 27-AA-long peptide 233 

3POH, with three DPYSPOHS motifs, than with the 15-AA-long peptide 2POH, with only two 234 

DPYSPOHS motifs. Surprisingly, the IgE-binding capacity of the 27-AA-long peptide was as 235 

high as that of the full-length r/a Ara h 2 for all the tested sera (Fig. 4B and Fig. E3), thus 236 

suggesting that pep 3POH was bound by nearly all of the IgE antibodies recognizing linear 237 

epitopes. The peptide 1-21 did not exhibit any significant IgE-binding capacity for any of the 238 

French sera.  239 

 240 
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Evaluation of the relative contribution of linear vs conformational epitopes to Ara h 2 241 

IgE-binding capacity 242 

In order to determine the contribution of conformational epitopes to the IgE-reactivity, 243 

a recombinant variant of Ara h 2 lacking the DPYSPOHS motifs, recAra h 2.Δ, was generated 244 

by deletion mutagenesis (Fig. 1). Suppression of this disordered domain did not prevent 245 

recAra h 2.Δ to refold properly (Fig. 2). Furthermore, recAra h 2.Δ and recAra h 2.01 were 246 

bound by IgE antibodies with an apparent similar affinity, thus confirming that most of the 247 

conformational epitopes were preserved on recAra h 2.Δ (Fig. 4C).  248 

IgE-binding to conformational epitopes could then be specifically inhibited with the 249 

deletion variant recAra h 2.Δ and IgE-binding to linear epitopes could be inhibited with the 250 

synthetic peptide pep 3POH. Accordingly, while IgE-binding to Ara h 2 was only partially 251 

inhibited by pep 3POH or recAra h 2.Δ separately, an equimolar mixture of pep 3POH and 252 

recAra h 2.Δ exhibited an inhibitory capacity similar to that of the native Ara h 2 (Fig. 4C). 253 

The relative contribution of linear and conformational epitopes to the IgE-reactivity of Ara h 254 

2 was then evaluated for each patient. For patient 847, around 82% of the IgE-binding to Ara 255 

h 2 was due to the recognition of conformational epitopes while around 87% of the IgE-256 

binding to Ara h 2 was due to the recognition of linear epitopes for patient 907 (Fig. 4C). Five 257 

sera from American peanut-allergic patients were similarly tested (Fig. E4). As observed with 258 

French patients, hydroxylation of the synthetic peptides was required to obtain significant 259 

IgE-binding to the synthetic peptides. IgE-binding to linear epitopes also appeared to be 260 

restricted to the DPYSPOHS-containing domain. Of note, pep 1-21 displayed a rather 261 

significant IgE-binding capacity for one serum but still with a much lower affinity than pep 262 

3POH (serum D119, Fig. E4A). American patients also displayed variable levels of 263 

sensitization toward linear and conformational epitopes of Ara h 2 (Fig. E4B). 264 

 265 



13  Bernard et al. 

 

 

Allergenic activity of the DPYSPOHS-containing peptides 266 

The capacity of the different variants and synthetic peptides from Ara h 2 to cross-link 267 

IgE/FcεRI complexes was evaluated with a degranulation assay of RBL SX-38 cells. As 268 

expected, when cells were passively sensitized with immunopurified IgE antibodies from 269 

patient 847, the synthetic peptides did not display any allergenic activity and only properly 270 

folded allergens, i.e. native and recombinant Ara h 2, were able to induce cell degranulation 271 

(Fig. 5). In this case, we also confirmed that the synthetic peptides did not possess any 272 

intrinsic ability to induce mediator release and that basophil degranulation was actually 273 

dependent on the presence of specific IgE antibodies. Indeed, when cells were loaded with 274 

IgE antibodies from patient 907, the peptides 3POH and, to a lesser extent, 2POH could trigger 275 

cell degranulation almost as efficiently as the full-length allergen. Unfolded r/a Ara h 2 also 276 

retained a strong allergenic potency. In contrast, the synthetic peptides without 277 

hydroxyproline pep 3P and pep 2P (not shown) did not display any allergenic potency. The 278 

pattern of cell degranulation induced with IgE antibodies from patient 432 and 841 were in 279 

line with IgE-binding assays, since potency of the hydroxylated peptides correlated with that 280 

of r/a Ara h 2 and with a decreasing potency of the recombinant allergens (Fig. 5).  281 
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DISCUSSION 282 

Being the most potent allergens from peanut, 2S-albumins Ara h 2 and Ara h 6 are 283 

attractive target molecules for therapeutic applications. Treatment of peanut-allergic mice 284 

with purified Ara h 2 and 6 has been recently shown to provide an equivalent level of 285 

desensitization than with a crude peanut extract 
(14)

. The use of stably unfolded 2S-albumins 286 

has also been proposed for the development of safer immunotherapeutic treatments 
(26;42)

. 287 

However, the presence of major linear IgE-binding epitopes persisting in unfolded allergens 288 

could limit the advantages of such allergoids. In this regard, determination of the relative 289 

importance of linear and conformational IgE-binding epitopes in Ara h 2 allergenicity could 290 

be of interest in order to optimize specific immunotherapy. 291 

As previously observed with Ara h 6, reduction and alkylation of Ara h 2 led to a 292 

substantial decrease of the IgE-binding capacity 
(26;33)

. Nevertheless, approximately 50% of 293 

the tested sera exhibited a significant IgE-reactivity toward r/a Ara h 2. Similarly, Starkl et al. 294 

observed that the residual IgE-binding capacity of r/a Ara h 2, compared to untreated Ara h 2, 295 

was highly variable among peanut-allergic patients 
(34)

. In contrast, we never evidenced such 296 

residual IgE-reactivity for r/a Ara h 6 when using the same competitive fluid-phase assay 
(26)

. 297 

Even the patients displaying the highest IgE-reactivity to r/a Ara h 2 did not recognize r/a Ara 298 

h 6, thus suggesting that only Ara h 2 contains immunodominant linear IgE-binding epitopes 299 

(Fig. E5).  300 

For the first time, post-translational modifications were shown to be critical for IgE-301 

binding to Ara h 2 linear epitopes and explained the differences of IgE-reactivity between 302 

native and recombinant Ara h 2 
(23)

. We thus demonstrated the importance of proline 303 

hydroxylation in the motif DPYSPOHS, which was, in our experimental setup, the sole major 304 

linear IgE-binding epitope of Ara h 2. Accordingly, the inhibitory capacity of r/a Ara h 2 was 305 

completely recapitulated with a single peptide containing three DPYSPOHS motifs. Although 306 
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domain 1-21 was reported to contain immunodominant IgE-binding epitopes 
(30)

, the 307 

corresponding synthetic peptide rarely display a significant inhibitory capacity. The weak 308 

IgE-binding capacity of r/a recAra h 2 also confirmed the absence of major linear epitope 309 

when prolines are not post-translationally modified. This result is in agreement with Albrecht 310 

et al. who reported that a mix of IgE-binding Ara h 2-derived peptide did not interfere 311 

detectably with the IgE-binding to a recombinant form of Ara h 2 
(30)

. In contrast, Bublin et al. 312 

observed that a considerable proportion of IgE binding to Ara h 2, Ara h 1 and Ara h 3 could 313 

be inhibited with a mix of three synthetic peptides containing the N-terminal region of Ara h 2 314 

and the repeated motif DPYSPS without hydroxylated proline 
(36)

. A weak IgE-reactivity of 315 

the non-hydroxylated peptide pep 3P was also detected with patients 841 and 907. However, 316 

the clinical relevance of this low affinity binding is questionable since pep 3P displayed no 317 

allergenic potency when pep 3POH induced cell degranulation. 318 

Another important finding was thereby the ability of the 15- and 27-residues long 319 

peptides, pep 2POH and 3POH, to induce basophil degranulation. This result was rather 320 

unexpected for such short peptides, especially when considering that these peptides did not 321 

form aggregates under physiological conditions (Fig. E2), as previously reported for other 322 

allergenic peptides less than 3 kDa 
(43;44)

. The allergenic activity of these peptides thus 323 

suggests that their repeated DPYSPOHS motifs can be bound simultaneously by at least two 324 

IgE antibodies. Considering the minimum peptide size that could optimally cross-link 325 

IgE/FcεRI complexes, as calculated by Bannon et al. with data from Kane et al. 
(45;46)

, the tri-326 

valent peptide pep 3POH was just long enough to induce an efficient cell degranulation.  327 

Surprisingly, with only 15 amino acid residues, the bi-valent peptide pep 2POH still displayed 328 

an allergenic activity, albeit much lower than that of pep 3POH. Thus, accordingly to its higher 329 

valency, pep 3POH displayed a higher IgE-binding capacity and a higher allergenicity than pep 330 
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2POH, which is in agreement with previous studies suggesting a higher allergenicity of native 331 

Ara h 2.02 compared to Ara h 2.01 
(31;47)

.  332 

The allergenic potency of the DPYSPOHS-containing peptides provides also new 333 

insight into the residual allergenicity of hydrolyzed peanut proteins. It has been previously 334 

shown that Ara h 2 digested with trypsin/chymotrypsin displayed minimal reduction in IgE 335 

binding capacity and allergenicity 
(23)

. Recently, Shi et al. reported that even with an extensive 336 

reduction in the size of the IgE-binding peptides and a substantial decrease of IgE-binding 337 

capacity, peanut flour hydrolysates still displayed high allergenic potency, certainly because 338 

of Ara h 2 fragments 
(27)

. Accordingly, our data showed that any peptide containing more than 339 

one DPYSPOHS motif, even smaller than 3 kDa, could induce mast cell degranulation and 340 

thereby present an allergenic risk. The preparation of hydrolysate as an alternative to native 341 

peanut flour proteins in immunotherapy could then take into account the specific detection of 342 

such short peptides. Moreover, as illustrated with patient 432, even when the contribution of 343 

linear epitopes to Ara h 2 allergenicity is not predominant, r/a Ara h 2 and pep 3POH could still 344 

present an anaphylactic risk (Fig. 5). In this regard, the use of hypoallergens without 345 

hydroxyproline such as r/a recAra h 2 or r/a recAra h 2.Δ may be preferred to unfolded native 346 

allergens for the development of future specific immunotherapy. 347 

Finally, the fact that the immunodominant linear IgE-binding epitopes of Ara h 2 are 348 

almost exclusively located in the DPYSPOHS-containing domain permitted us to use the 349 

peptide pep 3POH and the recombinant variant Ara h 2.Δ to quantify the relative contribution 350 

of linear and conformational epitopes to the IgE-binding. The level of sensitization to linear 351 

and conformational epitopes appeared then to be quite variable among patients and we did not 352 

evidence a predominant IgE-recognition of a certain type of epitopes over the other one. In 353 

fact, when testing two different pools of sera from French or American peanut-allergic 354 

patients, the contributions of linear and conformational epitopes to the IgE-binding capacity 355 
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of Ara h 2 were globally equivalent in both cases (data not shown). In this regard, comparison 356 

of Ara h 2 IgE-reactivity between sera from French and American peanut-allergic patients did 357 

not reveal any significant differences. The absence of proline hydroxylation in recombinant 358 

Ara h 2 could then significantly affect the accuracy of component-resolved diagnostics for 359 

most peanut-allergic patients by under-estimating the IgE response to Ara h 2. Recently, Lin 360 

et al. developed a bioinformatics approach to identify patients with symptomatic peanut 361 

allergy using peptide microarray immunoassay. The use of hydroxylated peptides as 362 

biomarkers could also certainly increase the prediction performance. Moreover, sensitization 363 

to linear epitopes has been associated with persistent allergy to milk and egg 
(48;49)

. The level 364 

of specific IgE-responses toward the DPYSPOHS-containing domain could then provide 365 

additional information for the diagnosis and the management of peanut-allergic patients. 366 

In conclusion, our study demonstrated the critical influence of post-translational 367 

modifications on the allergenic potency of Ara h 2. It also evidenced that short peptides 368 

encompassing the DPYSPOHS-containing domain still constitute a potential risk for peanut-369 

allergic patients. These results provide new insight into the allergenic activity of the most 370 

potent peanut allergen. Considering the diversity in the serology of peanut allergic patients in 371 

various parts of the world 
(50)

, it would be also interesting to determine whether the pattern of 372 

sensitization toward the DPYSPOHS-containing domain and the conformational epitopes of 373 

Ara h 2 could be correlated to different methods of peanut processing and consumption. 374 

 375 

 376 

 377 

 378 

 379 

 380 
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FIGURE LEGENDS 533 

Fig. 1. Sequence comparison of the N-terminal part of Ara h 2.02 (Ara h 2.0201, UniProt 534 

accession number Q6PSU2), Ara h 2.01 (Ara h 2.0101, Q6PSU2-2), the deletion variant Ara h 535 

2.∆ and Ara h 6 (Q647G9). Numbering of Ara h 6 is shown and hydroxyprolines in the 536 

DPYSPOHS motifs are shown with shaded letters. Identical residues between Ara h 2 and Ara 537 

h 6 sequences are indicated with asterisks. The peptide (pep) 1-21 covered the N-terminal part 538 

of Ara h 2. The peptide containing two DPYSPOHS motifs, thereby two hydroxyprolines (pep 539 

2POH) corresponded to the domain found in Ara h 2.01 isoform. The peptide containing three 540 

DPYSPOHS motifs, thereby three hydroxyprolines (pep 3POH) corresponded to the domain 541 

found in Ara h 2.02 isoform. 542 

 543 

Fig. 2. Circular dichroism analysis shows a comparison of different isoforms of native and 544 

recombinant Ara h 2, the recombinant variant without DPYSPOHS motif and r/a native and 545 

recombinant Ara h 2. X-axis shows the wavelength and Y-axis the molecular ellipticity. 546 

 547 

Fig. 3. Impact of reduction and alkylation on the IgE-binding capacity of Ara h 2. 548 

Competitive inhibition binding of IgE antibodies from 18 peanut-allergic patients to native 549 

Ara h 2 was performed individually and 50% inhibitory concentration (IC50) was determined. 550 

For 9 out 18 tested sera, 50% inhibition of IgE-binding to Ara h 2 by r/a Ara h 2 was not 551 

reached at a concentration of 1 µM. 552 

 553 

Fig. 4. Competitive inhibition of IgE-binding to native Ara h 2 for four representative sera. A, 554 

Comparison of the IgE-binding capacity of native and recombinant Ara h 2 and impact of 555 

reduction and alkylation. B, Influence of proline hydroxylation on the IgE-binding capacity of 556 

synthetic peptides overlapping the DPYSPOHS-containing domain of Ara h 2. C, 557 
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Recapitulation of the IgE-binding capacity of Ara h 2.02 with an equimolar mixture of 558 

synthetic peptide pep 3POH and the deletion variant Ara h 2.∆. The relative contribution of 559 

linear (purple) and conformational (orange) epitopes to the IgE-reactivity of Ara h 2, are 560 

estimated with the inhibitory capacity of pep 3POH and recAra h 2.∆, respectively, and are 561 

shown for each patient. Sera 432, 841, 847 and 907 were diluted 1/200, 1/500, 1/300 and 562 

1/500, respectively. Complementary data for 14 French patients and 5 American patients are 563 

shown in the Online Repository (Fig. E3 and E4). 564 

 565 

Fig. 5. Mediator release assay with RBL SX-38 cells sensitized with immunopurified IgE 566 

antibodies from four peanut-allergic patients in response to increasing concentrations of 567 

different Ara h 2 variants and synthetic peptides. X-axis shows the concentration of the tested 568 

molecule and Y-axis the percentage of the reference release induced with anti-human IgE 569 

mAb LE27. 570 
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 2 

METHODS 3 

Recombinant allergens: design, expression, refolding and purification. 4 

 The gene encoding Ara h 2.01 (Swiss-Prot accession number Q6PSU2-2, Fig. 1) was 5 

synthesized by using codons optimized for bacterial expression (Genscript USA Inc., Piscataway, 6 

NJ, USA) and inserted into the E.coli expression plasmid pET9c (Novagen-Merck, Damstadt, 7 

Germany). A 6xHis Tag and the HRV 3C protease cleavage site were added to the N-terminus of 8 

the recombinant allergen. The variant recAra h 2.Δ was generated by PCR-amplification of the 9 

expression plasmid without the sequence corresponding to the hydroxyproline-containing 10 

domain, with primers ATGAGTCGATCGTATGAGTCATAAGAGTCTTCATCACG and 11 

CGTATTCACCGTCGC and self-ligation of the PCR product restricted with PvuI enzyme. 12 

Overnight cultures of transformed E.coli BL21 (DE3) were used to inoculate fresh 13 

medium at a dilution of 1:40. Cultures were grown at 37°C until the optical density at 600nm 14 

reached 0.5. The protein expression was induced by adding isopropylthio-β-galactoside (0.5mM) 15 

for 5 hours. After centrifugation, bacterial pellets were stored at -20°C until extraction. Frozen 16 

pellet corresponding to 1L of culture was resuspended in 100 ml of NaH2PO4/Na2HPO4 (50mM, 17 

pH 8)/NaCl (0.5M) buffer with protease inhibitors. After sonication and centrifugation (10 min, 18 

5000g, 4°C), the pellet was resuspended in 100 ml of extraction buffer (NaH2PO4/Na2HPO4 19 

50mM, pH 8, NaCl 0.5M, Urea 8M, DTT 5mM, Imidazole 20mM and proteases inhibitors) for 20 

2h on rotary mixer at room temperature in order to solubilize inclusion bodies. His-tagged 21 

allergen was then purified with a HisTrap FF Crude column (GE Healthcare). 22 

Repository Text



Refolding of recombinant protein was performed by direct dilution of the His-tagged 23 

purified fraction diluted at 0.2mg/ml in refolding buffer (Tris 0.5M, pH8, Glycerol 20%, L-24 

Arginine 0.4M, GSH 2 mM and GSSG 2mM) and incubation overnight at 4°C with energetic 25 

shaking. After dialysis against Tris 100mM, the fraction of refolded allergen was purified by RP-26 

HPLC as described previously
(1)

. Recombinant allergens were then characterised by gel 27 

electrophoresis, MALDI-TOF analysis and circular dichroism spectroscopy. 28 

 29 

Purification of Ara h 2 isoforms 30 

 Whole peanut protein extract was prepared as previously described 
(2)

.Dialysed extract 31 

was fractionated by precipitation using ammonium sulphate, which was added to 40% saturation. 32 

After centrifugation, the pellet was discarded and the supernatant was dialysed against 20 mM 33 

phosphate pH 7.4 buffer. After addition of 0.5 M NaCl, the dialysate was submitted to affinity 34 

chromatography using Con A Sepharose. The flow-through fraction was dialysed against 20 mM 35 

Tris pH 7.4 buffer. 2S albumins were separated using a combination of preparative ion-exchange 36 

and reversed-phase chromatographies. Fractions containing isoforms of Ara h 2 were 37 

resuspended in buffer A (Urea 4 M, Tris 5 mM, pH 8.0) and further purified by anion exchange 38 

chromatography using a Source 30Q column (1.6*10cm) and an  AKTA purifier system  (GE 39 

healthcare, france). Isoforms were separately eluted using a 100 min linear gradient from 0 to 40 

25% of buffer B(Urea 4 M, Tris 5 mM and 1 M NaCl pH 8.0). 41 

 42 

Reduction and alkylation 43 

Reduction of 2S-albumins was performed in urea 4M, EDTA 200µM and dithiotreitol 44 

20mM during 2h at 56 °C. After cooling at room temperature, alkylation was performed by 45 

adding iodoacetamid (200mM), in the dark during 4 hours. After dialysis against potassium 46 



buffer (0.05M, pH 7.4), r/a 2S-albumins were characterised by gel electrophoresis, MALDI-TOF 47 

analysis and circular dichroism spectroscopy. 48 

 49 

Peptide synthesis 50 

Peptides were synthesized using a standard solid phase synthesis by the Fmoc (9-51 

fluorenyl-methoxycarbonyl) continuous-flow method (peptide synthesizer 433A, Applied 52 

Biosystems, Foster City, CA). After standard procedure including TFA cleavage and ether 53 

precipitation, crude peptides were purified by RP-HPLC. The purified fraction was resuspended 54 

in potassium buffer (0.1M, pH 7.4) and peptides were characterised by MALDI-TOF analysis. 55 

 56 

Mass spectrometry characterization  57 

Mass determination was carried out using a matrix-assisted laser desorption ionization-58 

time-of-flight instrument (MALDI-TOF, Voyager DE RP apparatus, PE Biosystems, France) 59 

operating at 20kV acceleration voltage, and equipped with a nitrogen UV laser (337 nm). Mass 60 

spectrometry analysis was performed on peptides or purified proteins mixed in a 1:1 ratio with a 61 

matrix solution of a-cyano-4-hydroxycinnamic acid or sinapinic acid. Analysis was performed in 62 

reflector or in a linear mode. 63 

 64 

Circular Dichroism (CD) analysis 65 

CD measurements were performed at 20°C on a JASCO-810 spectropolarimeter using 0.1 66 

cm path length cells. A concentration of 0.1 mg/ml in 20mM phosphate buffer pH 7.4 was 67 

prepared for of the natural isoforms and recombinants of Ara h 2 samples. The spectra were 68 

recorded from 190 to 250 nm at a scanning speed of 100 nm/min with a 1s time constant, a 0.1 69 

nm resolution and a 2 nm constant band pass. Three spectra were accumulated in each case. The 70 



averaged spectra were corrected by subtracting the baseline spectra obtained with the buffer alone 71 

under identical conditions. Mean residue weight ellipticities were calculated and expressed in 72 

units of degree*cm
2
*dmol

-1
. 73 

 74 

Gel permeation chromatography 75 

Gel Permeation Chromatography was performed to characterize the formation of peptide 76 

aggregates. Synthetic peptides were analyzed under physiological conditions at RT on a Stability 77 

GFC 50, 300*8 mm column (CIL, Cluzeau, France) coupled to an AKTA purifier system (GE 78 

Healthcare Life Sciences, France). A sample of peptide (100µL of 1 to 2 mg/ml) was applied to 79 

the column and eluted at 0.5 mL/min with phosphate buffer (150 mM KCl, 50 mM 80 

K2HPO4/KH2PO4) pH7.4. The eluate was monitored using UV absorbance at 220 nm. The 81 

column was calibrated using synthetic peptides with Molecular Weight of 1 and 6 kDa.  82 

 83 
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Online Repository Figure Legends  98 

 99 

Figure E1: Circular dichroism analysis shows a comparison of different synthetic peptides and 100 

the native Ara h 2.02. X-axis shows the wavelength and Y-axis the molecular ellipticity. 101 

 102 

Figure E2: Analytical gel permeation chromatography of hydroxyproline-containing peptides 103 

under physiological conditions. Standard MW markers are shown across the top of the graph. X-104 

axis shows the elution volume and Y-axis the absorbance at 220 nm. 105 

 106 

Fig. E3. IgE-binding capacity of natural vs recombinant, native vs r/a Ara h 2 and of the 107 

hydroxylated peptide pep 3POH. Competitive inhibition of IgE-binding to native Ara h 2 is shown 108 

for 18 sera from peanut-allergic patients 
(3)

. The IgE-reactivity of r/a Ara h 2 increased 109 

concomitantly with the decrease of recAra h 2.01 IgE-reactivity. 110 

 111 

Figure E4: A, Influence of proline hydroxylation on the IgE-binding capacity of synthetic 112 

peptides containing two or three DPYSPOHS motifs. Competitive inhibition of IgE-binding to 113 

native Ara h 2 for five sera from American peanut-allergic patients is shown. Of note, the IgE-114 

binding capacity of r/a Ara h 2 was recapitulated with an equimolar mix of pep 1-21 and pep 115 

3POH for patient D119; B, The IgE-binding capacity of Ara h 2.02 is recapitulated with an 116 

equimolar mixture of synthetic peptide pep 3POH and the deletion variant Ara h 2.∆. 117 

 118 

Fig. E5. IgE-binding capacity of native and r/a Ara h 6. Competitive inhibition of IgE-binding to 119 

native Ara h 6 for four representative sera is shown 120 



Table E1. Clinical features and IgE responses of French peanut-allergic patients 

Patients 

no. 

Age/sex Symptoms Specific IgE levels to peanut proteins 

(IU/ml) 

Total IgE 

(IU/mL) 

  Ara h 1 Ara h 2 Ara h 3 Ara h 6   

101 9/M U 168 237 321 239 532 

102 11/M QO, GU, V 164 158 279 197 796 

109 8/F A 325 446 538 529 2100 

205 9/F V, CP 5 6 8 12 806 

222 6/M GU, V 93 130 130 162 443 

313 4/M GU 111 133 163 138 5301 

388 6/F LO 204 174 341 235 1352 

424 11/F GU 81 64 95 90 325 

432 4/F LO, GU, V 74 87 108 106 361 

441 9/M LO, U, V 42 73 69 75 479 

453 10/F U 4 13 10 10 4523 

486 7/M A, R 41 65 96 78 412 

572 7/F GU 37 34 48 50 137 

576 6/M GU 13 30 33 28 114 

841 6/M LO, U, V 192 246 273 312 1283 

847 5/M LO, AS 176 221 220 159 697 

907 9/F LO, GU, V  555 667 916 935 1822 

978 8/F U, V 58 45 80 53 254 

M, male; F, female; A, asthma; AO, angio-oedema; AS, anaphylactic shock; CP, cutaneous 

pruritus ; GU, generalized urticaria; LO, laryngeal oedema; QO, Quincke’s oedema; R, 

rhinitis; U, urticaria; V, vomiting. 
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Table E2. Clinical features and IgE responses of American peanut-allergic patients 

Patients 

no. 

Age/sex Symptoms Specific IgE levels to peanut proteins 

(IU/ml) 

  WPPE Ara h 1 Ara h 2 Ara h 3 Ara h 6 

D80 13/M V 156 107 95 122 112 

D105 11/M GU, AO, V 13.5 8.6 8.6 8.5 7.5 

D114 28/F GU, AO 24 15.9 10.6 20.2 9.5 

D117 9/M GU, AO, V 14.5 11.7 9.3 12 8.3 

D119 15/M GU, LO, A  64 45 40 51 55 

M, male; F, female; A, asthma; AO, angio-oedema; GU, generalized urticaria; LO, laryngeal 2 

oedema; V, vomiting. 3 

 4 
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