
HAL Id: hal-02641666
https://hal.inrae.fr/hal-02641666

Submitted on 28 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

OutbreakTools: A new platform for disease outbreak
analysis using the R software

Thibaut Jombart, David M. Aanensen, Marc Baguelin, Paul Birrell, Simon
Cauchemez, Anton Camacho, Caroline Colijn, Caitlin Collins, Anne Cori,

Xavier Didelot, et al.

To cite this version:
Thibaut Jombart, David M. Aanensen, Marc Baguelin, Paul Birrell, Simon Cauchemez, et al.. Out-
breakTools: A new platform for disease outbreak analysis using the R software. Epidemics, 2014, 7,
pp.28-34. �10.1016/j.epidem.2014.04.003�. �hal-02641666�

https://hal.inrae.fr/hal-02641666
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


O
R

T
S
A
J
O
R
a

K
b

c

d

e

M
f

g

h

i

j

U
k

l

m

n

o

p

q

r

s

a

A
R
A
A

K
S
F
B
E
R
E
P
I

M

h
1

Epidemics 7 (2014) 28–34

Contents lists available at ScienceDirect

Epidemics

j our na l ho me  pa g e: www.elsev ier .com/ locate /ep idemics

utbreakTools:  A  new  platform  for  disease  outbreak  analysis  using  the
 software

hibaut  Jombarta,∗,  David  M.  Aanensenr,s,1,  Marc  Baguelinb,e,1,  Paul  Birrell c,1,
imon Cauchemezd,1,  Anton  Camachoe,1,  Caroline  Colijn f,1,  Caitlin  Collinsa,1,
nne  Coria,1,  Xavier  Didelota,1,  Christophe  Frasera,1, Simon  Frostg,1, Niel  Hensh,i,1,

oseph Hugues j,1, Michael  Höhlek,1,  Lulla  Opatowski l,1, Andrew  Rambautm,1,
liver  Ratmanna,1,  Samuel  Soubeyrandn,1,  Marc  A.  Suchardo,p,1,  Jacco  Wallingaq,1,
olf  Ypmaq,1,  Neil  Fergusona

MRC  Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, United
ingdom
Immunisation, Hepatitis and Blood Safety Department, Public Health England, London, United Kingdom
MRC Biostatistics Unit, Institute of Public Health, University Forvie Site, Cambridge, United Kingdom
Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France
Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical
edicine, United Kingdom

Department of Mathematics, Imperial College London, United Kingdom
Department of Veterinary Medicine, University of Cambridge, United Kingdom
Interuniversity Institute of Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
Centre for Health Economic Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
MRC  - University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences,
niversity  of Glasgow, Glasgow, United Kingdom
Department of Mathematics, Stockholm University, Stockholm, Sweden
Pharmacoepidemiology and Infectious Diseases Unit, Université de Versailles Saint Quentin EA4499/Institut Pasteur, Paris, France
Institute of Evolutionary Biology, Center for Immunity, Infection and Evolution, University of Edinburgh, United Kingdom
INRA, UR546 Biostatistics and Spatial Processes, Avignon 84914, France
Departments of Biomathematics and Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, CA, USA
Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, United Kingdom
Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom

 r  t  i  c  l e  i  n  f  o

rticle history:
eceived 5 March 2014
ccepted  3 April 2014
vailable  online 18 April 2014

eywords:

a  b  s  t  r  a  c  t

The  investigation  of  infectious  disease  outbreaks  relies  on  the  analysis  of  increasingly  complex  and  diverse
data,  which  offer new  prospects  for gaining  insights  into  disease  transmission  processes  and  informing
public  health  policies.  However,  the  potential  of  such  data  can  only  be harnessed  using  a number  of dif-
ferent,  complementary  approaches  and  tools,  and  a  unified  platform  for the  analysis  of  disease  outbreaks
is  still  lacking.  In  this  paper,  we  present  the new  R package  OutbreakTools,  which  aims  to  provide  a  basis
for  outbreak  data  management  and analysis  in  R. OutbreakTools  is developed  by a community  of epidemi-
oftware
ree

ologists,  statisticians,  modellers  and bioinformaticians,  and  implements  classes  and  methods  for  storing,
ioinformatics handling  and  visualizing  outbreak  data. It includes  real and  simulated  outbreak  datasets.  Together  with
pidemiology

pidemics
ublic health
nfectious disease

a  number  of tools  for infectiou
tributes  to  the  emergence  of a
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Table 1
Content of the formal (S4) class ‘obkData’. Instances of the class obkData can store
a variety of data in the indicated slots. Filling the slots is optional, and empty slots
are all NULL.

Slot name Content

@individuals data.frame containing patient meta-data (e.g. age, sex).
@records list of data.frame containing time-stamped observations

made on cases (e.g. fever, swab results); allows for
repeated observations on the same individual.

@dna obkSequences object containing pathogen genetic
sequences for one or several genes with recorded
collection dates; uses the class ‘DNAbin’ to store sequences;
allows for multiple sequences for the same cases.

@contacts obkContacts object storing contact data between patients,
stored  as a static or dynamic network; uses the classes
‘network’ and ‘networkDynamic’.

@trees  multiphylo object storing one or several phylogenetic trees

new classes ‘obkContacts’ and ‘obkSequences’.
To promote interoperability, okbData objects can be created

from standard input files via procedures already available in R.
Data tables can be imported from text files (extensions ‘.txt’ and
‘.csv’), from other statistical software using the package foreign
T. Jombart et al. / E

ntroduction

Infectious disease outbreak investigation is a complex task in
hich a variety of data sources can be exploited for attempting to
ncover the spatio-temporal dynamics and transmission pathways
f a pathogen in a population. These data can include information
n cases’ symptoms, their contacts, results of diagnostic tests and,
ncreasingly, pathogen genetic sequences. Such rich and diverse
ata offer unprecedented prospects for understanding the process
f disease transmission and ultimately designing adapted contain-
ent strategies and prophylaxis.
Dedicated  methodological approaches are traditionally used

o analyze different types of data separately, and can exploit
nformation such as the generation time distribution and the tim-
ng of symptom onsets (Wallinga and Teunis, 2004; Hens et al.,
012), contact patterns amongst individuals (Calatayud et al., 2010;
auchemez et al., 2011), geographic locations of the cases (Truscott
t al., 2007; Chis Ster and Ferguson, 2007), or pathogen genetic
equences (Vega et al., 2004; Jombart et al., 2011; Harris et al.,
013). Interestingly, the advent of genetic data has also triggered a
umber of methodological developments aiming to exploit differ-
nt types of data simultaneously (Ypma et al., 2012; Morelli et al.,
012; Teunis et al., 2013; Jombart et al., 2014; Mollentze et al.,
014). Unfortunately, few of these approaches are widely available
o the community as computer software, and a unified platform for
he analysis of disease outbreaks is still lacking.

Because it is free, open-source, and hosts the largest collec-
ion of tools for statistical analysis, the R software environment
R Core Team, 2013a) appears an ideal host for the development
f such a platform. Besides dedicated packages for e.g. advanced
inear modelling (Faraway, 2004), time series (Cowpertwait and

etcalfe, 2009), spatial processes (Bivand et al., 2008), multivari-
te methods (Karatzoglou et al., 2004; Zou and Hastie, 2012; Dray
nd Dufour, 2007), genetic data analysis (Paradis et al., 2004;
ombart, 2008; Jombart and Ahmed, 2011; Paradis, 2010) and
raphics (Wickham, 2009), R offers the full flexibility of an inter-
reted computer language, allied with the possibility of calling
pon precompiled routines, e.g. in C, C++ or Fortran, whenever com-
utationally intensive tasks need to be undertaken. R is already
osting a growing number of packages for infectious disease
pidemiology, including surveillance (Höhle, 2007) for temporal
nd spatio-temporal modelling (including outbreak detection), R0
Obadia et al., 2012), TreePar (Stadler and Bonhoeffer, 2013) and Epi-
stim (Cori et al., 2013) for reproduction number estimation, and
utbreaker (Jombart et al., 2014) for transmission tree reconstruc-
ion.

To ensure coherence between these different approaches and
romote further developments, basic tools for storing and hand-

ing outbreak data are needed. In order to fill this gap, a
ommunity of epidemiologists, modellers, statisticians and bioin-
ormaticians has developed the R package OutbreakTools. Here,
outbreak data” is defined as the above-described collection of
ata originating from a set of outbreak cases. This software, ini-
iated during a hackathon for the analysis of disease outbreaks
n R (http://sites.google.com/site/hackoutwiki/), provides object
lasses implementing a flexible and coherent representation of out-
reak data, alongside procedures to manipulate, summarize and
isualize these data. In this paper, we provide an overview of the
ain features of OutbreakTools, and discuss the future of R as a

latform for the analysis of outbreak data.
esults

The main purpose of OutbreakTools is to provide a coherent
et flexible way of storing outbreak data. To achieve this goal, a
of  pathogen genomes; uses the class ‘phylo’ to store trees.
@context a list of data.frames contextual data relevant at a

population level (e.g. school closure)

new formal (S4) class ‘obkData’ (short for ‘outbreak data’) has been
developed. This class uses different slots (Table 1) to store indi-
vidual meta data (e.g. age, sex), time-stamped observations made
on the individuals (e.g. fever, swab results, or answers on food
exposures from questionnaires), contacts between patients, DNA
sequences of the pathogen, phylogenetic trees, and contextual data
at the population level (e.g. school closures, climatic variables).
Complex data structures such as dynamic contact networks or DNA
sequences from different genes are respectively stored using the
Fig. 1. Timeline of samples of the Newmarket equine influenza outbreak (HorseFlu

dataset).  This figure represents the temporal distribution of the VIRAL shedding
samples  gathered during the outbreak. Each horizontal line represents an individual.
Individuals  are sorted and coloured by yard. Repeated samples gathered on the same
individual are represented using different symbols. The code for reproducing this
figure is provided in Appendix 1.
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R Core Team, 2013b), or from XML  files using the package XML
Butts, 2008). Aligned DNA sequences in FASTA format can be read
sing ape (Paradis et al., 2004) or adegenet (Jombart, 2008; Jombart
nd Ahmed, 2011), and phylogenetic trees can be imported from
ewick or NEXUS format using ape (Paradis et al., 2004). To ensure

hat obkData objects are readily compatible with other R packages,
xisting classes have been used for storing data whenever possi-
le: the class ‘DNAbin’ for DNA sequences (Paradis et al., 2004),
he classes ‘network’ and ‘networkDynamic’ for contact data (Butts,
008), and the class ‘phylo’ for phylogenetic trees (Paradis et al.,
004).

Considerable efforts have been made to ensure that these
ifferent pieces of information are stored in a coherent way. The
se of a formal (S4) class system offers multiple advantages in this
espect, as it allows one to accurately define the object’s content,
nd to perform consistency checks between the different data
ources when the object is created. This means, for instance, that
ndividuals documented in the contact or symptom data will be
inked, through unique individual identifiers, to available individ-
al meta-data, or that tips of the trees will be linked to existing

NA sequences whenever possible. Similarly, dates provided in
ifferent formats are automatically standardized, and sequences
f the same genes are checked for consistent length. As obkData
bjects allow for coherent data storage and can be saved easily as
ompressed R objects (using the function save), they also offer a

ig. 2. Phylogeny of pandemic influenza H1N1 sequences (FluH1N1pdm2009 dataset). Th
1N1 was plotted using the function plotggphy. The code for reproducing this figure is p
ics 7 (2014) 28–34

new and efficient way of sharing data amongst collaborators and
making studies reproducible after publication.

Despite this complex data structure, accessing information
stored in obkData objects is facilitated by a large number of
accessors. These functions allow for the retrieval of specific
data (get.data), including sampling dates (get.dates), con-
tacts (get.contacts), individual meta-data (get.individuals)
or  DNA sequences from given genes (get.dna), without requiring
knowledge about the internal data structure. Importantly, decou-
pling the access to information from the internal data storage also
ensures long-term code portability: future changes in the data
structure will not affect results as long as accessors return the same
information. This approach will enable future developments of the
obkData class and allow for the incorporation of new types of data.
Besides accessors, data handling is also facilitated by a subsetting
procedure (function subset) which allows one to isolate data for
given sets of individuals, samples, genes, sequences, or from a given
time window.

The  information contained in obkData objects can be easily visu-
alized using options of the generic function plot, or directly using

dedicated functions. Individual timelines can be used to visualize
course of illness and collection dates of samples for each indi-
vidual (function plotIndividualTimeline,  Fig. 1), maps can be
drawn to assess the geographic distribution of the cases (func-
tion plotGeo), contact data can be visualized as graphs (function

is phylogenetic tree based on 514 hemagglutinin segments of pandemic influenza
rovided in Appendix 1.
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Fig. 3. Simulated outbreak using simuEpi. This outbreak was  simulated under a SIR model with 100 hosts, contact rate  ̌ = 0.005 and recovery rate � = 0.1. (a) Dynamics of
t e. (b)
d d DNA
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he  outbreak showing the numbers of susceptibles, infected and recovered over tim
ate  of infection. (c) Neighbour-Joining phylogeny reconstructed from the simulate
gures  is provided in Appendix 1.

lotfor obkContacts objects), and genetic data can be visualized as
hylogenies (function plotggphy, Fig. 2) and minimum spanning
rees (function plotggMST). Most of these graphs take advantage
f the high-quality customisable graphics implemented in ggplot2
Wickham, 2009).

While  OutbreakTools focuses on storing, handling and visualiz-
ng data, the package also implements basic tools for data analysis.
dapted summaries (function summary) have been implemented

o provide quick insights into the data, make.phylocan be used to
btain phylogenies for all genes of the dataset, and get.incidence
an be used to compute incidence from dates of symptom onsets,
ut also from any time-stamped data. In the latter situation, pos-

tive cases can be defined from either quantitative or categorical
ata, by specifying a range of numerical values, a list of character
trings or even regular expressions. In practice, this allows for the
omputation of incidence based on any symptom data or sample
nalysis. This feature therefore allows for a direct use of procedures
mplemented in R0 (Obadia et al., 2012) or EpiEstim (Cori et al.,
013) for estimating reproduction numbers.

To illustrate its features, OutbreakTools is released with
oth simulated and empirical datasets, including 514 annotated
NA sequences of the 2009 influenza pandemic (dataset
luH1N1pdm2009, Fig. 2) and data from a large Newmarket (UK)

utbreak of equine influenza (dataset HorseFlu; Hughes et al.,
012, Fig. 1). Finally, OutbreakTools also includes a simulation
ool (function simuEpi) which allows for the generation of out-
reaks (including pathogen genome sequences) under a standard
 Transmission tree, where each dot is a labelled case with colours representing the
 sequences, ladderized and rooted to the first case. The code for reproducing these

SIR  model (Fig. 3), and can easily be extended to use other models
(e.g. SIS, SEIR). OutbreakTools is documented in a 50-page manual
and released with a tutorial introducing the data structures and the
main functionalities of the package.

Discussion

While a number of packages for infectious disease epidemi-
ology have recently been developed in the R software (Jombart
et al., 2014; Obadia et al., 2012; Stadler and Bonhoeffer, 2013;
Cori et al., 2013), basic tools for storing, handling and visualiz-
ing outbreak data have so far been lacking. OutbreakTools fills this
gap by implementing new formal classes allowing for a coherent
yet flexible representation of disease outbreak data, alongside a
number of functions for manipulating and visualizing that data.
As such, it represents a significant step towards building a com-
prehensive platform for outbreak analysis in R. The collaborative
and open nature of this project, together with the possibility
of modifying internal data structures seamlessly for the user,
ensures that OutbreakTools will be able to evolve and adapt to
incorporate new types of data and approaches used for outbreak
analysis.
The new availability of basic tools for outbreak analysis
will hopefully encourage the further development of tools for
investigating epidemics. It should in particular facilitate the imple-
mentation of novel integrative approaches able to exploit various
types of data simultaneously (Ypma et al., 2012; Morelli et al., 2012;



3 pidem

T
e
b
m
p
c
g
d
c
c

o
R
b
t
t
(
c
o
w
(
w
e
m
a
a
c

R

(
M
p
i

t

2 T. Jombart et al. / E

eunis et al., 2013; Mollentze et al., 2014). Comparing the tools
merging from this still-burgeoning methodological field will likely
e useful, as was recently demonstrated by the HIV modelling com-
unity (Eaton et al., 2012). In this respect, the existence of a unified

latform for the analysis of disease outbreaks should provide the
ommon ground needed for such comparisons to be drawn. More
enerally, the provision of a coherent structure for storing outbreak
ata will drastically improve the ease of data exchange amongst
ollaborators and hopefully encourage data sharing within the
ommunity.

Arguably, the choice of R for developing a new platform for
utbreak analysis may  initially appeal mostly to a community of

 experts, and considerable efforts should be made to reach as
road an audience as possible. First, providing free tutorials and
eaching material is paramount for making new tools accessible to
he community at large. This is the objective of the “R-epi project”
http://sites.google.com/site/therepiproject/), a website developed
ollaboratively and aiming to provide free resources for the analysis
f disease outbreaks primarily in R, but also using other free soft-
are. Interestingly, recent developments such as the package shiny

Beeley, 2013) dramatically aid in the development of user-friendly
eb interfaces running R tools. Such approaches could be consid-

red for reaching out to an even broader audience and trying and
aximize the availability of leading-edge methods for epidemics

nalysis to the community at large, including not only modellers
nd statisticians, but also epidemiologists and public health agen-
ies.

esources

Availability: OutbreakTools 0.1–0 is distributed on CRAN

http://cran.r-project.org/) and available for R 3.0.2 on Windows,

ac  OSX, and Linux platforms. It can be installed as any other
ackage using the graphical user interface or typing the instruction:
nstall.packages(“OutbreakTools”)

## LOAD PACKAGES ##
library("OutbreakTools")
library("ggplot2" )
library("ape")
library("adegenet")
library("adephylo")

## FIGURE 1: TIMELINE OF HORSEFLU DATA ##
## LOAD DATA
data("HorseFlu")

## CREATE BASIC FIGURE
figure1 <- plot(HorseFlu, orderBy="yardID", c 
what="shedding", size=3)

## CUSTOMIZE LEGEND S
figure1 <- figure1 + scale_color_discrete("Ya 
guides(col=guide_legend(ncol = 3))
figure1 <- figure1 + scale_shape("Shedding da
1:6)) + labs(x="Collection date")

## DISPLAY FIGURE
figure1
ics 7 (2014) 28–34

Licence: GNU General Public Licence (GPL) ≥2.
Website: http://sites.google.com/site/therepiproject/r-pac/abou
Documentation: besides the usual package documentation,

OutbreakTools is released with a tutorial which can be opened by
typing: vignette(“OutbreakTools”).  More documentation can
be found on the project’s website.

Development: the development of OutbreakTools is hosted on
Sourceforge: http://sourceforge.net/projects/hackout/

New  contributions are welcome and encouraged.
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Appendix  A. R code for reproducing figures

olorBy="yardID", 

rd identifier") + 

ta", labels=paste("sample", 
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#

f ranch.unit = "year", major.breaks 
= .color = "location", tip.size=3, 
t

#
f

#
#
s
e

#
f dividuals")

#
f

#
n

#

d
d
c
c dividuals(net))]
a
a

#
p
p aph)
l g=annot, bg=transp("white"),cex=1, 
t -.02) )

#
t
t
t e

#
p
b bg=transp("grey",.1), font=2)
l
b
b

# A ##
#
d
a

#
x ls, dna = FluH1N1pdm2009$dna,
d a.date = samples$date ,
t

d

T. Jombart et al. / E

# CREATE FIGURE

igure2 <- plotggphy(x, ladderize = TRUE, b 
 "2 month", axis.date.format = "%b%Y", tip
ip.alpha=0.75)

# DISPLAY FIGUR E
igure2

# FIGURE 3: SIMULATED OUTBREAK ##
# SIMULATE OUTBREAK
et.seed(1)
pi <- simuEpi(N=100, beta=.005, D=50 )

# CREATE BASIC FIGURE - PANEL  A
igure3a <- epi$plot + labs(y="Number of in 

# DISPLAY FIGURE 
- PANEL  A

igure3 a

# CREATE BASIC FIGURE - PANEL  B
et <- epi$x@contact s

# DEFINE COLORS AND ANNOTATIONS

ates <- get.data(epi$x, "DateInfected" )
ays <- as.integer(date s-min(dates) )
ol.info <
ol.graph <- col.info$col[as.numeric(get.in

- any2col(days, col.pal=seasun )

nnot <- min(dates) + col.info$leg.tx t
nnot  <- format(annot, "%b %d" )

# DISPLAY FIGURE - PANEL  B
ar(mar=c(.2,1,1,0.2),xpd=TRUE)
lot(net, vertex.cex=1.5, vertex.col=col.gr
egend("topleft", fill=col.info$leg.col, le
itle="Date of infection", ncol=2, inset=c (

# BUILD NEIGHBOUR JOINING TREE - PANEL  C
re <- nj(dist.dna(get.dna(epi$x)$locus.1) )
re <- ladderize(tre) # ladderize the tre e
re <- root(tre,1) # root tree to first cas 

# DISPLAY FIGURE - PANEL  C
ar(mar=rep(2,4))
ullseye(tre, tip.color=col.info$col, circ. 

# FIGURE 2: PHYLOGENY OF PANDEMIC H1N1 DAT 
# LOAD DATA
ata("FluH1N1pdm2009")
ttach(FluH1N1pdm2009)

# CREATE OBKDATA OBJECT
 <- new("obkData", individuals = individua 
na.individualID = samples$individualID, dn
rees = FluH1N1pdm2009$trees)

etach(FluH1N1pdm2009)
egend("bottomright", fill=col.info$leg.col, leg=annot, 
g=transp("white"),cex=1, title="Date of infection", ncol=2, inset=c(-.02) )
ox("figure")
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