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Titre: Générateurs stochastiques de condition météorologiques : une revue des modèles à type de temps
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Abstract: A recurrent issue encountered in environmental, ecological or agricultural impact studies in which climate
is an important driving force is to provide fast and realistic simulations of atmospheric variables such as temperature,
precipitation and wind at a few specific locations, at daily or hourly temporal scales. Spatio-temporal dynamics and
correlation structures among the variables of interest, as well as weather persistence and natural variability have to
be reproduced accurately in a distributional sense. This quest leads to a large variety of so-called stochastic weather
generators (WGs) in the literature. Here, we provide an up-to-date overview of weather type WG models. Weather types
classically represent daily characteristics of the relevant atmospheric information at hand. There are many ways to build
such weather states, either hidden or observed, and to infer their properties. This overview should help statisticians as
well as meteorologists and climate product users to understand the probabilistic concepts and models behind weather
type WGs, and to identify their advantages and limits.

Résumé : Pour réaliser des études d’impact dans lesquelles le climat est un paramètre d’entrée important, un problème
fréquemment rencontré consiste à produire des séries temporelles de variables climatiques telles que températures,
précipitation, vent ou humidité relative, en plusieurs sites simultanément, au pas de temps journalier et parfois horaire.
Ces séries doivent être faciles à générer. Elles doivent aussi être réalistes en ce sens que les distributions des statistiques
liées à la dynamique spatio-temporelle, telles que les corrélation entre variables, la persistence temporelle et les
différentes sources de variabilité doivent être correctement reproduites. De nombreux générateurs stochastiques de
conditions météorologiques ont été proposés dans ce but. Dans cet article, nous proposons de passer en revue la
classe particulière des générateurs stochastiques à base de types de temps. En règle générale, un type de temps est
une caractérisation grossière des conditions atmosphériques journalières. Il existe de nombreuses façons de définir les
types de temps, qu’ils soient observés ou cachés dans une structure latente, et d’en inférer leur propriétés. Cette revue a
pour objet d’aider les statisticiens, les scientifiques du climat et les utilisateurs de produits climatiques à appréhender
les concepts et modèles probabilistes utilisés dans les générateurs stochastiques de conditions météorologiques et d’en
cerner les avantages et leurs limites.
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102 P. Ailliot, D. Allard, V. Monbet and P. Naveau

1. Introduction

Stochastic weather generators (WGs) are statistical models that aim at quickly simulating realistic
random sequences of atmospheric variables such as temperature, precipitation and wind (Wilks and
Wilby, 1999). Ideally, spatio-temporal dynamics and correlation structures among the variables of
interest, as well as weather persistence and natural variability, have to be reproduced accurately in
a distributional sense by WGs.

At least three features distinguish WGs from numerical global climate models. WGs focus on
small spatial scales (typically a few sites within a region extending over few kilometers), they have
to be computationally very fast to provide numerous random realizations and those outputs should
have the same distributional properties as observed time series, mainly at the daily or subdaily
scales. In contrast, climate models have to reproduce the behavior of the whole atmosphere and
its interactions with other components of the Earth system (vegetation, oceans, etc.) at the global
scale and for a long time period. The price to pay for this inclusiveness is that only few runs can
be provided by global climate models and they do not correspond to a specific site but live on
large spatial grids. Those differences explain why WGs have been adopted in impact studies as
computationally inexpensive tools to generate synthetic daily time series of atmospheric variables
at local sites. Such simulated outputs are then fed into process-based models, typically electricity
demand models or crop models (e.g., Kolokotroni et al., 2012; Launay et al., 2009). Non-linear
interactions in process-based models imply that small variations in weather inputs can lead to
large output discrepancies, and to counter intuitive behavior. For example, complex relationships
among sowing dates, temperatures, droughts and growth render very complex the assessment of
the weather impact on agricultural yields. To investigate the influence of weather conditions on
such crop models, it is essential to be able to explore the weather parameter space via simulations.
To a certain extent, such a strategy is not new. It has been commonly used in geosciences, where
it is referred to as simulators or emulators (e.g., Lantuéjoul, 2002; De Marsily et al., 2005).

Current WGs can be broadly divided into four groups: resampling methods (e.g., Rajagopolan
and Lall, 1999; Oriani et al., 2014; Yiou, 2014), Box-Jenkins methodology (e.g., Box and Jenkins,
1976), point process models (e.g., Onof et al., 2000) and hierarchical models. The latter encompass
the weather type models which include a discrete variable and multivariate statistical distributions
modeling the climatic variables conditional on this discrete variable. This conceptual discrete
variable is meant to describe a limited number (typically from 2 to 6) of weather “states”, “types”
or “regimes”. Depending on the problem at hand and depending on the availability of good
descriptors of weather patterns, weather states can be considered as observed or latent. They
are said to be observed when they are extracted from external variables such as descriptors of
large scale synoptic climatological patterns (Bardossy and Plate, 1991, 1992; Wilson et al., 1992).
Weather types are considered as latent variables when they are estimated on local variables by
means of an a priori clustering algorithm (Flecher et al., 2010), or when they are estimated as
a hidden variable in the statistical model. Modeling strategies for weather type models will be
detailed in Section 2

Quite often, it is possible to relate the latent states to typical weather patterns, a simple example
being the straightforward classification in three states corresponding to dry days, days with light
rain and days with heavy rain. Even though observed and latent weather states correspond to
quite different modeling options, they do constitute a common framework for building stochastic
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Stochastic weather generators 103

weather generators that is today largely prevailing in the literature due to its flexibility and
interpretability. This review will focus on this class of models since, based on our experience,
it is the most versatile approach for building multisite, multivariate weather generators. In the
following we shall use indistinctly “state”, “type” or “regime” to name the latent discrete variable.
We will restrict ourselves to daily stochastic generators. Even though subdaily precipitation models
are not different to daily ones in essence, subdaily models for variables such as temperature, solar
radiation and humidity require a precise modeling of the daily cycle. Adequate models are driven
more by physical considerations than by statistical ones, which is beyond the scope of this paper.

Historically, weather generators have been first developed for hydrological application (Gabriel
and Neumann, 1962; Todorovic and Woolhiser, 1975). Rainfall occurrences at a single site were
described by a two-state Markov chain and their intensities by independent exponential or Gamma
random variables, leading to the so-called "chain dependent model" (see also Katz, 1977). In this
simple model, weather states correspond to the states of the Markov chain, i.e. to dry and wet
states. In a seminal paper Richardson (1981) added the modeling of daily minimum and maximum
temperature and solar radiation to the generator in Katz (1977). After removing the seasonal cycle
and conditionally on the weather type, residuals of these variables were viewed as a multivariate
autoregressive process independent on rainfall amounts. Following those early papers, numerous
extensions have been proposed, and they were summarized by two review articles published at
the turn of the century. Wilks and Wilby (1999) gave a detailed presentation of Richardson’s
model and its extensions, with a discussion of the advantages and drawbacks of these models and
some application issues. Srikanthan et al. (2001) provided a quite comprehensive list of models
for annual, monthly and daily climate variables at a single site together with some remarks on
multisite models. Recently, impact questions with respect to large scale climate changes have
spurred a strong interest in linking local and global climate variables, leading the way to the
so-called downscaling methods. Maraun et al. (2010) and Wilks (2010, 2012) discussed in detail
the strong links between downscaling approaches and WGs, mainly focusing on how to make the
connection between circulation patterns and local atmospheric variables at the daily scale. Our
review departs from those recent studies by zooming in on multisite weather type models and
outlining the principal ideas of the referred papers. Its outline follows the steps required to build a
weather type model. In Section 2, different strategies for choosing weather types are discussed.
Conditionally on the weather type, statistical models for the weather variables are detailed in
Section 3. The last section makes some propositions for future research, regarding the modeling
of the weather types, the space-time statistical models for weather variables and the modeling of
extreme values in this framework.

2. Modeling weather types

2.1. Defining weather types

As mentioned above, in the early days two weather types were introduced in order to capture the
dynamical changes between wet and dry days at a single site. In practice, a day was qualified as
wet if the precipitation amount was greater than a chosen level, for instance 0.2 mm of daily total
rainfall (Richardson, 1981). Beyond the natural dichotomy between wet and dry events, weather
types intend to capture recurrent patterns by breaking spatio-temporal information into a finite
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104 P. Ailliot, D. Allard, V. Monbet and P. Naveau

number of blocks. For example, daily weather patterns over Europe in winter are often linked to
the North Atlantic Oscillation (NAO) that consists of two pressure centers in the North Atlantic,
one typically located near Iceland, the other one being an area of high pressure over the Azores.
Such a configuration can be used to create four weather pattern, classically referred to as NOA+,
NOA-, blocking and ridge. By breaking the spatio-temporal information into four blocks, one can
assign a weather type for each winter day.

As impact study requirements and datasets at hand moved from one single variable (e.g.
precipitation) towards multivariate random vectors (precipitation, temperature, wind, etc.), it
was natural to wonder if the definition and the numbers of weather types could benefit from the
extended database. Flecher et al. (2010) decomposed the wet and dry contrast into finer nuances.
Sub-regimes of wet (respectively dry) days were obtained by running a clustering algorithm on
variables such as daily minimum and maximum temperature, radiation and wind speed recorded
at the same single site.

Additional large scale information such as pressure fields, synoptic patterns, etc. can also
improve the definition of weather types. Any given day can be attached to a specific weather type,
or circulation pattern, by running a clustering algorithm on large scale atmospheric variables (e.g.
Bogardi et al., 1993; Wilson et al., 1992; Hay et al., 1991; Garavaglia et al., 2010). There is a large
variety of possible approaches to classify large scale atmospheric conditions. The most common
one is to perform k-means clustering on the first empirical orthogonal functions of geopotential
anomaly fields (e.g. Cattiaux et al., 2010). The k-means algorithm is sometimes initialized using
hierarchical clustering (e.g. Garavaglia et al., 2010; Guanche et al., 2013). More modern methods
have also been implemented, such as fuzzy classification based on mixture models (e.g. Vrac et al.,
2007) or simulated annealing optimization (e.g. Bárdossy, 2010; Haberlandt et al., 2014). One
advantage of linking weather types with large scale data is that the practitioner can investigate
the impact of large scale changes on the weather type distribution. This road has been explored
by researchers working on statistical downscaling (e.g. Hughes and Guttorp, 1994; Haberlandt
et al., 2014; Wilks, 2012) and sea state condition generators (e.g. Guanche et al., 2013). Time
stationarity of this link remains usually a key assumption. Recently, some authors (e.g. Jones et al.,
2011) proposed to account for nonstationarity in the context of climate change by re-estimating
the parameters of the distributions for future conditions based on corrected observations using a
delta change approach with respect to simulations from a regional climate model.

Imposing an a priori weather type, although interpretable, may be too restrictive and may not
necessarily provide an optimal clustering to capture the stochastic properties of meteorological
variables of interest. A natural alternative is to introduce the weather type as a latent variable.
Hidden Markov Models (HMM) have been proposed in this context (Zucchini and Guttorp, 1991).
With HMMs, the states are optimally fitted to the data given the chosen parametrization. However
they may not always have a simple interpretation in terms of weather types. Furthermore, the
existence of the hidden variable complicates the statistical inference and, despite recent progress,
only relatively simple models can be considered to describe the sequence of weather types and
the distribution of the weather variables within weather types. As a consequence, these models
may be too simple to reproduce the complexity of the data.

At this stage, one can already figure some issues met by the practitioner, in a nutshell solving
the various trade-offs between model complexity, inference efficiency and interpretability. To
discuss those points, classical approaches to represent the temporal dynamics among weather
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Stochastic weather generators 105

types (hidden or not) have to be recalled.

2.2. Temporal models for weather types

The sequence of weather state is often modeled as a homogeneous first order Markov chain. It
leads to simple and interpretable models when the number of states is small. Standard fitting
procedures can be used even when the state is introduced as a hidden process (e.g. Zucchini and
Guttorp, 1991). However, such an assumption may be too simplistic to catch some important
properties of the meteorological data as discussed below.

Meteorological time series are nonstationary with important seasonal and daily components and
some possible inter-annual variability. It is usual to treat each season or month independently. This
leads to a large number of parameters, which can be a problem for small datasets. To overcome
the difficulty of defining limits between seasons, stochastic seasonality with seasons starting
at random dates according to a non-homogeneous HHMs have also been studied (Carey-Smith
et al., 2014; Sansom et al., 2013). In a Markovian world, the chain can become nonhomogeneous
to capture cycles and trends. Transition probabilities can be allowed to depend on time and
other covariates via a link function as in the Generalized Linear Model framework (e.g. Katz
and Parlange, 1995; Furrer and Katz, 2007; Ailliot and Monbet, 2012). In the same spirit, large
scale atmospheric variables or climate indices such as ENSO (El-Niño Southern Oscillation) or
NAO may also be introduced in the switching mechanism parameters. It generally improves the
description of the inter-annual climate variability and offers a way to link WGs to global climate
models (e.g. Hughes and Guttorp, 1994; Hughes et al., 1999; Bellone et al., 2000; Qian et al.,
2002; Robertson et al., 2004; Vrac et al., 2007; Zheng and Katz, 2008; Kim et al., 2012).

An other important limitation of first order homogeneous Markov models is that the sojourn
time in each weather state is distributed as a geometric random variable, which may not allow
reproducing long heat waves or long dry spells (Racsko et al., 1991). For daily rainfall occurrences,
working with second or third order Markov chains improves the fit significantly (e.g. Katz and
Parlange, 1999; Jimoh and Webster, 1996; Wilks, 1999; Lennartsson et al., 2008; Chen et al.,
2012), but this considerably increases the number of parameters. Reduced models may alleviate
this issue in some cases (Zucchini and McDonald, 2009). Whenever interpretable and physically
realistic constraints can be identified, the risk of overparametrization diminishes in statistical
models that can easily allow covariates, e.g. the GLM approach. Semi-Markov models have also
been proposed in this context, with sojourn durations in the regimes modeled by parametric
(Racsko et al., 1991; Wilby et al., 1998) or semi-empirical distributions (Semenov et al., 1998).
Inference for semi-Markov models becomes difficult when the weather type is viewed as a latent
variable (e.g. Sansom and Thomson, 2001; Bulla et al., 2010).

Overall, the joint choice of the number of states (hidden or not), the order of the Markov chain
and the sojourn time distribution remains a subjective task. In time series analysis it is usual to
consider residuals for the task of model selection, but the residuals are not properly defined in
mixture models and, although one could construct pseudo-residuals, they are rarely used in the
weather generator context. Automatic criteria such as AIC, BIC (e.g. Brockwell and Davis, 2002)
can help, but the final choice will also depend on other criteria like interpretability, computing
time, robustness and adaptability.
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2.3. Spatial models for weather types

In a multisite analysis, one can either view weather types as “local entities" or as a “constant
spatial feature". In the latter case, all sites share the same regional weather type at a given day and
no spatial model is needed.

In the former case, one has to create local variabilities and spatial dependence in the weather
type space while being parsimonious in order to keep a small number of interpretable parameters.
This is not an easy task. At each time step, discrete random realizations with a spatio-temporal
structure must be drawn at each location to represent the local weather type.

To reach this goal, in Wilks (1998), a collection of single-site chain-dependent models are
tied together by drawing correlated random numbers at each time point. The dependence among
sites is based on a correlation index obtained from a spatially multivariate Gaussian vector. The
weather at a given day is said to be wet at a given site if the corresponding Gaussian coordinate
is above a site-dependent threshold. The inference method proposed in (Wilks, 1998) may lead
to ill-defined covariance estimates. Alternative inference schemes were discussed in Lee et al.
(2010) and Thompson et al. (2007) who reformulated the model as a HMM with the local weather
types being dry, light rain or heavy rain.

The idea of censoring a Gaussian vector is mathematically rich because it offers a simple way
to generate the space-time evolution of binary variables. For rainfall occurrence modeling, Allard
and Bourotte (2014) and Kleiber et al. (2012) followed this approach. Censoring was also used
by Khalili et al. (2007, 2009), but a moving average of a white noise with uniform distribution,
instead of a Gaussian one, provided spatial dependence. The threshold for censoring can also
depend on covariates (Qian et al., 2002). It was also proposed to use the autologistic model
(Hughes et al., 1999) to describe the spatial structure of rainfall occurrence.

3. Modeling weather variables conditionally upon weather types

Conditionally upon the weather type, the choice of the distribution describing the meteorological
variables of interest is of primary importance and is a complicated task. First, marginal distributions
may be hard to model with complex features such as a point mass at the origin for rainfall
(corresponding to dry conditions), circular variables (wind direction for example), heavy or
bounded tails... Then, the dependence structure among the meteorological variables is generally
complex, even within a weather type which corresponds to homogeneous weather conditions.
For multisite models, it is also necessary to add the spatial dependence to the model. The family
chosen for the joint distribution must be flexible enough to catch such features. Yet, at the same
time it must be simple enough in order to yield tractable and interpretable models, especially
when the weather type is introduced as a hidden process.

3.1. Single site models

Precipitation

Precipitation has always been a key variable of interest in hydrology and climatology, in
particular for the first WGs (e.g. Katz, 1977; Richardson, 1981). From a statistical point of view,
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Stochastic weather generators 107

precipitation modeling is complex because it mixes a Bernoulli random variable corresponding to
dry or wet events with a positive random variable corresponding to the rainfall intensity, therefore
leading to a strong departure from the classical Gaussian framework.

Given the weather type sequence, precipitation amounts have been classically assumed to be
conditionally independent in time (e.g. Richardson, 1981; Wilks, 1999). More recent develop-
ments propose to take the temporal dependence into account. During wet days, a large class of
distributions can be fitted to rainfall amounts. Since the early exponential and Gamma distributions
(Todorovic and Woolhiser, 1975; Katz, 1977), researchers have tried to move away from the
classical Gamma distribution family for at least two reasons.

A unique Gamma distribution may not be flexible enough to capture all rainfall amount
behaviors. Even for non-extreme events, imposing an unique parametric distribution can be
viewed as too restrictive, for example at sites where precipitations are heavy-tailed. Alternatives
are thus needed to model heavier tails and extreme amounts. A first approach is to simply
recognizing that mixtures of conditional Gamma distributions can yield heavier tails than a unique
Gamma distribution (Kenabatho et al., 2012). Weather generators based on weather types are
thus capable of fitting a relatively large variety of precipitation distribution. As an alternative,
mixtures of exponential random variables (Wilks, 1998, and references therein) or semi-parametric
distributions (Lennartsson et al., 2008) can also be favored. Gamma distributions, conditional or
not, still presents a too light-tailed distribution for very extreme distributions. A second approach
is thus to use distributions specifically designed to model extreme values. In Lennartsson et al.
(2008), a generalized Pareto distribution (GPD) modeled heavy rainfall above a high level. In
Furrer and Katz (2008), a stretched exponential distribution was used as an alternative to the GPD.
In Vrac et al. (2007), a dynamic mixture of the Gamma and GPD distributions with a weight
depending on the amount of precipitation is proposed.

A second difficulty is the lack of a clear path on how to extend the Gamma distribution to a
multivariate and/or spatial setting. This leads to the idea of transforming data into the Gaussian
world that offers a simple dependence structure, the covariance matrix. For example, the transfer
function can be a power-transform (Katz and Parlange, 1995) or the powered exponential of
a truncated Gaussian distribution (Allard and Bourotte, 2014), or indeed any non parametric
transform (Chilès and Delfiner, 2012). This is not limited to precipitation, and for instance the
square root of the wind intensity is often considered instead of its raw value. Although powerful
and flexible, these transformations complicate the assessment of uncertainties and render the
interpretability challenging, the measurement unit being lost. Another route consists of modeling
the Anscombe residuals, which are very often approximately Gaussian. It is then natural to
describe the dependence via a model for their temporal dependence (Chandler and Wheater, 2002;
Yang et al., 2005).

Overall, despite all these drawbacks, the Gamma density has still a lot of attractive mathematical
properties and remains a strong candidate to capture basic rainfall amount properties at the daily
scale, and it should be viewed as an important yardstick.

Dependence between successive rainfall amounts has been modeled by an autoregressive
process (Hutchinson, 1995), by a parametric auto-correlation function (Flecher et al., 2010) or
a Gaussian copula (Lennartsson et al., 2008). Another extension consists of assuming that the
distribution depends on covariates such as the the season Kim et al. (2012).

Journal de la Société Française de Statistique, Vol. 156 No. 1 101-113
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238
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Other variables

Besides precipitation, other meteorological variables like minimum and maximum daily tem-
perature, solar radiation, humidity or wind intensity have been generally modeled by a multivariate
autoregressive model (Parlange and Katz, 2000). The autoregressive parameters depend on weather
types, and thus marginal distributions may not be Gaussian anymore, even for linear models. In
most weather generators, precipitation are generated first. Other variables are then simulated condi-
tional on precipitation. This strategy, which seems to be driven by statistical considerations rather
by physical reasoning, could be challenged. In Flecher et al. (2010), conditionally on weather
types, the multivariate distribution of all variables (thus including precipitation) for two successive
days was modeled by using the multivariate closed skew-normal distributions (González-Farías
et al., 2004; Gupta et al., 2004). This family of distributions allows a rather flexible modeling of
the residual skewness generally observed in climate data. For modeling wind conditions (i.e. wind
speed and wind direction), Ailliot et al. (2014) used Markov-switching autoregressive processes.
In these processes, weather types define a latent process. An autoregressive model describes wind
conditions conditionally to the latent process. Hidden Markov models have also been proposed
for wind directions (Holzmann et al., 2006).

3.2. Multisite modeling

If only one single weather type drives a multisite weather generator, a simple multisite modeling
strategy is to assume that, given this weather type, the sites are mutually independent in space
and time (e.g. Zucchini and Guttorp, 1991; Hughes and Guttorp, 1994; Robertson et al., 2004). In
Bellone et al. (2000), an autologistic model was used to describe the spatial structure of rainfall
occurrence. Still, rainfall amounts were assumed to be Gamma random variables, conditionally
independent in space and time and also independent on the occurrence process. Such assumptions
may not be realistic for many datasets, in particular when the network of rainfall stations is dense
and when the topography of the area is diverse. Thus, modeling the dependence structure within
weather types becomes necessary, but is challenging even when only a unique weather type is
considered. Few tractable models for spatial processes exist and Gaussian processes are often
considered.

As marginals may not be normally distributed, Gaussian processes cannot be used directly and
marginal transformations may be needed. In the literature on multisite WGs with regional weather
type, different flavors exist to make the link between a non-Gaussian multivariate random vector
and its normally distributed counterpart (e.g. Wilks, 1998; Brissette et al., 2007; Khalili et al.,
2007; Thompson et al., 2007; Khalili et al., 2009; Heaps et al., 2015).

For example, Bardossy and Plate (1992) and Ailliot et al. (2009) opted for a censored power-
transformed Gaussian distribution for daily rainfall. Negative values of the Gaussian vector
correspond to dry days and the power transformation was applied to the positive part of the
distribution.

Kleiber et al. (2012) developed a multisite extension of the chain-dependent model where
rainfall amount at each site was modeled by Gamma distributions with shape and scale parameters
varying according to latent Gaussian fields. In these generators, the spatial structure was described
by both the weather type and the covariance of the Gaussian vector.
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4. Trends and challenges

Comparing the various models presented above is a difficult if not impossible task since they have
been validated on different datasets and for different scientific purpose: downscaling, prediction
or simulation. Building a shared framework of datasets and the associated statistical tools for
comparing the different weather generators in various contexts remains a hurdle but is an absolutely
necessary step. In this context, it might be useful to refer to the European Union VALUE network
(http://www.value-cost.eu/), an example of such a validation initiative.

Despite the recent progress on WGs, as already pointed out, there is still a strong research
needed to build multisite, multivariate generators that can accurately capture the observed temporal
and spatial coherence in meteorological data and the interrelationships among different weather
variables.

Concerning weather types, clustering schemes could be refined to catch additional features
of the dependence structure and simplify the modeling of the residual dependence inside the
regimes. For example, the comparison of the numerical results obtained on the same data set
in Thompson et al. (2007) and Ailliot et al. (2009) indicates that a local weather type models
improves local persistence of rainfall occurrence, whereas a regional weather type models gives
better results for the spatial distribution of rainfall. This suggests including local weather states
within regional weather states. More generally, hierarchical models with several layers of weather
types corresponding to different space-time scales or kinds of dependence between different
weather variables could be further investigated. To close this paragraph on weather types, one
could also challenge the definition of weather types on dry and wet days. Physically, rainfall
behavior is rather a consequence of other variables (winds, pressures, temperatures, etc.) than a
cause of those variables. Hence, conditioning on dry and wet days may be statistically convenient,
but this classical modeling approach could miss important physical links among atmospheric
variables. Koch and Naveau (2015) investigated the impact of regional covariates such as humidity
and temperature to improve variability in simulated hourly multisite rainfall in northern Brittany.

Another promising avenue to represent dependencies in precipitation modeling is to take
advantage of recent advances in copula modeling (e.g. Bárdossy and Pegram, 2009; Serinaldi,
2009; Serinaldi and Kilsby, 2014). Bayesian hierarchical modeling can also offer a flexible
framework to integrate different layers of complexity. For example, Fuentes et al. (2008) merged
different types of data, rainfall measurements and radar outputs, by assuming hidden processes
that drive the spatio-temporal dynamics.

A long-standing open problem concerns the reproduction of extremes by WGs. Extremes can
be observed in the intensity of the considered variables but also in the duration of certain events
types like long heat waves. WGs with Markovian structure are not able to reproduce exceptionally
long sojourns in a weather type, and other modeling approaches have to be considered. Models
with nonhomogeneous transitions between the regimes could be investigated since they imply a
more flexible dynamical structure and since they can be inferred quite easily (e.g. Ailliot et al.,
2014).

Concerning the joint modeling of multivariate extremes, especially for heavy rainfalls, a strong
research effort has been undertaken by the Extreme Value Theory community these last decades.
Complex models based on max-stable processes exist and have been used to analyze extreme
rainfall (e.g. Davison et al., 2012; Thibaud et al., 2013; Bernard et al., 2013). Still, it is not clear
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on how to make the link between the upper tail behavior, either represented by block maxima or
excesses above some high threshold, and the bulk of the multivariate distribution. WGs aim at
reproducing the full range of observed atmospheric variables. This challenge is open, and a joint
effort between statisticians and climatologists is clearly needed here.
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