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Abstract

In this paper, we prove the uniqueness, up to shifts, of pulsating traveling fronts for
reaction-diffusion equations in periodic media with Kolmogorov-Petrovsky-Piskunov
type nonlinearities. These results provide in particular a complete classification of all
KPP pulsating fronts. Furthermore, in the more general case of monostable nonlineari-
ties, we also derive several global stability properties and convergence to the pulsating
fronts for the solutions of the Cauchy problem with front-like initial data. In particular,
we prove the stability of KPP pulsating fronts with minimal speed, which is a new result
even in the case when the medium is invariant in the direction of propagation.

1 Introduction and main results

This paper is the follow-up of the article [20] on qualitative properties of pulsating traveling
fronts in periodic media with monostable reaction terms. By monostable we mean that
the fronts connect one unstable limiting state to a weakly stable one. In [20] we proved
monotonicity properties and exponential decay of these fronts. Here, we first show the
uniqueness of KPP pulsating fronts, for any given speed. The second part of the paper is
devoted to further stability properties for the solutions of the Cauchy problem with front-like
initial data, for general monostable nonlinearities. All these issues have been left open so far

∗The first author is indebted to the Alexander von Humboldt Foundation for its support. Both authors are
also supported by the French “Agence Nationale de la Recherche” within projects ColonSGS, PREFERED,
and URTICLIM (second author).
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and the present paper fills in the main remaining gap in the theory of monostable and specific
KPP traveling fronts in periodic media, in the sense that it provides a positive answer to the
question of the classification and stability of all KPP pulsating fronts, as well as the stability
of pulsating fronts with non-critical speeds in the general monostable framework. Lastly,
we point out that, due to our general assumptions on the limiting stationary states, our
stability results are new even in the special case of media which are invariant by translation
in the direction of propagation. The stability of KPP fronts with minimal speeds involves
completely new ideas and is an original result even in the most simplified situations which
were previously considered in the literature.

1.1 General framework and assumptions

We consider reaction-diffusion-advection equations of the type{
ut −∇ · (A(x, y)∇u) + q(x, y) · ∇u = f(x, y, u), (x, y) ∈ Ω,

νA(x, y)∇u = 0, (x, y) ∈ ∂Ω,
(1.1)

in an unbounded domain Ω ⊂ RN which is assumed to be of class C2,α (with α > 0),
periodic in d directions and bounded in the remaining variables. That is, there are an
integer d ∈ {1, · · · , N} and d positive real numbers L1, . . . , Ld such that{

∃ R ≥ 0, ∀ (x, y) ∈ Ω, |y| ≤ R,

∀ k ∈ L1Z× · · · × LdZ× {0}N−d, Ω = Ω + k,

where
x = (x1, · · · , xd), y = (xd+1, · · · , xN), z = (x, y)

and | · | denotes the euclidean norm. Admissible domains are the whole space RN , the whole
space with periodic perforations, infinite cylinders with constant or periodically undulating
sections, etc. We denote by ν the outward unit normal on ∂Ω, and

ξBξ′ =
∑

1≤i,j≤N

ξiBijξ
′
j

for any two vectors ξ = (ξi)1≤i≤N and ξ′ = (ξ′i)1≤i≤N in RN and any N × N matrix B =
(Bij)1≤i,j≤N with real entries. Throughout the paper, call

C = {(x, y) ∈ Ω, x ∈ [0, L1]× · · · × [0, Ld]}

the cell of periodicity of Ω.
Equations of the type (1.1) arise especially in combustion, population dynamics and

ecological models (see e.g. [3, 16, 29, 35, 43, 49]), where u typically stands for the temperature
or the concentration of a species.

The symmetric matrix field A(x, y) = (Aij(x, y))1≤i,j≤N is of class C1,α(Ω) and uniformly
positive definite. The vector field q(x, y) = (qi(x, y))1≤i≤N is of class C0,α(Ω). The nonlinear-
ity (x, y, u) (∈ Ω×R) 7→ f(x, y, u) is continuous, of class C0,α with respect to (x, y) locally
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uniformly in u ∈ R, and of class C1 with respect to u. All functions Aij, qi and f(·, ·, u) (for
all u ∈ R) are assumed to be periodic, in the sense that they all satisfy

w(x+ k, y) = w(x, y) for all (x, y) ∈ Ω and k ∈ L1Z× · · · × LdZ.

We are given two C2,α(Ω) periodic solutions p± of the stationary equation{
−∇ · (A(x, y)∇p±) + q(x, y) · ∇p± = f(x, y, p±) in Ω,

νA(x, y)∇p± = 0 on ∂Ω,
(1.2)

which are ordered, in the sense that p−(x, y) < p+(x, y) for all (x, y) ∈ Ω.1 We assume that
there are β > 0 and γ > 0 such that the function

(x, y, s) 7→ ∂f

∂u
(x, y, p−(x, y) + s)

is of class C0,β(Ω× [0, γ]). Denote

ζ−(x, y) =
∂f

∂u
(x, y, p−(x, y)). (1.3)

Throughout the paper, we assume that p− is linearly unstable in the sense that

µ− < 0, (1.4)

where µ− denotes the principal eigenvalue of the linearized operator around p−

ψ 7→ −∇ · (A(x, y)∇ψ) + q(x, y) · ∇ψ − ζ−(x, y) ψ

with periodicity conditions in Ω and Neumann boundary condition νA∇ψ = 0 on ∂Ω. That
is, there exists a positive periodic function ϕ in Ω such that

−∇ · (A(x, y)∇ϕ) + q(x, y) · ∇ϕ− ζ−(x, y)ϕ = µ−ϕ in Ω

and νA(x, y)∇ϕ = 0 on ∂Ω. Notice that the condition µ− < 0 is fulfilled in particular if
ζ−(x, y) > 0 for all (x, y) ∈ Ω or even if ζ− is nonnegative and not identically equal to 0
in Ω. We also assume that there is ρ such that

0 < ρ < min
Ω

(p+ − p−)

and that, for any classical bounded super-solution u of{
ut −∇ · (A(x, y)∇u) + q(x, y) · ∇u ≥ f(x, y, u) in R× Ω,

νA∇u ≥ 0 on R× ∂Ω,

1The present paper is concerned with uniqueness and stability properties of pulsating fronts connecting
p− and p+. Under the assumptions below, the fact that these two limiting stationary states are ordered
makes the fronts monotone in time, which plays an important role in the proofs.
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satisfying u < p+ and Ωu = {(t, x, y) ∈ R× Ω, u(t, x, y) > p+(x, y)− ρ} 6= ∅, there exists a
family of functions (ρτ )τ∈[0,1] defined in Ωu and satisfying

τ 7→ ρτ is continuous in C
1+α/2;2+α
t;(x,y)

(
Ωu

)
,

τ 7→ ρτ (t, x, y) is non-decreasing for each (t, x, y) ∈ Ωu,

ρ0 = 0, ρ1 ≥ ρ, inf
Ωu

ρτ > 0 for each τ ∈ (0, 1],

(u+ ρτ )t −∇ · (A∇(u+ ρτ )) + q · ∇(u+ ρτ ) ≥ f(x, y, u+ ρτ ) in Ωu,τ ,

νA∇(u+ ρτ ) ≥ 0 on (R× ∂Ω) ∩ Ωu,τ ,

(1.5)

where
Ωu,τ = {(t, x, y) ∈ Ωu, u(t, x, y) + ρτ (t, x, y) < p+(x, y)}.

This condition is a weak stability condition for p+. It is satisfied in particular if p+ is
linearly stable (as in Theorem 1.3 below), or if f is non-increasing in a left neighborhood
of p+, namely if there exists ρ ∈ (0,minΩ (p+ − p−)) such that f(x, y, p+(x, y) + ·) is non-
increasing in [−ρ, 0] for all (x, y) ∈ Ω. It is straightforward to check that condition (1.5) is
fulfilled as well if, for every (x, y) ∈ Ω, the function

s 7→ f(x, y, p−(x, y) + s)− f(x, y, p−(x, y))

s

is non-increasing in (0, p+(x, y) − p−(x, y)). Indeed, in this case, we can take any ρ in
(0,minΩ(p+ − p−)) (see Section 1.1 of [20] for details).

For some of our results, we shall assume a Kolmogorov-Petrovsky-Piskunov type condition
on f , that is, for all (x, y) ∈ Ω and s ∈ [0, p+(x, y)− p−(x, y)],

f(x, y, p−(x, y) + s) ≤ f(x, y, p−(x, y)) + ζ−(x, y) s. (1.6)

As an example, when f depends on u only and admits two zeroes p− < p+ ∈ R, the above
conditions are satisfied if f is of class C1,β in a right neighborhood of p− with f ′(p−) > 0
and if f is non-increasing in a left neighborhood of p+. The KPP assumption (1.6) reads in
this case:

f(u) ≤ f ′(p−)× (u− p−) for all u ∈ [p−, p+].

The nonlinearities f(u) = u(1− u) or f(u) = u(1− u)m with m ≥ 1 are archetype examples
(with p− = 0 and p+ = 1) arising in biological models (see [16, 29]).

1.2 Uniqueness of KPP pulsating fronts

This paper is concerned with qualitative properties of an important class of solutions of (1.1),
namely the pulsating traveling fronts connecting the two stationary states p− and p+. Given
a unit vector e ∈ Rd × {0}N−d, a pulsating front connecting p− and p+, traveling in the
direction e with (mean) speed c ∈ R∗, is a time-global classical solution U(t, x, y) of (1.1)

4
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such that 

U(t, x, y) = φ(x · e− ct, x, y) for all (t, x, y) ∈ R× Ω,

(x, y) 7→ φ(s, x, y) is periodic in Ω for all s ∈ R,
φ(s, x, y) −→

s→±∞
p∓(x, y) uniformly in (x, y) ∈ Ω,

p−(x, y) < U(t, x, y) < p+(x, y) for all (t, x, y) ∈ R× Ω.

(1.7)

With a slight abuse of notation, x ·e denotes x1e1 + · · ·+xded, where e1, . . . , ed are the first d
components of the vector e. The notion of pulsating traveling fronts extends that of usual
traveling fronts which are invariant in the frame moving with speed c in the direction e. It
was proved in [20] that any pulsating front is increasing in time if c > 0 (or decreasing if
c < 0). More precisely, φs(s, x, y) < 0 for all (s, x, y) ∈ R× Ω.2

Our first result is a uniqueness result, up to shifts in time, of the pulsating KPP traveling
fronts for a given speed c in a given direction e.

Theorem 1.1 Let e be a unit vector in Rd × {0}N−d, let c ∈ R∗ be given, and assume that
the KPP assumption (1.6) is fulfilled. If U1(t, x, y) = φ1(x · e − ct, x, y) and U2(t, x, y) =
φ2(x · e − ct, x, y) are two pulsating traveling fronts in the sense of (1.7), then there exists
σ ∈ R such that

φ1(s, x, y) = φ2(s+ σ, x, y) for all (s, x, y) ∈ R× Ω, (1.8)

that is there exists τ ∈ R (τ = −σ/c) such that

U1(t, x, y) = U2(t+ τ, x, y) for all (t, x, y) ∈ R× Ω. (1.9)

As a consequence, in the KPP case, given any direction e and any speed c ∈ R∗, the
set of pulsating fronts U(t, x, y) = φ(x · e − ct, x, y) is either empty or it is homeomorphic
to R. Notice indeed that if τ is not zero in (1.9), then U1 6= U2, since all fronts are strictly
monotone in time (see [20]).

The existence of pulsating traveling fronts is known in some cases which are covered by
the assumptions of Theorem 1.1. For instance, if

p− = 0, p+ = 1, f(x, y, u) > 0 for all (x, y, u) ∈ Ω× (0, 1),

f(x, y, u) is non-increasing with respect to u in a left neighborhood of 1,

∇ · q = 0 in Ω, q · ν = 0 on ∂Ω and

∫
C

qi(x, y) dx dy = 0 for 1 ≤ i ≤ d,

(1.10)

if the KPP assumption (1.6) is satisfied, then, given any unit vector e ∈ Rd × {0}N−d, there
exists a minimal speed c∗(e) > 0 such that pulsating traveling fronts exist if and only if

c ≥ c∗(e) = min
λ>0

(
−k(λ)

λ

)
= min {c ∈ R, ∃ λ > 0, k(λ) + λc = 0}, (1.11)

2In [20], the notation U(t, x, y) = φ(ct− x · e, x, y) was used, with φ(±∞, x, y) = p±(x, y). In [20], φ was
then increasing in s. The definition (1.7) makes U and φ face the same direction and is then more natural.
In the present paper, the results of [20] have been translated in order to fit with the definition (1.7).
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where k(λ) is the principal eigenvalue of the operator

Lλψ := −∇ · (A∇ψ) + 2λeA∇ψ + q · ∇ψ + [λ∇ · (Ae)− λq · e− λ2eAe− ζ−]ψ (1.12)

acting on the set of C2(Ω) periodic functions ψ such that νA∇ψ = λ(νAe)ψ on ∂Ω (see [5],
actually, this existence result has been proved under additional smoothness assumptions on
the coefficients of (1.1)). Here ζ−(x, y) = ∂f

∂u
(x, y, 0). As already emphasized (see Section 1.1

in [20]), conditions (1.6) and (1.10) imply (1.4) and (1.5). Applications of the formula for the
minimal speed c∗(e) were given in [4, 13, 14, 24, 39, 41, 46, 50]. However, the uniqueness up
to shifts for a given speed c was not known. Theorem 1.1 of the present paper then provides
a complete classification of all pulsating fronts: namely, given a direction e in Rd × {0}N−d,
the set of pulsating fronts is a two-dimensional family, which can be parameterized by the
speed c and the shift in the time variable.

For nonlinearities f satisfying (1.6) and (1.10), the derivative ζ−(x, y) = ∂f
∂u

(x, y, 0) is
positive everywhere. This is why condition (1.4) is fulfilled automatically. However, if ζ− is
not everywhere positive, the principal eigenvalue µ− may not be negative in general. In [7],
nonlinearities f = f(x, s) (for x ∈ Ω = RN) satisfying p− = 0, f(x, 0) = 0, u 7→ f(x, u)

u
is decreasing in u > 0,

∃ M > 0, ∀ x ∈ RN , ∀ u ≥M, f(x, u) ≤ 0

(1.13)

were considered, with no advection (q = 0). Typical examples are

f(x, u) = u(ζ−(x)− η(x)u),

where η is a periodic function which is bounded from above and below by two positive con-
stants (see [43] for biological invasions models). Under the assumptions (1.13), the existence
(and uniqueness) of a positive periodic steady state p+ of (1.2) is equivalent to the condition

µ− < 0,

that is (1.4) (see [6]). Notice also that (1.13) implies (1.5) (see [20]), as well as (1.6). With
the condition µ− < 0, the existence of pulsating fronts in any direction e was proved in [7]
for all speeds c ≥ c∗(e), where c∗(e) is still given by (1.11) (see also [25] for partial results in
the one-dimensional case), and it was already known from [7] that no pulsating front exists
with speed less than c∗(e). However, the uniqueness of the fronts profiles in a given direction
e and for a given speed c ≥ c∗(e) was still an open problem, even in dimension 1.

In short, the first part of the present paper gives a positive answer to the uniqueness
issue of the KPP pulsating fronts, in a setting which unifies and is more general than (1.10)
or (1.13). In particular, in this paper, the nonlinearity f is not assumed to be nonnegative or
to satisfy any monotonicity properties. Actually, Theorem 1.1 follows from a more general
uniqueness result which does not require the KPP assumption (1.6) but needs additional a
priori properties for any two fronts with the same given speed, see Theorem 2.2 in Section 2.

Remark 1.2 If both p− and p+ are weakly stable –that is when (1.5) is satisfied and when
the instability assumption (1.4) of p− is replaced by a weak stability assumption which is

6
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similar to (1.5)–, then the analysis is much easier. Comparison principles such as Lemma 2.1
below, which can be viewed as weak maximum principles in some unbounded domains, would
then hold not only in the region where the solutions are close to p+, but also in the region
where they are close to p−. Two given fronts could then automatically be compared globally
in R × Ω, up to time-shifts, and a sliding method similar to [2, 3] would imply that the
functions φ(s, x, y) are unique up to shifts in the variable s, and that the speed c, if any, is
necessarily unique. This is the case for instance for bistable or combustion-type nonlinearities
(see [2, 3, 9, 32, 34, 47, 48, 49] for existence and further qualitative results with such reaction
terms). In the present paper, as a consequence of the instability of p−, one cannot use
versions of the weak maximum principles in the region where the solutions are close to p−.
Therefore, even if the proofs of Theorems 1.1 and 2.2 below are based on a sliding method,
the main difficulty is to compare two given fronts globally and especially to compare their
tails in the region where they approach p− (see Section 2 for further details).

1.3 Global stability of KPP or general monostable fronts

The second part of this paper is concerned with stability issues for KPP or general monostable
fronts. The stability of the fronts and the convergence to them at large times is indeed one
of the most important features of reaction-diffusion equations. We are back to the general
periodic framework and we shall see that, under some assumptions on the initial conditions,
the solutions of the Cauchy problem (1.1) will converge to pulsating fronts.

To state the stability results, we need a few more notations. In the sequel, e denotes a
given unit vector in Rd×{0}N−d and ζ−(x, y) is defined as in (1.3). For each λ ∈ R, call k(λ)
the principal eigenvalue of the operator Lλ defined in (1.12) and let ψλ denote the unique
positive principal eigenfunction of Lλ such that, say,

‖ψλ‖L∞(Ω) = 1. (1.14)

It has been proved (see Proposition 1.2 in [20]) that, for any pulsating traveling front
U(t, x, y) = φ(x · e− ct, x, y) of (1.1) in the sense of (1.7), then

c ≥ c∗(e) := inf
λ>0

(
−k(λ)

λ

)
. (1.15)

The quantity c∗(e) is a real number, and for each c > c∗(e), the positive real number

λc = min{λ > 0, k(λ) + cλ = 0} (1.16)

is well-defined (see [20]).
Call now µ+ the principal eigenvalue of the linearized operator

ψ 7→ −∇ · (A(x, y)∇ψ) + q(x, y) · ∇ψ − ∂f

∂u
(x, y, p+(x, y))ψ

around the limiting state p+, with periodicity conditions in Ω and Neumann boundary con-
dition νA∇ψ = 0 on ∂Ω. Let ψ+ be the unique positive principal eigenfunction such that

7
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‖ψ+‖L∞(Ω) = 1. The function ψ+ satisfies
−∇ · (A(x, y)∇ψ+) + q(x, y) · ∇ψ+ − ∂f

∂u
(x, y, p+(x, y))ψ+ = µ+ψ+ in Ω,

ψ+ > 0 in Ω, max
Ω

ψ+ = 1,

νA∇ψ+ = 0 on ∂Ω.

(1.17)

It is straightforward to check (see [20]) that the condition µ+ > 0 implies the weak stability
property (1.5).

From now on, u0 denotes a uniformly continuous function defined in Ω such that

p−(x, y) ≤ u0(x, y) ≤ p+(x, y) for all (x, y) ∈ Ω,

and let u(t, x, y) be the solution of the Cauchy problem (1.1) for t > 0, with initial condition
u0 at time t = 0. Observe that

p−(x, y) ≤ u(t, x, y) ≤ p+(x, y)

for all (x, y) ∈ Ω and t ≥ 0, from the maximum principle.
The following theorem is concerned with the global stability of general monostable pul-

sating fronts for speeds larger than c∗(e).

Theorem 1.3 Assume that µ+ > 0 and that U(t, x, y) = φ(x · e − ct, x, y) is a pulsating
traveling front with speed c > c∗(e), such that

lim
s→+∞

sup
(x,y)∈Ω

∣∣∣∣ ln(φ(s, x, y)− p−(x, y))

s
+ λc

∣∣∣∣ = 0. (1.18)

Then there exists ε0 > 0 such that if

lim inf
ς→−∞

inf
(x,y)∈Ω, x·e≤ς

[
u0(x, y)− p+(x, y)

]
> −ε0 (1.19)

and
u0(x, y)− p−(x, y) ∼ U(0, x, y)− p−(x, y) as x · e→ +∞, 3 (1.20)

then
sup

(x,y)∈Ω

|u(t, x, y)− U(t, x, y)| → 0 as t→ +∞. (1.21)

In Theorem 1.3, the assumption (1.18) on the logarithmic equivalent of φ(s, x, y)−p−(x, y)
as s → +∞ is automatically satisfied under the KPP condition (1.6), see formulas (1.22)
and (1.23) below and Theorem 1.5. Actually, assumption (1.6) is not required here and it is
only assumed that the limiting state p− is unstable while the other one, p+, is stable. But it
does not mean a priori that f is of the KPP type or that there is no other stationary state

3Condition (1.20) is understood as sup(x,y)∈Ω, x·e≥ς |(u0(x, y)− p−(x, y))/(U(0, x, y)− p−(x, y))− 1| → 0
as ς → +∞.

8
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p between p− and p+. In the general monostable case, assumption (1.18) is also fulfilled,
without the KPP condition, as soon as there exists a pulsating front

U ′(t, x, y) = φ′(x · e− c′t, x, y)

in the sense of (1.7) with a speed c′ < c, see Theorem 1.5 in [20]. As a consequence, the
following corollary holds.

Corollary 1.4 In Theorem 1.3, if the assumption (1.18) is replaced by the existence of a
pulsating front U ′(t, x, y) = φ′(x · e − c′t, x, y) with a speed c′ < c, then the conclusion still
holds.

The existence of a pulsating front with a speed c′ < c is a reasonable assumption. For
instance, under assumptions (1.10) with ∂f

∂u
(x, y, 0) > 0, even without the KPP assump-

tion (1.6), pulsating fronts U(t, x, y) = φ(x · e− ct, x, y) exist if and only if c ≥ c∗∗(e), where
the minimal speed c∗∗(e) is such that c∗∗(e) ≥ c∗(e) and c∗(e) is given in (1.11), see [2, 3].
Thus, for each c > c∗∗(e), the existence of a pulsating traveling front with a speed c′ < c is
guaranteed.

Let us now comment Theorem 1.3 and Corollary 1.4 and give some insight about their
proofs. These two statements are global stability results for general monostable fronts. The
initial condition u0 is in some sense close to the pulsating front U(0, ·, ·) at both ends, that is
when x·e→ ±∞. Assumption (1.19) means that u0 has to be in the basin of attraction of the
stable state p+ as x · e is very negative. But these conditions are not very restrictive and u0

is not required to be close to U(0, ·, ·) when |x · e| is not large. Nevertheless, the convergence
result (1.21) as t → +∞ is uniform in space. The only assumptions of Theorem 1.3 and
Corollary 1.4 force the solution u(t, x, y) to converge to the periodicity condition –namely the
second property of (1.7)– asymptotically as t → +∞, whereas u0 does not satisfy any such
periodicity condition. A serious difficulty in Cauchy problems of the type (1.1) is indeed to
get uniform estimates in the variables which are orthogonal to the direction e (establishing
such estimates is an essential tool in the proof of Theorem 1.3). This difficulty was not
present in the case of one-dimensional media or infinite cylinders with bounded sections,
because of the compactness of the cross sections.

The general strategy of the proofs is, as in the paper by Fife and McLeod [15], to trap the
solution u(t, x, y) between suitable sub- and super-solutions which are close to some shifts of
the pulsating traveling front U , and then to show that the shifts can be chosen as small as
we want when t → +∞. However, the method is much more involved than in the bistable
case investigated in [15]: not only the instability of p− requires more precise estimates in
the region where x · e− ct is positive, but the fact that p+ is only assumed to be stable (in
the sense that µ+ > 0) without any sign hypothesis for f(·, ·, s)− f(·, ·, p+) as s ' p+ makes
the situation more complicated and requires the use of the principal eigenfunction ψ+ in the
definition of the sub- and super-solutions (dealing here with the general monostable case
introduces additional difficulties which would not be present in the KPP case, especially as
far as the super-solutions are concerned). Furthermore, the dependence of all coefficients
A, q and f on the spatial variables (x, y) induces additional technical difficulties, which are

9
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overcome by the use of space-dependent exponential correcting terms (we refer to Section 3
for further details).

Lastly, it is worth pointing out that there is no shift in the limiting profile, unlike for
combustion-type or bistable equations (we refer to [15, 27, 40] for results with such nonlin-
earities in the one-dimensional case, or in infinite cylinders with invariance by translation in
the direction of propagation, see equation (1.28) below).

Let us now deal with the particular KPP case (1.6). The assumptions of Theorem 1.3 can
then be rewritten in a more explicit way. We first recall that, under the assumption (1.6), if
c > c∗(e) then

φ(s, x, y)− p−(x, y) ∼ Bφ e
−λcs ψλc(x, y) as s→ +∞ uniformly in (x, y) ∈ Ω. (1.22)

for some Bφ > 0, while if c = c∗(e) then there is a unique λ∗ > 0 such that k(λ∗)+c∗(e)λ∗ = 0
and there exists Bφ > 0 such that

φ(s, x, y)− p−(x, y) ∼ Bφ s
2m+1 e−λ∗s ψλ∗(x, y) as s→ +∞ uniformly in (x, y) ∈ Ω, (1.23)

where m ∈ N and 2m + 2 is the multiplicity of λ∗ as a root of k(λ) + c∗(e)λ = 0 (see
Theorem 1.3 in [20]).

Theorem 1.5 Assume that the KPP condition (1.6) is satisfied, that µ+ > 0 and that
U(t, x, y) = φ(x · e− ct, x, y) is a pulsating traveling front of (1.1). Then there is ε0 > 0 such
that the following holds.

1) If c > c∗(e), if u0 fulfills (1.19) and if there exists B > 0 such that

u0(x, y)− p−(x, y) ∼ B e−λcx·e ψλc(x, y) as x · e→ +∞, (1.24)

then
sup

(x,y)∈Ω

|u(t, x, y)− U(t+ τ, x, y)| → 0 as t→ +∞, (1.25)

where τ is the unique real number such that Bφ e
λccτ = B and Bφ > 0 is given by (1.22).

2) If c = c∗(e), if u0 fulfills (1.19) and if there exists B > 0 such that

u0(x, y)− p−(x, y) ∼ B (x · e)2m+1 e−λ∗x·e ψλ∗(x, y) as x · e→ +∞, (1.26)

then (1.25) holds, where τ is the unique real number such that Bφ e
λ∗c∗(e)τ = B and Bφ > 0

is given by (1.23).

It is immediate to see that, under the notations of Theorem 1.5, there holds

u0(x, y)− p−(x, y) ∼ U(τ, x, y)− p−(x, y) as x · e→ +∞.

As a consequence, part 1) of Theorem 1.5 is then a corollary of Theorem 1.3. Part 2) is more
technical and needs a specific proof, which is done in Section 4. The main additional difficulty
relies on the fact that the exponentially decaying functions e−λ∗s characterizing the behavior
of the KPP fronts with minimal speeds near the unstable steady state p− are multiplied by
polynomial pre-factors. These pre-factors vanish somewhere. The construction of sub- and
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super-solutions must take this fact into account and it is therefore much more intricate. The
sub- and super-solutions used in the proof use extra polynomial times exponentially decaying
terms involving some derivatives of the principal eigenfunctions ψλ with respect to λ at the
critical rate λ = λ∗. We point out that these ideas are new even in the previous special cases
which were investigated in the literature.

From Corollary 1.4 and Theorem 1.5, it follows that the only case which is not covered
by our stability results is the monostable case without the KPP assumption (1.6) and when
the front U is the slowest one among all pulsating fronts. The situation is different in this
case, and in general a shift in time is expected to occur in the convergence to the front at
large times, like in combustion-type nonlinearities.

It can be seen from Theorems 1.3 and 1.5 that the propagation speed of u(t, x, y) at
large times strongly depends on the asymptotic behavior of the initial condition u0 when
it approaches the unstable state p−. Actually, this fact had already been known in some
simpler situations. In particular, the above stability results extend earlier ones for the usual
traveling fronts U(t, x) = φ(x− ct) of the homogeneous one-dimensional equation

ut = uxx + f(u) in R (1.27)

with f(0) = f(1) = 0 (p− = 0 and p+ = 1) and f > 0 in (0, 1), with or without the KPP
condition 0 < f(s) ≤ f ′(0)s in (0, 1) (see e.g. [10, 18, 26, 30, 31, 42, 44, 45]). In this
case, the minimal speed is equal to c∗ = 2

√
f ′(0), k(λ) = −λ2 − f ′(0) for each λ ∈ R,

λ∗ =
√
f ′(0) and m = 0. Theorem 1.5 also generalizes the stability results for the traveling

fronts U(t, x, y) = φ(x− ct, y) (which are still invariant in their moving frame) of equations
of the type

ut −∆u+ α(y)
∂u

∂x
= f(u), (x, y) ∈ Ω = R× ω, ν · ∇u = 0, (x, y) ∈ ∂Ω (1.28)

in straight infinite cylinders with smooth bounded sections ω and with underlying shear flows
q = (α(y), 0, . . . , 0), for nonlinearities f such that f(0) = f(1) = 0 and satisfying the stronger
KPP assumption that f(s)/s is non-increasing in (0, 1), see [33]. For equations (1.28), we
refer to [9] for existence and uniqueness results of traveling fronts. Some stability results
without the KPP assumption (when 0 and 1 are assumed to be the only possible steady
states in [0, 1]) have also been established in [33] and [40]. Recently, stability results for the
one-dimensional equation

ut = uxx + f(x, u) (1.29)

with KPP periodic nonlinearity f(x, u) have been obtained in [1] with the use of Floquet
exponents. The stability and uniqueness of one-dimensional pulsating KPP fronts for dis-
cretized equations have just been addressed in [19], under the assumption of exponential
behavior of the fronts when they approach the unstable state. Actually, we point out that,
in the KPP case, even for the equation (1.28) in infinite cylinders or for the one-dimensional
periodic discrete or continuous framework, the question of the stability of the fronts with
minimal speed was not known. Part 2) of Theorem 1.5 gives a positive answer to this
important question.

The general philosophy of the aforementioned references [1, 33, 40] is that, if the initial
condition u0 approaches the unstable state p− = 0 like a (pulsating) traveling front up to a
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faster exponential term, then the convergence of u to the front at large times is exponential in
time in weighted functional spaces. The method is based on spectral properties in weighted
spaces and it also uses the exact exponential behavior of the fronts when they approach 0.
We conjecture that such a more precise convergence result holds in our general periodic
framework –at least in the KPP case when the exact exponential behavior is known– under
a stronger assumption on u0, like u0(x, y)− p−(x, y) = U(0, x, y)− p−(x, y)+O((U(0, x, y)−
p−(x, y))1+ε) as x · e→ +∞, for some ε > 0. However, this is not the purpose of the present
paper and the method which we use to prove Theorems 1.3 and 1.5 is based directly on
the construction of suitable sub- and super-solutions and on some Liouville type results.
Furthermore, the method works in the general monostable periodic framework and it only
requires that

u0(x, y)− p−(x, y) ∼ U(0, x, y)− p−(x, y) as x · e→ +∞,

as well as the logarithmic equivalent of the fronts when they approach the unstable state p−.
However, in Theorems 1.3 and 1.5, the assumptions (1.20), (1.24) and (1.26) play an essential
role and cannot be relaxed. Indeed, with KPP type nonlinearity f , for equation (1.29), if
u0(x) is simply assumed to be trapped between two shifts of a front φ, then u may exhibit
non-trivial dynamics and its ω-limit set may be a continuum of translates of φ, see [1]. On the
other hand, even in the homogeneous one-dimensional case (1.27), if u0(x) is just assumed to
be trapped as x · e→ +∞ between two exponentially decaying functions with two different
decay rates, the asymptotic propagation speed of u as t→ +∞ may not be unique in general,
see [21] for details (see also [23] for results in the same spirit for combustion-type equations).
Lastly, if u0(x) decays more slowly than any exponentially decaying function as x · e→ +∞,
then the asymptotic propagation speed is infinite, see [11, 22].

1.4 Additional results in the time-periodic case

Finally, we mention that, with the same type of methods as in this paper, similar uniqueness
and stability results can be established for pulsating fronts in time-periodic media (however,
in order not to lengthen this paper, we just state the conclusions without the detailed proofs).
Namely, consider reaction-diffusion-advection equations of the type{

ut −∇ · (A(t, y)∇u) + q(t, y) · ∇u = f(t, y, u) in Ω,

νA∇u = 0 on ∂Ω,
(1.30)

in a smooth unbounded domain Ω = {(x, y) ∈ Rd × ω}, where ω is a C2,α bounded domain
of RN−d. The uniformly elliptic symmetric matrix field A(t, y) = (Aij(t, y))1≤i,j≤N is of class

C
1,α/2;1,α
t;y (R×ω), the vector field q(t, y) = (qi(t, y))1≤i≤N is of class C

0,α/2;1,α
t;y (R×ω) and the

nonlinearity (t, y, u) (∈ R×ω×R) 7→ f(t, y, u) is continuous, of class C0,α/2;0,α with respect
to (t, y) locally uniformly in u ∈ R and of class C1 with respect to u in R × ω × R. All
functions Aij, qi and f(·, ·, u) (for all u ∈ R) are assumed to be time-periodic, in the sense
that they satisfy w(t + T, y) = w(t, y) for all (t, y) ∈ R × ω, where T > 0 is given. We are
given two time-periodic classical solutions p± of (1.30) satisfying

p−(t, y) < p+(t, y) for all (t, y) ∈ R× ω.
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Assume that the function (t, y, s) 7→ ∂f
∂u

(t, y, p−(t, y) + s) is of class C0,β(R × ω × [0, γ]) for
some β > 0 and γ > 0, and that µ− < 0, where µ− denotes the principal eigenvalue of the
linearized operator around p−

ψ(t, y) 7→ ψt −∇ · (A(t, y)∇ψ) + q(t, y) · ∇ψ − ∂f

∂u
(t, y, p−(t, y))ψ

with time-periodicity conditions in R × ω and Neumann boundary condition νA∇ψ = 0
on R × ∂ω. With a slight abuse of notations, ∇ψ denotes (0, . . . , 0,∇yψ) ∈ {0}d × RN−d.
Assume that there is ρ such that 0 < ρ < minR×ω (p+ − p−) and, for any classical bounded
super-solution u of (1.30) satisfying u < p+ and Ωu = {u(t, x, y) > p+(t, y) − ρ} 6= ∅,
there exists a family of functions (ρτ )τ∈[0,1] defined in Ωu and satisfying (1.5) with Ωu,τ =
{(t, x, y) ∈ Ωu, u(t, x, y) + ρτ (t, x, y) < p+(t, y)}. The KPP condition (1.6) is replaced with
the following one: for all (t, y) ∈ R× ω and s ∈ [0, p+(t, y)− p−(t, y)],

f(t, y, p−(t, y) + s) ≤ f(t, y, p−(t, y)) +
∂f

∂u
(t, y, p−(t, y)) s. (1.31)

Given a unit vector e ∈ Rd × {0}N−d, a pulsating front connecting p− and p+, traveling in
the direction e with mean speed c ∈ R∗, is a classical solution U(t, x, y) of (1.30) such that

U(t, x, y) = φ(x · e− ct, t, y) for all (t, x, y) ∈ R× Rd × ω,

φ(s, t+ T, y) = φ(s, t, y) for all (s, t, y) ∈ R2 × ω,

φ(s, t, y) −→
s→±∞

p∓(t, y) uniformly in (t, y) ∈ R× ω,

p−(t, y) < U(t, x, y) < p+(t, y) for all (t, x, y) ∈ R× Rd × ω.

(1.32)

We refer to [17, 37, 38] for existence results and speed estimates of pulsating fronts for
equations of the type (1.30) with time-periodic KPP nonlinearities and shear flows (see also
[36] for the existence of fronts in space-time periodic media). For each λ ∈ R, still define
k(λ) as the principal eigenvalue of the operator

ψ 7→ ψt−∇· (A∇ψ)+2λeA∇ψ+q ·∇ψ+

[
λ∇ · (Ae)− λq · e− λ2eAe− ∂f

∂u
(t, y, p−(t, y))

]
ψ

with time-periodicity conditions in R × ω and boundary conditions νA∇ψ = λ(νAe)ψ on
R×∂ω, and denote by ψλ the unique positive principal eigenfunction such that ‖ψλ‖L∞(R×ω) =
1. Define c∗(e) as in (1.15) and for each c > c∗(e), define λc > 0 as in (1.16). These quantities
are well-defined real numbers.

Then, for any pulsating traveling front, one has c ≥ c∗(e) (this fact had already been
mentioned in [20]). Furthermore, under the KPP assumption (1.31), if

U1(t, x, y) = φ1(x · e− ct, t, y) and U2(t, x, y) = φ2(x · e− ct, t, y)

are two pulsating travelling fronts with the same speed c, then φ1(s, t, y) = φ2(s+ σ, t, y) in
R2 × ω for some σ ∈ R.
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In the sequel, assume that µ+ > 0, where µ+ denotes the principal eigenvalue of the
linearized operator around p+

ψ(t, y) 7→ ψt −∇ · (A(t, y)∇ψ) + q(t, y) · ∇ψ − ∂f

∂u
(t, y, p+(t, y))ψ

with time-periodicity in R × ω and Neumann boundary condition νA∇ψ = 0 on R × ∂ω.
Consider a pulsating front U(t, x, y) = φ(x · e− ct, t, y) in the sense of (1.32).

If c > c∗(e) and if ln(φ(s, t, y)− p−(t, y)) ∼ −λcs as s→ +∞ uniformly in (t, y) ∈ R×ω,
then there exists ε0 > 0 such that, for any uniformly continuous function u0 such that p−(τ, y) ≤ u0(x, y) ≤ p+(τ, y) for all (x, y) ∈ Ω,

lim inf
ς→−∞

inf
(x,y)∈Ω, x·e≤ς

[u0(x, y)− p+(τ, y)] > −ε0
(1.33)

and u0(x, y) − p−(τ, y) ∼ U(τ, x, y) − p−(τ, y) as x · e → +∞ for some τ ∈ R, then the
solution u(t, x, y) of (1.30) with initial condition u0 satisfies

sup
(x,y)∈Ω

|u(t, x, y)− U(t+ τ, x, y)| → 0 as t→ +∞.

Lastly, under the KPP condition (1.31), there is ε0 > 0 such that the following holds. If
c > c∗(e) and if there exist τ ∈ R and B > 0 such that u0 satisfies (1.33) and u0(x, y) −
p−(τ, y) ∼ B e−λcx·eψλc(τ, y) as x · e→ +∞, then the solution u(t, x, y) of (1.30) with initial
condition u0 satisfies

sup
(x,y)∈Ω

|u(t, x, y)− U(t+ τ, x+ σe, y)| → 0 as t→ +∞, (1.34)

where σ is the unique real number such that Bφ e
λc(cτ−σ) = B and Bφ > 0 is given by:

φ(s, t, y)− p−(t, y) ∼ Bφ e
−λcs ψλc(t, y) as s→ +∞ uniformly in (t, y) ∈ R× ω.

On the other hand, if c = c∗(e) and if there exist τ ∈ R and B > 0 such that u0 satisfies (1.33)
and u0(x, y)− p−(τ, y) ∼ B (x · e)2m+1 e−λ∗x·eψλ∗(τ, y) as x · e→ +∞, where λ∗ is the unique
positive root of k(λ) + c∗(e)λ = 0, with multiplicity 2m + 2, then (1.34) holds, where σ
satisfies Bφ e

λ∗(c∗(e)τ−σ) = B and Bφ > 0 is given by:

φ(s, t, y)− p−(t, y) ∼ Bφ s
2m+1 e−λ∗s ψλ∗(t, y) as s→ +∞, uniformly in (t, y) ∈ R× ω.

Outline of the paper. Section 2 is devoted to the uniqueness results. In Section 3, the
proof of the stability result in the general monostable case is done. Lastly, Section 4 is
concerned with the proof of the stability of KPP fronts with minimal speed c∗(e).

14
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2 Uniqueness of the fronts up to shifts

This section is devoted to the proof of the uniqueness result, that is Theorem 1.1. Theo-
rem 1.1 is itself based on another uniqueness result which is valid in the general monostable
case. The basic strategy is to compare a given front φ2 with respect to the shifts of another
one φ1 and to prove that, for a critical shift, the two fronts are identically equal. In other
words, we use a sliding method. One of the difficulties is to initiate the sliding method, that
is to compare the solutions globally in R × Ω, and in particular in the region where both
fronts are close to p− (as s → +∞). In this region, the weak maximum principle does not
hold because of the instability of p−. However, this difficulty can be overcome because the
fronts have a nondegenerate behavior as s→ +∞, see (2.2) below.

Before doing so, we first quote from [20] a useful lemma (see Lemma 2.3 in [20]) which
is a comparison result between sub- and super-solutions in the region where s ≤ h.

Lemma 2.1 Let ρ ∈ (0,minΩ(p+ − p−)) be given as in (1.5). Let U and U be respectively
classical super-solution and sub-solution of{

U t −∇ · (A(x, y)∇U) + q(x, y) · ∇U ≥ f(x, y, U) in R× Ω,

νA∇U ≥ 0 on R× ∂Ω,

and {
U t −∇ · (A(x, y)∇U) + q(x, y) · ∇U ≤ f(x, y, U) in R× Ω,

νA∇U ≤ 0 on R× ∂Ω,

such that U < p+ and U < p+ in R × Ω. Assume that U(t, x, y) = Φ(x · e − ct, x, y) and
U(t, x, y) = Φ(x·e−ct, x, y), where Φ and Φ are periodic in (x, y), c 6= 0 and e ∈ Rd×{0}N−d

with |e| = 1. If there exists h ∈ R such that
Φ(s, x, y) > p+(x, y)− ρ for all s ≤ h and (x, y) ∈ Ω,

Φ(h, x, y) ≥ Φ(h, x, y) for all (x, y) ∈ Ω,

lim inf
s→−∞

[
min

(x,y)∈Ω
(Φ(s, x, y)− Φ(s, x, y))

]
≥ 0,

then
Φ(s, x, y) ≥ Φ(s, x, y) for all s ≤ h and (x, y) ∈ Ω,

that is U(t, x, y) ≥ U(t, x, y) for all (t, x, y) ∈ R× Ω such that x · e− ct ≤ h.

We then use the following general uniqueness result, which does not require the KPP
assumption (1.6):

Theorem 2.2 Let e be a unit vector in Rd × {0}N−d and c ∈ R∗ be given. Assume that for
any two pulsating traveling fronts U(t, x, y) = φ(x · e − ct, x, y) and U ′(t, x, y) = φ′(x · e −
ct, x, y) in the sense of (1.7), there exists a constant C[φ,φ′] ∈ (0,+∞) such that

φ(s, x, y)− p−(x, y)

φ′(s, x, y)− p−(x, y)
→ C[φ,φ′] as s→ +∞, uniformly in (x, y) ∈ Ω. (2.1)
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Then, if U1(t, x, y) = φ1(x · e− ct, x, y) and U2(t, x, y) = φ2(x · e− ct, x, y) are two pulsating
fronts, there exists σ ∈ R such that (1.8) and (1.9) hold.

Proof. Step 1. Let U(t, x, y) = φ(x ·e−ct, x, y) be any pulsating traveling front in the sense
of (1.7). From Proposition 2.2 of [20], we know that there exist two positive real numbers
λm,φ ≤ λM,φ such that

λm,φ := lim inf
s→+∞

(
min

(x,y)∈Ω

−φs(s, x, y)

φ(s, x, y)− p−(x, y)

)
> 0,

λM,φ := lim sup
s→+∞

(
max

(x,y)∈Ω

−φs(s, x, y)

φ(s, x, y)− p−(x, y)

)
< +∞.

(2.2)

For each σ ∈ R, denote C[φσ ,φ] the constant defined as in the statement of Theorem 2.2, with

φσ(·, ·, ·) := φ(·+ σ, ·, ·).

Then, we claim that
∃ ν > 0, ∀ σ ∈ R, C[φσ ,φ] = e−νσ. (2.3)

Indeed, for any σ, σ′ ∈ R and (x, y) ∈ Ω,

C[φσ+σ′ ,φ] = lim
s→+∞

φ(s+ σ + σ′, x, y)− p−(x, y)

φ(s, x, y)− p−(x, y)

= lim
s→+∞

(
φ(s+ σ + σ′, x, y)− p−(x, y)

φ(s+ σ′, x, y)− p−(x, y)
× φ(s+ σ′, x, y)− p−(x, y)

φ(s, x, y)− p−(x, y)

)
= C[φσ ,φ] × C[φσ′ ,φ].

Furthermore, the function σ 7→ C[φσ ,φ] is non-increasing in R since φ(s, x, y) is decreasing
in s (see Proposition 2.5 in [20]). As a consequence, there exists ν ∈ [0,+∞) such that
C[φσ ,φ] = e−νσ for all σ ∈ R. Using (2.2), we finally obtain that ν ∈ [λm,φ, λM,φ], whence
ν > 0. This shows (2.3).

Step 2. Now, let U1(t, x, y) = φ1(x · e− ct, x, y) and U2(t, x, y) = φ2(x · e− ct, x, y) be two
pulsating fronts satisfying (1.7). From (2.3) applied with φ = φ1, we know that, for σ < 0
negative enough,

C[φσ
1 ,φ2] = C[φσ

1 ,φ1] × C[φ1,φ2] > 1.

Since φ1 is strictly decreasing with respect to s, we deduce that there exist Σ0 > 0, σ0 < 0
such that

∀ σ ≤ σ0, φ2 ≤ φσ
1 in [Σ0,+∞)× Ω. (2.4)

Since φ1(−∞, ·, ·) = p+, and even if it means decreasing σ0, one can assume that

φσ
1 > p+ − ρ in (−∞,Σ0]× Ω, for all σ ≤ σ0.

All assumptions of Lemma 2.1 are then fulfilled, for all σ ≤ σ0, with

U(t, x, y) = U1

(
t− σ

c
, x, y

)
, U = U2, Φ = φσ

1 , Φ = φ2 and h = Σ0.
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As a consequence, φ2 ≤ φσ
1 in (−∞,Σ0]× Ω, for all σ ≤ σ0 and, from (2.4), we finally get

φ2 ≤ φσ
1 in R× Ω for all σ ≤ σ0.

Let us set
σ∗ = sup

{
σ ∈ R, φ2 ≤ φσ

1 in R× Ω
}
.

Observe that σ∗ ≥ σ0. Since φ1(+∞, ·, ·) = p− and φ2(s, x, y) > p−(x, y) for all (s, x, y) ∈
R× Ω, we also know that σ∗ < +∞. Moreover, φ2 ≤ φσ∗

1 in R× Ω. Call

z(s, x, y) = φσ∗

1 (s, x, y)− φ2(s, x, y).

The function z is continuous in (s, x, y), periodic in (x, y) and nonnegative. In particular,
the minimum of z over all sets of the type [−Σ,Σ] × Ω, with Σ > 0, is reached and it is
either positive or zero.

Case 1: Assume that there exists Σ > 0 such that min(s,x,y)∈[−Σ,Σ]×Ω z(s, x, y) = 0. The
function

v(t, x, y) := z(x · e− ct, x, y)

is nonnegative in R × Ω and it vanishes at a point (t∗, x∗, y∗) such that |x∗ · e − ct∗| ≤ Σ.
Moreover, it satisfies the boundary condition νA(x, y)∇v = 0 on R× ∂Ω, and the equation

vt −∇ · (A∇v) + q · ∇v = f(x, y, U1(t− σ∗/c, x, y))− f(x, y, U2(t, x, y))

in R×Ω. Since f is globally Lipschitz-continuous in Ω×R, there exists a bounded function
b(t, x, y) such that

vt −∇ · (A∇v) + q · ∇v + bv = 0, for all (t, x, y) ∈ R× Ω. (2.5)

From the strong maximum principle and Hopf lemma, the function v is then identically 0 in
(−∞, t∗]× Ω, and then in R× Ω by uniqueness of the Cauchy problem associated to (2.5).
We thus obtain z ≡ 0, that is

φ2 ≡ φσ∗

1 in R× Ω.

Case 2: Assume that, for all Σ > 0, min(s,x,y)∈[−Σ,Σ]×Ω z(s, x, y) > 0. The function z is

uniformly continuous in R× Ω, thus, for all Σ > 0, there exists σΣ ∈ (σ∗, σ∗ + 1) such that

φ2 ≤ φσ
1 in [−Σ,Σ]× Ω, for all σ ∈ [σ∗, σΣ]. (2.6)

For Σ large enough, there holds

φσΣ
1 > p+ − ρ in (−∞,−Σ]× Ω.

Moreover, φσΣ
1 (−Σ, x, y) ≥ φ2(−Σ, x, y) in Ω from (2.6). Applying Lemma 2.1 with

U(t, x, y) = U1

(
t− σΣ

c
, x, y

)
, U = U2, Φ = φσΣ

1 , Φ = φ2 and h = −Σ,
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we get that φ2 ≤ φσΣ
1 in (−∞,−Σ] × Ω. Together with (2.6), since φ1 is decreasing in s, it

follows that

∃ Σ1 > 0, ∀ Σ ≥ Σ1, ∃ σΣ > σ∗, ∀ σ ∈ [σ∗, σΣ], φ2 ≤ φσ
1 in (−∞,Σ]× Ω. (2.7)

Assume now that

∃ ε > 0, ∃ Σ̃ > 0, φσ∗

1 − φ2 ≥ ε× (φ2 − p−) in [Σ̃,+∞)× Ω. (2.8)

Let (σn)n∈N be a decreasing sequence such that limn→+∞ σn = σ∗. In particular, σn > σ∗ for

all n ∈ N. Divide (2.8) by φσn
1 − p−. We get that, for all (s, x, y) ∈ (−∞,−Σ̃]× Ω,

φσ∗
1 (s, x, y)− p−(x, y)

φσn
1 (s, x, y)− p−(x, y)

− φ2(s, x, y)− p−(x, y)

φσn
1 (s, x, y)− p−(x, y)

≥ ε× φ2(s, x, y)− p−(x, y)

φσn
1 (s, x, y)− p−(x, y)

.

Passing to the limit as s → +∞, it follows that C[φσ∗
1 ,φσn

1 ] − C[φ2,φσn
1 ] ≥ ε × C[φ2,φσn

1 ], or,
equivalently,

1

1 + ε
× C

[φσ∗−σn
1 ,φ1]

≥ C[φ2,φσn
1 ].

But, from (2.3) applied with φ = φ1, we know that, for n large enough, C
[φσ∗−σn

1 ,φ1]
< 1 + ε,

whence C[φ2,φσn
1 ] < 1. As a consequence, there exist n1 ∈ N and Σ2 > Σ̃ such that φ2 ≤ φ

σn1
1

in [Σ2,+∞)× Ω, and therefore,

φ2 ≤ φσ
1 in [Σ2,+∞)× Ω, for all σ ∈ [σ∗, σn1 ]. (2.9)

Denote Σ := max{Σ1,Σ2} and σ := min{σn1 , σΣ}, where σΣ is defined by (2.7). From (2.7)
and (2.9), we obtain

φ2 ≤ φσ
1 in R× Ω,

which contradicts the definition of σ∗, since σ > σ∗. Therefore, the property (2.8) cannot
hold.

Finally, we obtain the existence of a real number σ∗ such that φσ∗
1 ≥ φ2 and:

• either φσ∗
1 ≡ φ2,

• or the property (2.8) is false, thus there exists a sequence (sn, xn, yn)n∈N in R×Ω, such
that limn→+∞ sn = +∞ and

0 ≤ φσ∗

1 (sn, xn, yn)− φ2(sn, xn, yn) ≤ φ2(sn, xn, yn)− p−(xn, yn)

n
, for all n ∈ N.

(2.10)

Since φ1 and φ2 were chosen arbitrarily, we also obtain the existence of a real number
−σ∗ such that φ−σ∗

2 ≥ φ1 and:

• either φ−σ∗
2 ≡ φ1,
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• or there exists a sequence (s′n, x
′
n, y

′
n)n∈N in R× Ω, such that limn→+∞ s′n = +∞ and

0 ≤ φ−σ∗
2 (s′n, x

′
n, y

′
n)− φ1(s

′
n, x

′
n, y

′
n) ≤ φ1(s

′
n, x

′
n, y

′
n)− p−(x′n, y

′
n)

n
, for all n ∈ N.

Equivalently, setting s′′n = s′n − σ∗, we get, for all n ∈ N,

0 ≤ φ2(s
′′
n, x

′
n, y

′
n)− φσ∗

1 (s′′n, x
′
n, y

′
n) ≤ φσ∗

1 (s′′n, x
′
n, y

′
n)− p−(x′n, y

′
n)

n
. (2.11)

Eventually, either the property (1.8) of Theorem 2.2 holds for some σ ∈ R, or there exist
σ∗, σ∗ ∈ R such that φσ∗

1 ≥ φ2 and φ−σ∗
2 ≥ φ1 (that is, φ2 ≥ φσ∗

1 ) in R × Ω, and properties
(2.10) and (2.11) hold true. Divide the inequalities in (2.10) and (2.11) by φ1(sn, xn, yn) −
p−(xn, yn) and φ1(s

′′
n, x

′
n, y

′
n)− p−(x′n, y

′
n) respectively, and pass to the limit as n→ +∞. It

follows that
C[φσ∗

1 ,φ1] = C[φ2,φ1] and C[φ2,φ1] = C[φσ∗
1 ,φ1].

Thus, C[φσ∗
1 ,φ1] = C[φσ∗

1 ,φ1]. From (2.3) applied with φ = φ1, we conclude that σ∗ = σ∗ =: σ.

Since φσ∗
1 ≤ φ2 ≤ φσ∗

1 , we finally get that

φσ
1 ≡ φ2.

Property (1.8) has been shown. �

The assumption (2.1) in Theorem 2.2 says that, for a given speed c, any two pulsat-
ing traveling fronts have the same asymptotic behavior, up to multiplicative constants, as
s→ +∞, that is as they approach the unstable state p−. This condition is essential and it is
known to be fulfilled for instance in simplified situations, like in space-homogeneous settings
or in straight infinite cylinders with shear flows, that is for problems (1.27) and (1.28) below.
In our general periodic setting, property (2.1) is a reasonable conjecture but it has not been
shown yet in general. However, in the KPP case (1.6), this property is satisfied and the
proof of Theorem 1.1 follows:

Proof of Theorem 1.1. Under the KPP assumption (1.6), the hypothesis (2.1) in The-
orem 2.2 is automatically fulfilled, because of formulas (1.22) and (1.23) (see Theorem 1.3
in [20]). As a consequence, (1.8) and (1.9) follow immediately. �

3 Stability of monostable fronts with speeds c > c∗(e)

This section is devoted to the proof of Theorem 1.3. The general strategy is based on the
construction of suitable sub- and super-solutions which trap the solution u of the Cauchy
problem (1.1) and which can eventually be chosen as close as we want to the front U as
t→ +∞. The sub- and super-solutions are close to the pulsating front U , up to some phase-
shifts and exponentially small correcting terms, see Proposition 3.2 below in Subsection 3.2.
Furthermore, more precise exponential estimates are established in the region where s is large,
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see Proposition 3.3. In Subsection 3.3, we prove a Liouville type result, that is any time-
global solution which satisfies the same type of exponential estimates as in Proposition 3.3
must be a pulsating front, see Proposition 3.4. In Subsection 3.4, we complete the proof of
Theorem 1.3, by arguing by contradiction and using the estimates of Subsection 3.2 and the
aforementioned Liouville type result.

Due to the generality of the framework and the assumptions, the proof is rather involved
and requires many technicalities. Before entering into the core of the proof, we shall first
introduce in the following subsection a few notations.

3.1 Preliminary notations

We assume here that µ+ > 0 and that

U(t, x, y) = φ(x · e− ct, x, y)

is a pulsating traveling front with speed c > c∗(e) satisfying (1.18).
Remember that k(0) = µ− < 0 and that λc > 0 is given by (1.16). By continuity of the

function k, there exists then λ > λc such that

−k(λ)

λ
< c = −k(λc)

λc

(3.1)

and
k(λ) + λc ≤ µ+. (3.2)

Define ω > 0 by
k(λ) + λc = 2ω. (3.3)

Let θ be a C2(Ω) nonpositive periodic function such that

νA∇θ + νAe = 0 on ∂Ω. (3.4)

For instance, up to a constant, θ can be chosen as a minimizer in H1
per of the functional

ϕ 7→
∫

Ω

∇ϕA∇ϕ+ 2

∫
∂Ω

(νAe)ϕ,

where H1
per denotes the set of periodic function in Ω which are in H1

loc(Ω). Let ψ+ be given
by (1.17) and ψ = ψλ denote the positive principal eigenvalue of the operator Lλ, given
in (1.12), such that ‖ψ‖L∞(Ω) = 1. Set m+ = minΩ ψ

+ > 0 and let s ∈ R be such that

e−λ(s−1) ≤ m+. (3.5)

Let χ be a C2(R; [0, 1]) function such that

χ′(s) ≥ 0 for all s ∈ R, χ(s) = 0 for all s ≤ s− 1 and χ(s) = 1 for all s ≥ s. (3.6)

Let g be the function defined for all (s, x, y) ∈ R× Ω by

g(s, x, y) = ψ(x, y) e−λs χ(s+ θ(x, y)) + ψ+(x, y) (1− χ(s+ θ(x, y))).

Observe that g is nonnegative, bounded and periodic with respect to (x, y) in R× Ω.
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Lemma 3.1 Define

ρ+ = min
Ω

p+ − p−

ψ+
> 0. (3.7)

There holds

lim sup
ς→−∞

sup
(s,x,y)∈R×Ω, ρ∈(0,ρ+]

φ(s, x, y)− ρ g(s+ ς, x, y)− p+(x, y)

ρ ψ+(x, y)
≤ −1.

Proof. Assume the conclusion does not hold. Then, there exist 0 < ε ≤ 1 and three
sequences (sn, xn, yn)n∈N in R×Ω, (ρ′n)n∈N in (0, ρ+] and (ςn)n∈N such that limn→+∞ ςn = −∞
and

φ(sn, xn, yn)− ρ′n g(sn + ςn, xn, yn)− p+(xn, yn)

ρ′n ψ
+(xn, yn)

≥ −1 + ε

for all n ∈ N. Up to extraction of a subsequence, either the sequence (sn + ςn)n∈N converges
to −∞ as n → +∞, or it is bounded from below. In the first case, and since φ ≤ p+, one
has

−g(sn + ςn, xn, yn)

ψ+(xn, yn)
≥ −1 + ε.

The passage to the limit as n → +∞ leads to −1 ≥ −1 + ε by definition of g, which is
impossible. Thus, the sequence (sn + ςn)n∈N is bounded from below, whence limn→+∞ sn =
+∞. Since g ≥ 0 and ρ′n ≤ ρ+, one gets that

φ(sn, xn, yn)− p+(xn, yn)

ψ+(xn, yn)
≥ −(1− ε) ρ′n ≥ −(1− ε) ρ+ > −ρ+. (3.8)

Since all functions φ, p+ and ψ+ are periodic in (x, y), one can assume that (xn, yn) →
(x∞, y∞) ∈ Ω as n→ +∞ (up to extraction of another subsequence). The limit as n→ +∞
in (3.8) leads to

p−(x∞, y∞)− p+(x∞, y∞)

ψ+(x∞, y∞)
> −ρ+,

which is ruled out by (3.7). As a consequence, Lemma 3.1 has been proved. �

In the sequel, we set s0 ≤ 0 such that

∀ ρ ∈ (0, ρ+], ∀ (s, x, y) ∈ R× Ω,
φ(s, x, y)− ρ g(s+ s0, x, y)− p+(x, y)

ψ+(x, y)
≤ −ρ

2
. (3.9)

Set, for all (s, x, y) ∈ R× Ω,4

B(s, x, y) = (ζ− + ω)ψ e−λs χ(s+ θ) + (ζ+ + µ+ − ω)ψ+ (1− χ(s+ θ))

+
{
(ψ e−λs − ψ+)× [c+ q · (∇θ + e)−∇ · (A∇θ + Ae)]

+2 (−λψ e−λs e− e−λs∇ψ +∇ψ+)A (∇θ + e)
}
χ′(s+ θ)

−(ψ e−λs − ψ+) (∇θ A∇θ + eAe+ 2 eA∇θ)χ′′(s+ θ)

C(s, x, y) = −λψ e−λs χ(s+ θ) + (ψ e−λs − ψ+)χ′(s+ θ)

(3.10)

4In formula (3.10), when the letter e is alone, it means the direction e, while e−λs means exp(−λs).
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where all functions A, q, ζ±, ψ, ψ+, θ are evaluated at (x, y), and ζ±(x, y) = ∂f
∂u

(x, y, p±(x, y)).
Let us check that the function C is nonpositive. To see it, since λψχ ≥ 0 and χ′ ≥ 0, one only
needs to check that ψ(x, y) e−λs − ψ+ ≤ 0 when χ′(s + θ(x, y)) > 0. If χ′(s + θ(x, y)) > 0,
then s + θ(x, y) ≥ s − 1, whence s ≥ s − 1 − θ(x, y) ≥ s − 1 (θ is nonpositive) and
ψ(x, y) e−λs ≤ e−λ(s−1) ≤ m+ ≤ ψ+(x, y) from (3.5). Therefore,

C(s, x, y) ≤ 0 for all (s, x, y) ∈ R× Ω. (3.11)

Now, choose ρ− > 0 such that

∀ (x, y, ρ) ∈ Ω× [0, ρ−],

∣∣∣∣∂f∂u (x, y, p−(x, y) + ρ)− ζ−(x, y)

∣∣∣∣ ≤ ω. (3.12)

Remember that φs < 0 in R× Ω and notice that, because of (1.18), (2.2) and λ > λc,

sup
(x,y)∈Ω

|C(s+ s0, x, y)|
|φs(s, x, y)|

→ 0 as s→ +∞.

Owing to the definitions of the functions B and C, there exists then s+ ≥ 0 such that

∀ (s, x, y) ∈ [s+,+∞)× Ω,



p−(x, y) < φ(s, x, y) ≤ p−(x, y) +
ρ−

2
,

g(s+ s0, x, y) = ψ(x, y) e−λ(s+s0) ≤ ρ−

2
,

B(s+ s0, x, y) = (ζ−(x, y) + ω) g(s+ s0, x, y),

C(s+ s0, x, y) = −λψ(x, y) e−λ(s+s0) < 0,

−φs(s, x, y) + ρ+C(s+ s0, x, y) ≥ 0.

(3.13)

As above, one can choose ρ+
1 ∈ (0, ρ+] such that

∀ (x, y, ρ) ∈ Ω× [0, ρ+
1 ],

∣∣∣∣∂f∂u (x, y, p+(x, y)− ρψ+(x, y))− ζ+(x, y)

∣∣∣∣ ≤ ω. (3.14)

Since minΩ ψ
+ > 0, there exists s− ≤ 0 such that

∀ (s, x, y) ∈ (−∞, s−]× Ω,



p+(x, y)− ρ+
1

2
ψ+(x, y) ≤ φ(s, x, y) < p+(x, y),

g(s, x, y) = ψ+(x, y),

B(s, x, y) = (ζ+(x, y) + µ+ − ω)ψ+(x, y),

C(s, x, y) = 0.

(3.15)

Once the real numbers s± have been chosen, let δ be given by

δ = min
s−≤s≤s+, (x,y)∈Ω

(−φs(s, x, y)). (3.16)
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The real number δ is positive since the function φs is continuous, negative and periodic with
respect to (x, y) in R× Ω. Define

ε1 = min

(
ρ+

1

4
,

δ

4 ‖C‖∞

)
> 0 (3.17)

and
ε0 = m+ ε1 > 0, (3.18)

where m+ = minΩ ψ
+ > 0.

Lastly, since the function ∂f
∂u

is continuous in Ω × R and periodic with respect to (x, y),
the quantity

M = max
(x,y)∈Ω, p−(x,y)≤u≤p+(x,y)

∣∣∣∣∂f∂u (x, y, u)

∣∣∣∣ (3.19)

is finite. Notice also that all functions g, B and C are bounded in R × Ω. Let σ be the
nonnegative real number defined by

σ = max

(
M ‖g‖∞ + ‖B‖∞

ω ‖C‖∞
,
M ‖g‖∞ + ‖B‖∞

ω δ

)
. (3.20)

3.2 Sub- and super-solutions

The method which is used to prove the convergence of u(t, x, y) to the pulsating front
U(t, x, y) is first based on the construction of suitable sub- and super-solutions which con-
verge to finite shifts of the front φ as t→ +∞. This idea is inspired from a paper by Fife and
McLeod [15] devoted to onedimensional bistable equations. The method has to be adapted
here to the periodic framework and to monostable equations. Then we will prove that the
shifts can be as small as we want as x · e − ct → +∞. These comparisons will be used in
the following subsection to prove the uniform convergence of u to the front U as t → +∞,
without shift.

We assume that µ+ > 0 and that U(t, x, y) = φ(x · e − ct, x, y) is a pulsating traveling
front with speed c > c∗(e) and satisfying (1.18). We use the notations of the previous section
and we assume that the initial condition u0 satisfies (1.19) and (1.20). In the sequel, for all
κ ∈ R and (t, x, y) ∈ R× Ω, we denote

sκ(t, x) = x · e− ct+ κ− κ e−ωt.

Proposition 3.2 Under all assumptions of Theorem 1.3 and under the above notations,
there exist t0 > 0 and σ0 ≥ σ such that

max [φ(sσ0(t, x), x, y)− 2 ε1 g(sσ0(t, x) + s0, x, y) e
−ωt, p−(x, y)]

≤ u(t, x, y) ≤ min [φ(s−σ0(t, x), x, y) + g(s−σ0(t, x), x, y) e
−ωt, p+(x, y)]

(3.21)

for all t ≥ t0 and (x, y) ∈ Ω.
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Proof. Step 1: Choice of a time t0 > 0. Since u and U solve the same equation (1.1) with

p−(x, y) ≤ u(t, x, y), U(t, x, y) ≤ p+(x, y) for all (t, x, y) ∈ [0,+∞)× Ω, there holds

|u(t, x, y)− U(t, x, y)| ≤ eMt |u0(x, y)− U(0, x, y)| for all (t, x, y) ∈ [0,+∞)× Ω, (3.22)

where M ∈ [0,+∞) is defined in (3.19). In particular, it follows from (1.20) that, for each
t > 0,

u(t, x, y)− p−(x, y) = U(t, x, y)− p−(x, y) + o(U(0, x, y)− p−(x, y)) as x · e→ +∞.

Since both U and p− satisfy (1.1) and U > p− in R× Ω, it follows from Harnack inequality
that, for each t > 0, there is a constant Ct > 0 such that

0 < U(0, x, y)− p−(x, y) ≤ Ct (U(t, x, y)− p−(x, y)) for all (x, y) ∈ Ω.

As a consequence,

∀ t > 0, u(t, x, y)− p−(x, y) ∼ U(t, x, y)− p−(x, y) as x · e→ +∞. (3.23)

It also follows from (1.19) and (3.22) that one can choose t0 > 0 small enough so that

lim inf
ς→−∞

inf
(x,y)∈Ω, x·e≤ς

u(t0, x, y)− p+(x, y)

ψ+(x, y)
> −ε0 e

−ωt0

m+
= −ε1 e

−ωt0 , (3.24)

because of (3.18). Since 0 < 2ε1 ≤ ρ+
1 /2 ≤ ρ+, it follows from (3.9) and (3.24) that

sup
(s,x,y)∈R×Ω

φ(s, x, y)− 2 ε1 g(s+ s0, x, y) e
−ωt0 − p+(x, y)

ψ+(x, y)

< lim inf
ς→−∞

inf
(x,y)∈Ω, x·e≤ς

u(t0, x, y)− p+(x, y)

ψ+(x, y)
.

(3.25)

Step 2: Choice of σ0 ≥ σ. We now claim that

max
[
φ(sσ(t0, x), x, y)− 2 ε1 g(sσ(t0, x) + s0, x, y) e

−ωt0 , p−(x, y)
]
≤ u(t0, x, y) in Ω (3.26)

for all σ > 0 large enough. Assume not. Then there exist two sequences (xn, yn)n∈N in Ω
and (σn)n∈N such that limn→+∞ σn = +∞ and

max
[
φ(sσn(t0, xn), xn, yn)− 2 ε1 g(sσn(t0, xn) + s0, xn, yn) e−ωt0 , p−(xn, yn)

]
> u(t0, xn, yn)

for all n ∈ N. Since u ≥ p−, one gets that

φ(sσn(t0, xn), xn, yn)− 2 ε1 g(sσn(t0, xn) + s0, xn, yn) e−ωt0 > u(t0, xn, yn) (3.27)

for all n ∈ N.
Up to extraction of a subsequence, two cases may occur:

either the sequence (sσn(t0, xn))n∈N is bounded from above, or lim
n→+∞

sσn(t0, xn) = +∞.
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If it is bounded from above, then xn · e→ −∞ as n→ +∞. There holds

φ(sσn(t0, xn), xn, yn)− 2 ε1 g(sσn(t0, xn) + s0, xn, yn) e−ωt0 − p+(xn, yn)

ψ+(xn, yn)

>
u(t0, xn, yn)− p+(xn, yn)

ψ+(xn, yn)
.

But the limsup of the left-hand side as n → +∞ is less than the liminf of the right-hand
side, because of (3.25) and limn→+∞ xn · e = −∞. This case is then ruled out.

Thus, sσn(t0, xn) → +∞ as n → +∞. Since φ(+∞, ·, ·) = p− and u ≥ p−, it follows
from (3.27) that

u(t0, xn, yn)− p−(xn, yn) → 0 as n→ +∞. (3.28)

Because of (3.24) and 0 < ε1 e
−ωt0 < ε1 ≤ ρ+/2 < ρ+ = minΩ[(p+− p−)/ψ+], it follows then,

as in the proof of Lemma 3.1, that the sequence (xn · e)n∈N is bounded from below. Up to
extraction of another subsequence, two subcases may occur:

either the sequence (xn · e)n∈N is bounded, or it converges to +∞ as n→ +∞.

Write xn = x′n + x′′n where x′n ∈ L1Z × · · · × LdZ and (x′′n, yn) ∈ C for all n ∈ N. Up to
extraction of a subsequence, one can assume that (x′′n, yn) → (x∞, y∞) ∈ C as n→ +∞. Set

un(t, x, y) = un(t, x+ x′n, y).

By periodicity of coefficients of (1.1), the functions un solve (1.1) for t > 0. Furthermore,
p−(x, y) ≤ un(t, x, y) ≤ p+(x, y) for all (t, x, y) ∈ [0,+∞) × Ω and n ∈ N. From standard
parabolic estimates, the functions un converge locally uniformly in (0,+∞) × Ω, up to
extraction of a subsequence, to a solution u∞ of (1.1) such that

p−(x, y) ≤ u∞(t, x, y) ≤ p+(x, y) for all (t, x, y) ∈ (0,+∞)× Ω.

Moreover, u∞(t0, x∞, y∞) = p−(x∞, y∞) from (3.28). It follows from the strong maximum
principle that u∞(t, x, y) = p−(x, y) for all (t, x, y) ∈ (0, t0]×Ω (and then in (0,+∞)×Ω). If
the sequence (xn ·e)n∈N is bounded, so is the sequence (x′n ·e)n∈N, hence the function u∞ still
satisfies (3.24). This leads to a contradiction as above. Therefore, xn · e→ +∞ as n→ +∞.
Because of (3.27), there holds

φ(sσn(t0, xn), xn, yn)− p−(xn, yn)

U(t0, xn, yn)− p−(xn, yn)
>
u(t0, xn, yn)− p−(xn, yn)

U(t0, xn, yn)− p−(xn, yn)
.

Because of (3.23), the right-hand side converges to 1 as n → +∞. On the other hand, the
left-hand side is equal to

φ(sσn(t0, xn), xn, yn)− p−(xn, yn)

U(t0, xn, yn)− p−(xn, yn)
=
φ(xn · e− ct0 + σn − σne

−ωt0 , xn, yn)− p−(xn, yn)

φ(xn · e− ct0, xn, yn)− p−(xn, yn)
.

But property (2.2), together with limn→+∞ xn · e = limn→+∞ σn = +∞, implies that the
above quantity converges to 0 as n → +∞. This leads to a contradiction. Eventually, the
claim (3.26) is proved.
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Next, we claim that

u(t0, x, y) ≤ min
[
φ(s−σ(t0, x), x, y) + g(s−σ(t0, x), x, y) e

−ωt0 , p+(x, y)
]

in Ω (3.29)

for all σ > 0 large enough. Assume not. Since u ≤ p+, there exist then two sequences
(xn, yn)n∈N in Ω and (σn)n∈N such that limn→+∞ σn = +∞ and

φ(s−σn(t0, xn), xn, yn) + g(s−σn(t0, xn), xn, yn) e−ωt0 < u(t0, xn, yn)

for all n ∈ N. If s−σn(t0, xn) → −∞ as n → +∞ up to extraction of a subse-
quence, then φ(s−σn(t0, xn), xn, yn) − p+(xn, yn) → 0, while u(t0, xn, yn) ≤ p+(xn, yn) and
lim infn→+∞ g(s−σn(t0, xn), xn, yn) e−ωt0 ≥ m+ e−ωt0 > 0, where m+ = minΩ ψ

+ > 0. This
gives a contradiction. Thus, the sequence (s−σn(t0, xn))n∈N is bounded from below, whence
xn · e → +∞ as n → +∞. In particular, u(t0, xn, yn) − p−(xn, yn) → 0 as n → +∞
from (3.23). Since φ ≥ p− and g ≥ 0, one gets that g(s−σn(t0, xn), xn, yn) → 0 as n→ +∞,
whence s−σn(t0, xn) → +∞ owing to the definition of g. Moreover,

φ(s−σn(t0, xn), xn, yn)− p−(xn, yn)

U(t0, xn, yn)− p−(xn, yn)
<
u(t0, xn, yn)− p−(xn, yn)

U(t0, xn, yn)− p−(xn, yn)
(3.30)

and the right-hand side converges to 1 as n→ +∞ from (3.23). Since

lim
n→+∞

s−σn(t0, xn) = lim
n→+∞

xn · e = lim
n→+∞

(xn · e− s−σn(t0, xn)) = +∞

one concludes from (2.2) that the left-hand side of (3.30) converges to +∞ as n → +∞.
One is led to a contradiction. Hence, the claim (3.29) is proved.

In the sequel of the proof, we set a real number σ0 large enough so that (3.26) and (3.29)
are fulfilled for σ = σ0, and σ0 ≥ σ ≥ 0, where σ ≥ 0 has been given in (3.20).

Step 3: The lower and upper bounds in (3.21) are sub- and super-solutions of (1.1). De-
fine

Lw = wt −∇ · (A(x, y)∇w) + q(x, y) · ∇w − f(x, y, w)

and {
u(t, x, y) = φ(sσ0(t, x), x, y)− 2 ε1 g(sσ0(t, x) + s0, x, y) e

−ωt,

u(t, x, y) = φ(s−σ0(t, x), x, y) + g(s−σ0(t, x), x, y) e
−ωt

for all (t, x, y) ∈ [t0,+∞)× Ω.
Since νA∇U(t, ·, ·) = νA∇ψ+ = νA∇ψ − λ (νAe) ψ = νA∇θ + νAe = 0 on ∂Ω, it is

immediate to see from the definitions of g and s±σ0(t, x) that

νA(x, y)∇u(t, x, y) = νA(x, y)∇u(t, x, y) = 0

for all (t, x, y) ∈ [t0,+∞)× ∂Ω.
Remember now that p− ≤ u ≤ p+ solve (1.1), and that the inequalities (3.21) are fulfilled

at time t0. In order to prove (3.21) for all (t, x, y) ∈ [t0,+∞)×Ω, it is then enough to prove,
from the maximum principle, that

Lu ≤ 0 in Ω− and Lu ≥ 0 in Ω+,
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where {
Ω− =

{
(t, x, y) ∈ [t0,+∞)× Ω, u(t, x, y) > p−(x, y)

}
,

Ω+ =
{
(t, x, y) ∈ [t0,+∞)× Ω, u(t, x, y) < p+(x, y)

}
.

Let us first deal with the function u. By using equations (1.1), (1.17), (3.3) and Lλψ =
k(λ)ψ in Ω, a lengthy but straightforward calculation leads to, for all (t, x, y) ∈ Ω−:

Lu(t, x, y) = f(x, y, φ(sσ0(t, x), x, y))− f(x, y, u(t, x, y)) + σ0 ω φs(sσ0(t, x), x, y) e
−ωt

−2 ε1B(sσ0(t, x) + s0, x, y) e
−ωt − 2 ε1 σ0 ωC(sσ0(t, x) + s0, x, y) e

−2ωt,

where the functions B and C have been defined in (3.10).
If (t, x, y) ∈ Ω− and sσ0(t, x) ≥ s+, where s+ is given by (3.13), then

f(x, y, φ(sσ0(t, x), x, y))− f(x, y, u(t, x, y)) ≤ 2 ε1 (ζ−(x, y) + ω) g(sσ0(t, x) + s0, x, y) e
−ωt

from (3.12) and (3.13), whence

Lu(t, x, y) ≤ 2 ε1 [(ζ−(x, y) + ω) g(sσ0(t, x) + s0, x, y)−B(sσ0(t, x) + s0, x, y)] e
−ωt

+σ0 ω [φs(sσ0(t, x), x, y)− 2 ε1C(sσ0(t, x) + s0, x, y) e
−ωt] e−ωt

≤ 0

because of (3.13) and 0 < 2 ε1 e
−ωt ≤ ρ+.

If (t, x, y) ∈ Ω− and sσ0(t, x) ≤ s−, where s− is given by (3.15), then g(sσ0(t, x)+s0, x, y) =
ψ+(x, y) (because s0 ≤ 0) and

p+(x, y) > φ(sσ0(t, x), x, y) ≥ u(t, x, y) ≥ p+(x, y)− ρ+
1

2
ψ+(x, y)− 2 ε1 ψ

+(x, y) e−ωt

≥ p+(x, y)− ρ+
1 ψ

+(x, y)

because ε1 ≤ ρ+
1 /4 from (3.17). Thus,

f(x, y, φ(sσ0(t, x), x, y))− f(x, y, u(t, x, y)) ≤ 2 ε1 (ζ+(x, y) + ω)ψ+(x, y) e−ωt

from (3.14). Since φs < 0 and since the last two properties in (3.15) also hold with s + s0

instead of s (because s0 ≤ 0), it follows that

Lu(t, x, y) ≤ 2 ε1 (ζ+(x, y) + ω)ψ+(x, y) e−ωt − 2 ε1 (ζ+(x, y) + µ+ − ω)ψ+(x, y) e−ωt

= 2 ε1 (2ω − µ+)ψ+(x, y) e−ωt ≤ 0

from (3.2) and (3.3).
If (t, x, y) ∈ Ω− and s− ≤ sσ0(t, x) ≤ s+, it follows from the definitions of δ, ε1, M and

σ in (3.16), (3.17), (3.19) and (3.20), together with the inequality σ0 ≥ σ, that

Lu(t, x, y) ≤ 2 ε1M ‖g‖∞ e−ωt + 2 ε1 ‖B‖∞ e−ωt − σ0 ω δ e
−ωt + 2 ε1 σ0 ω ‖C‖∞ e−2ωt

≤ δ (M ‖g‖∞ + ‖B‖∞) e−ωt

2 ‖C‖∞
− σ0 ω δ e

−ωt

2
≤ 0.
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As a conclusion, u is a sub-solution of (1.1) in Ω−, and it is such that u(t0, ·, ·) ≤ u(t0, ·, ·)
in Ω. Thus, u(t, x, y) ≤ u(t, x, y) for all (t, x, y) ∈ [t0,+∞)×Ω from the parabolic maximum
principle.

Let us now check that Lu(t, x, y) ≥ 0 for all (t, x, y) ∈ Ω+. As for u, it is straightforward
to check that

Lu(t, x, y) = f(x, y, φ(s−σ0(t, x), x, y))− f(x, y, u(t, x, y))− σ0 ω φs(s−σ0(t, x), x, y) e
−ωt

+B(s−σ0(t, x), x, y) e
−ωt − σ0 ωC(sσ0(t, x), x, y) e

−2ωt

≥ f(x, y, φ(s−σ0(t, x), x, y))− f(x, y, u(t, x, y))− σ0 ω φs(s−σ0(t, x), x, y) e
−ωt

+B(s−σ0(t, x), x, y) e
−ωt

from (3.11).
If (t, x, y) ∈ Ω+ and s−σ0(t, x) ≥ s+, where s+ is given by (3.13), then

p−(x, y) < φ(s−σ0(t, x), x, y) ≤ u(t, x, y) ≤ p−(x, y) + ρ−

(notice indeed that the first four properties in (3.13) hold without s0, since s0 ≤ 0). Since
φs < 0, it follows then from (3.12) and (3.13) that Lu(t, x, y) ≥ 0.

If (t, x, y) ∈ Ω+ and s−σ0(t, x) ≤ s−, where s− is given by (3.15), then

p+(x, y)− ρ+
1 ψ

+(x, y) ≤ φ(s−σ0(t, x), x, y) ≤ u(t, x, y) < p+(x, y),

whence

Lu(t, x, y) ≥ −(ζ+(x, y) + ω)ψ+(x, y) e−ωt + (ζ+(x, y) + µ+ − ω)ψ+(x, y) e−ωt

= (µ+ − 2ω)ψ+(x, y) e−ωt ≥ 0

from (3.2), (3.3), (3.14) and (3.15).
If (t, x, y) ∈ Ω+ and s− ≤ s−σ0(t, x) ≤ s+, it follows from (3.16), (3.19), (3.20) and the

inequality σ0 ≥ σ that

Lu(t, x, y) ≥ −M ‖g‖∞ e−ωt + σ0 ω δ e
−ωt − ‖B‖∞ e−ωt

≥ (σ ω δ −M ‖g‖∞ − ‖B‖∞) e−ωt ≥ 0.

As a conclusion, the parabolic maximum principle yields u(t, x, y) ≤ u(t, x, y) for all
(t, x, y) ∈ [t0,+∞)× Ω, and the proof of Proposition 3.2 is complete. �

The following proposition states that the solution u stays close to the front φ when x·e−ct
is very positive.

Proposition 3.3 Under all assumptions of Theorem 1.3 and under the above notations,
there exists σ ∈ R such that, for each η > 0, there is Dη > 0 such that, for all (t, x, y) ∈
[0,+∞)× Ω,

φ(x · e− ct+ η, x, y)−Dη ψ(x, y) e−λ(x·e−ct) ≤ u(t, x, y)

and

[x · e− ct ≥ σ] =⇒
[
u(t, x, y) ≤ φ(x · e− ct− η, x, y) +Dη ψ(x, y) e−λ(x·e−ct)

]
.
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Proof. Let t0 > 0 and σ0 ≥ σ ≥ 0 be as in Proposition 3.2. Remember that φ(+∞, ·, ·) = p−

uniformly in Ω. It follows from (3.21) and the definition of g and χ that there exists σ ∈ R
such that, for all (t, x, y) ∈ [t0,+∞)× Ω with x · e− ct ≥ σ, there holds

u(t, x, y) ≤ φ(x · e− ct−σ0 +σ0 e
−ωt, x, y)+ψ(x, y)e−λ(x·e−ct−σ0+σ0 e−ωt) e−ωt ≤ p−(x, y)+ ρ−,

where ρ− > 0 is given in (3.12). On the other hand, for all (t, x, y) ∈ [0,+∞)× Ω,

u(t, x, y) ≤ φ(x · e− ct, x, y) + eMt |u0(x, y)− U(0, x, y)|

from (3.22), and u0(x, y)−U(0, x, y) → 0 uniformly as x · e→ +∞ from assumption (1.20).
Therefore, there exists σ ≥ σ such that, for all (t, x, y) ∈ [0, t0]×Ω with x · e− ct ≥ σ, there
holds u(t, x, y) ≤ p−(x, y) + ρ−. To sum up, for all (t, x, y) ∈ [0,+∞)× Ω, there holds

(x · e− ct ≥ σ) =⇒
(
u(t, x, y) ≤ p−(x, y) + ρ−

)
. (3.31)

Let η > 0 be any positive number. We claim that

φ(x · e+ η, x, y)−Dψ(x, y) e−λ x·e ≤ u0(x, y) in Ω (3.32)

for D large enough. Assume not. Then there exist two sequences (xn, yn)n∈N in Ω and
(Dn)n∈N in [0,+∞) such that limn→+∞Dn = +∞ and

φ(xn · e+ η, xn, yn)−Dn ψ(xn, yn) e−λ xn·e > u0(xn, yn)

for all n ∈ N. Since φ and u0 are bounded and minΩ ψ > 0, it follows that limn→+∞ xn · e =
+∞. For all n ∈ N, there holds

φ(xn · e+ η, xn, yn)− p−(xn, yn)

φ(xn · e, xn, yn)− p−(xn, yn)
>

u0(xn, yn)− p−(xn, yn)

φ(xn · e, xn, yn)− p−(xn, yn)
.

The right-hand side converges to 1 as n → +∞, from assumption (1.20), while the limsup
of the left-hand side is not larger than e−λm,φη < 1, from (2.2). One has then reached a
contradiction. Hence, (3.32) holds for D large enough.

Similarly, it is easy to check that

u0(x, y) ≤ φ(x · e− η, x, y) +Dψ(x, y) e−λ x·e in Ω (3.33)

for D large enough.
In the sequel, we choose Dη > 0 such that (3.32) and (3.33) hold for D = Dη, and

Dη ≥ max

(
eλs+ ×max

Ω

p+ − p−

ψ
, ρ− eλσ ×max

Ω

1

ψ

)
(3.34)

where s+ and σ have been given in (3.13) and (3.31).
Set

uη(t, x, y) = φ(x · e− ct+ η, x, y)−Dη ψ(x, y) e−λ(x·e−ct)
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for all (t, x, y) ∈ [0,+∞) × Ω. Notice that uη(0, x, y) ≤ u(0, x, y) in Ω, u ≥ p− and
νA(x, y)∇uη(t, x, y) = 0 for all (t, x, y) ∈ [0,+∞) × ∂Ω. In order to prove that uη ≤ u in

[0,+∞)×Ω, it is then sufficient to check that Luη(t, x, y) ≤ 0 for all (t, x, y) ∈ [0,+∞)×Ω

such that uη(t, x, y) > p−(x, y). From (1.1), (3.3) and Lλψ = k(λ)ψ in Ω, there holds

Luη(t, x, y) = f(x, y, φ(x · e− ct+ η, x, y))− f(x, y, uη(t, x, y))

−(2ω + ζ−(x, y))Dη ψ(x, y) e−λ(x·e−ct)

for all (t, x, y) ∈ [0,+∞)× Ω. When uη(t, x, y) > p−(x, y), then

Dη ψ(x, y) e−λ(x·e−ct) < φ(x · e− ct+ η, x, y)− p−(x, y) < p+(x, y)− p−(x, y),

whence Dη e
−λ(x·e−ct) ≤ maxΩ[(p+− p−)/ψ]. Because of (3.34), it follows that x · e− ct ≥ s+,

and then

φ(x · e− ct+ η, x, y) < φ(s+, x, y) ≤ p−(x, y) +
ρ−

2
from (3.13). In particular, when uη(t, x, y) > p−(x, y), then

p−(x, y) < uη(t, x, y) < φ(x · e− ct+ η, x, y) < p−(x, y) + ρ−,

whence

f(x, y, φ(x · e− ct+ η, x, y))− f(x, y, uη(t, x, y)) ≤ (ζ−(x, y) + ω)Dη ψ(x, y) e−λ(x·e−ct)

from (3.12). It follows that Luη(t, x, y) ≤ −ω Dη ψ(x, y) e−λ(x·e−ct) < 0 for all (t, x, y) ∈
[0,+∞)×Ω such that uη(t, x, y) > p−(x, y). The maximum principle then yields uη(t, x, y) ≤
u(t, x, y) for all (t, x, y) ∈ [0,+∞)× Ω.

Now, set
uη(t, x, y) = φ(x · e− ct− η, x, y) +Dη ψ(x, y) e−λ(x·e−ct)

for all (t, x, y) ∈ [0,+∞) × Ω. Notice that u(0, x, y) ≤ uη(0, x, y) in Ω, that
νA(x, y)∇uη(t, x, y) = 0 for all (t, x, y) ∈ [0,+∞)× ∂Ω, that

[x · e− ct ≥ σ] =⇒
[
u(t, x, y) ≤ p−(x, y) + ρ−

]
from (3.31), and that

[x · e− ct = σ] =⇒
[
uη(t, x, y) > p−(x, y) + ρ−

]
from (3.34) and φ > p−. In order to prove that u ≤ uη when x·e−ct ≥ σ, it is then sufficient to
check that Luη(t, x, y) ≥ 0 for all (t, x, y) ∈ [0,+∞)×Ω such that uη(t, x, y) ≤ p−(x, y)+ρ−.
For all such (t, x, y), there holds

Luη(t, x, y) = f(x, y, φ(x · e− ct− η, x, y))− f(x, y, uη(t, x, y))

+(2ω + ζ−(x, y))Dη ψ(x, y) e−λ(x·e−ct)

and p−(x, y) < φ(x · e− ct− η, x, y) < uη(t, x, y) ≤ p−(x, y) + ρ−, whence

Luη(t, x, y) ≥ −(ζ−(x, y)+ω)Dη ψ(x, y)e−λ(x·e−ct) +(2ω+ ζ−(x, y))Dη ψ(x, y)e−λ(x·e−ct) > 0

from (3.12). The maximum principle yields u(t, x, y) ≤ uη(t, x, y) for all (t, x, y) ∈ [0,+∞)×
Ω such that x · e− ct ≥ σ. That completes the proof of Proposition 3.3. �
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3.3 A Liouville type result

The last step before the proof of Theorem 1.3 is concerned with a Liouville type result for
the time-global (t ∈ R) solutions of (1.1) which are trapped between two shifts of the front
φ and which satisfy similar estimates as in Proposition 3.3, uniformly in time.

Proposition 3.4 Under the notations of the previous subsections, let v(t, x, y) be a solution
of (1.1), for all (t, x, y) ∈ R× Ω, such that

∀ (t, x, y) ∈ R× Ω, φ(x · e− ct+ a, x, y) ≤ v(t, x, y) ≤ φ(x · e− ct+ b, x, y),

for some b ≤ 0 ≤ a. Assume also that for each η > 0, there are Dη > 0 and ση ∈ R such
that, for all (t, x, y) ∈ R× Ω with x · e− ct ≥ ση, there holds

φ(x · e− ct+ η, x, y)−Dη ψ(x, y) e−λ(x·e−ct)

≤ v(t, x, y) ≤ φ(x · e− ct− η, x, y) +Dη ψ(x, y) e−λ(x·e−ct).
(3.35)

Then
v(t, x, y) = φ(x · e− ct, x, y) = U(t, x, y) for all (t, x, y) ∈ R× Ω.

Proof. Define

η∗ = min
{
η ∈ [0,+∞), v(t, x, y) ≤ φ(x · e− ct− η′, x, y) in R× Ω for all η′ ≥ η

}
.

The real number η∗ is well-defined and it satisfies 0 ≤ η∗ ≤ −b, since φs < 0 in R× Ω. Let
us now prove that η∗ = 0, which will imply that u ≤ U in R× Ω. Assume that η∗ > 0.

We first claim that there exists σ∗ ∈ [ση∗/4,+∞) such that

∀ (t, x, y) ∈ R× Ω, (x · e− ct ≥ σ∗) =⇒ (v(t, x, y) ≤ φ(x · e− ct− η∗/2, x, y)) , (3.36)

where the real number ση∗/4 is given by our assumption applied to η = η∗/4 > 0. If not,
then there exists a sequence (tn, xn, yn)n∈N in R × Ω such that sn = xn · e − ctn → +∞ as
n→ +∞, and, for all n ∈ N,

φ(sn − η∗/2, xn, yn) < φ(sn + η∗/4, xn, yn) +Dη∗/4 ψ(xn, yn) e−λsn ,

from property (3.35) applied with η = η∗/4 > 0. Thus,

1 <
φ(sn − η∗/4, xn, yn)− p−(xn, yn)

φ(sn − η∗/2, xn, yn)− p−(xn, yn)
+

Dη∗/4 ψ(xn, yn) e−λsn

φ(sn − η∗/2, xn, yn)− p−(xn, yn)

for all n ∈ N. The limsup as n → +∞ of the first term of the right-hand side is not larger
than e−λm,φη∗/4 < 1 from (2.2). The limit of the second term of the right-hand side is equal to
0 because of (1.18) and λ > λc. A contradiction is reached as n→ +∞. Therefore, property
(3.36) holds for some σ∗ ≥ ση∗/4.

Choose now σ∗ ≤ σ∗ such that

φ(s, x, y) > p+(x, y)− ρ for all (s, x, y) ∈ (−∞, σ∗]× Ω, (3.37)
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where ρ > 0 is given in (1.5).
We then claim that

inf
(t,x,y)∈R×Ω, σ∗≤x·e−ct≤σ∗

φ(x · e− ct− η∗, x, y)− v(t, x, y) > 0. (3.38)

Notice first that v(t, x, y) ≤ φ(x · e − ct − η∗, x, y) in R × Ω by definition of η∗. Assume
that the claim (3.38) is not true. Then there exists a sequence (tn, xn, yn)n∈N such that
sn = xn · e− ctn ∈ [σ∗, σ

∗] for all n ∈ N, and

φ(xn · e− ctn − η∗, xn, yn)− v(tn, xn, yn) → 0 as n→ +∞. (3.39)

For each n ∈ N, write xn = x′n + x′′n, where x′n ∈ L1Z× · · · × LdZ and (x′′n, yn) ∈ C, and

vn(t, x, y) = v(t+ tn, x+ x′n, y).

Up to extraction of a subsequence, one can assume that, as n → +∞, sn → s∞ ∈ [σ∗, σ
∗],

(x′′n, yn) → (x∞, y∞) ∈ C and vn(t, x, y) → v∞(t, x, y) locally uniformly in (t, x, y), where v∞
solves (1.1) in R×Ω. There holds vn(t, x, y) ≤ φ(x · e− ct+ x′n · e− ctn − η∗, x, y) since φ is
periodic in (x, y), whence

v∞(t, x, y) ≤ φ(x · e− ct+ s∞ − x∞ · e− η∗, x, y)

for all (t, x, y) ∈ R × Ω. Furthermore, v∞(0, x∞, y∞) = φ(s∞ − η∗, x∞, y∞) from (3.39).
Hence,

v∞(t, x, y) = φ(x · e− ct+ s∞ − x∞ · e− η∗, x, y) for all (t, x, y) ∈ R× Ω, (3.40)

from the strong maximum principle and periodicity of φ in the variables (x, y). On the other
hand, if x · e− ct ≥ σ∗ + ctn − x′n · e, then

vn(t, x, y) ≤ φ((x+ x′n) · e− c(t+ tn)− η∗/2, x, y)

from (3.36), whence

[x · e− ct ≥ σ∗ − s∞ + x∞ · e] =⇒ [v∞(t, x, y) ≤ φ(x · e− ct+ s∞ − x∞ · e− η∗/2, x, y)] .

This contradicts (3.40), since φs < 0 and η∗ > 0.
Therefore, property (3.38) holds. By continuity and (x, y)-periodicity of φ, there exists

then η∗ such that η∗/2 ≤ η∗ < η∗ and, for all η ∈ [η∗, η
∗],

(σ∗ ≤ x · e− ct ≤ σ∗) =⇒ (v(t, x, y) ≤ φ(x · e− ct− η, x, y)) .

Actually, the previous inequality also holds when x · e − ct ≥ σ∗, because of (3.36) and
φs < 0. Pick any η in [η∗, η

∗] (⊂ [0, η∗]). In the region where x · e − ct ≤ σ∗, then
φ(x · e− ct− η, x, y) > p+(x, y)− ρ, from (3.37) and φs < 0. All assumptions of Lemma 2.1
are satisfied with h = σ∗, U(t, x, y) = φ(x · e − ct − η, x, y), Φ = φ(· − −η, ·, ·), U = v and
Φ(s, x, y) = v((x · e − s)/c, x, y), apart from the fact that Φ may not be periodic in (x, y).
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However, since Φ ≤ φ(· + b, ·, ·) < p+, the arguments used in the proof of Lemma 2.1 (that
is Lemma 2.3 of [20]) can be immediately extended to the present case. They yield the
inequality

v(t, x, y) ≤ φ(x · e− ct− η, x, y) for all (t, x, y) such that x · e− ct ≤ σ∗.

Eventually, v(t, x, y) ≤ φ(x · e − ct − η, x, y) in R × Ω for all η ∈ [η∗, η
∗]. Since η∗ < η∗,

that contradicts the minimality of η∗. As a conclusion η∗ cannot be positive, which proves
that v(t, x, y) ≤ φ(x · e− ct, x, y) in R× Ω.

The proof of the opposite inequality is exactly similar. Finally, v(t, x, y) = φ(x·e−ct, x, y)
in R× Ω, which is the desired result. �

Remark 3.5 Notice that the two key tools in the proof of Proposition 3.4 are first the
property (2.2), which holds for any pulsating front in the sense of (1.7), and second the fact
that e−λs = o(φ(s, x, y)− p−(x, y)) as s→ +∞, uniformly in (x, y) ∈ Ω.

3.4 Proof of Theorem 1.3

With the results of the previous subsections, we are now able to complete the proof of The-
orem 1.3.

Proof of Theorem 1.3. Assume that the limit (1.21) does not hold. Then there exist
ε > 0 and a sequence (tn, xn, yn)n∈N in [0,+∞) × Ω such that limn→+∞ tn = +∞ and
|u(tn, xn, yn)− U(tn, xn, yn)| ≥ ε for all n ∈ N, that is

|u(tn, xn, yn)− φ(sn, xn, yn)| ≥ ε, (3.41)

where sn = xn · e− ctn. Under the notations of Proposition 3.2, and using the monotonicity
of φ in s, there holds

φ(sn + σ0, xn, yn)− 2 ε1 ‖g‖∞ e−ωtn ≤ u(tn, xn, yn) ≤ φ(sn − σ0, xn, yn) + ‖g‖∞ e−ωtn .

If sn → −∞, up to extraction of a subsequence, then

φ(sn + σ0, xn, yn)− p+(xn, yn)− 2 ε1 ‖g‖∞ e−ωtn ≤ u(tn, xn, yn)− p+(xn, yn) ≤ 0,

whence limn→+∞ u(tn, xn, yn) − p+(xn, yn) = 0 = limn→+∞ φ(sn, xn, yn) − p+(xn, yn). This
contradicts (3.41). Therefore, the sequence (sn)n∈N is bounded from below. Similarly, one
can prove that it is bounded from above.

For each n ∈ N, write xn = x′n + x′′n, where x′n ∈ L1Z× · · · × LdZ and (x′′n, yn) ∈ C. Up
to extraction of a subsequence, one can assume that sn → s∞ ∈ R, (x′′n, yn) → (x∞, y∞) ∈ C
as n → +∞. Set t′n = tn + (s∞ − x∞ · e)/c and observe that x′n · e − ct′n → 0 as n → +∞.
Denote

un(t, x, y) = u(t+ t′n, x+ x′n, y).
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Up to extraction of another subsequence, the functions un converge locally uniformly in R×Ω
to a time-global solution u∞ of (1.1) in R × Ω. Furthermore, Proposition 3.2 implies that,
for each n ∈ N and (t, x, y) ∈ [−t′n,+∞)× Ω,

φ(x · e− ct+ x′n · e− ct′n + σ0 − σ0 e
−ω(t+t′n), x, y)− 2 ε1 ‖g‖∞ e−ω(t+t′n)

≤ un(t, x, y) ≤ φ(x · e− ct+ x′n · e− ct′n − σ0 + σ0 e
−ω(t+t′n), x, y) + ‖g‖∞ e−ω(t+t′n),

whence
φ(x · e− ct+ σ0, x, y) ≤ u∞(t, x, y) ≤ φ(x · e− ct− σ0, x, y) (3.42)

for all (t, x, y) ∈ R× Ω.
Let σ ∈ R be as in Proposition 3.3. It follows that for each η > 0, there is Dη > 0 such

that, for each n ∈ N and (t, x, y) ∈ [−t′n,+∞)× Ω, there holds

φ(x · e− ct+ x′n · e− ct′n + η, x, y)−Dη ψ(x, y) e−λ(x·e−ct+x′n·e−ct′n) ≤ un(t, x, y)

and

[(x+ x′n) · e− c(t+ t′n) ≥ σ] =⇒[
un(t, x, y) ≤ φ(x · e− ct+ x′n · e− ct′n − η, x, y) +Dη ψ(x, y) e−λ(x·e−ct+x′n·e−ct′n)

]
.

The passage to the limit as n→ +∞ yields, for all (t, x, y) ∈ R× Ω and η > 0,{
φ(x · e− ct+ η, x, y)−Dη ψ(x, y) e−λ(x·e−ct) ≤ u∞(t, x, y),

[x · e− ct ≥ σ]=⇒
[
u∞(t, x, y) ≤ φ(x · e− ct− η, x, y) +Dη ψ(x, y) e−λ(x·e−ct)

]
.

(3.43)

It finally follows from (3.42) and (3.43) and Proposition 3.4 that u∞(t, x, y) = φ(x · e −
ct, x, y) in R × Ω (we here apply a particular case of Proposition 3.4, that is when the real
numbers ση can all be set to σ, independently of η > 0). But assumption (3.41) implies that
|un(tn − t′n, x

′′
n, yn)− φ(sn, x

′′
n, yn)| ≥ ε, whence

|u∞((−s∞ + x∞ · e)/c, x∞, y∞)− φ(s∞, x∞, y∞)| ≥ ε.

One has reached a contradiction. Hence, formula (1.21) is proved and the proof of Theo-
rem 1.3 is complete. �

4 Stability of KPP fronts with speeds c∗(e)

This section is devoted to the proof of Theorem 1.5, under the KPP condition (1.6). Actually,
because of (1.22) when c > c∗(e), part 1) is an immediate consequence of Theorem 1.3. Only
part 2) on the stability of KPP fronts with minimal speeds c∗(e) remains to be proved. The
proof follows the main scheme as that of Theorem 1.3. However, the ideas and the stability
result are new even in the special cases which were previously considered in the literature.
Two additional serious difficulties arise: firstly the sub- and super-solutions must take into
account the fact that the behavior of the KPP fronts with minimal speeds c∗(e) as they ap-
proach p− is not purely exponential e−λ∗s, secondly, because of the criticality of λ∗, some of
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the ideas used in Section 3 cannot just be adapted (for instance, there is no λ satisfying (3.1)
with λc = λ∗). The sub- and super-solutions involve products of exponentially decaying
functions and suitable polynomial factors which are given in terms of some derivatives of the
principal eigenfunctions ψλ with respect to λ at λ = λ∗.

Proof of part 2) of Theorem 1.5. Up to a shift in time, we can then assume that B = Bφ

in assumption (1.26), that is u0(x, y)− p−(x, y) ∼ U(0, x, y)− p−(x, y) as x · e→ +∞, where
Bφ > 0 is given in formula (1.23).

Step 1: Choice of parameters. Since U is a pulsating front in the sense of (1.7) with speed
c∗(e), it follows from [20], as already underlined, that there exists a unique λ∗ > 0 such that
k(λ∗)+c∗(e)λ∗ = 0 and λ∗ is a root of k(λ)+λc = 0 with multiplicity 2m+2. Furthermore, the
function λ 7→ k(λ) is analytic (see [12, 28]) and, because of the normalization condition (1.14)
and standard elliptic estimates, the principal eigenfunctions ψλ of the operators Lλ given
in (1.12) are also analytic with respect to λ in the spaces C2,α(Ω). For each j ∈ N and

λ ∈ R, call ψ
(j)
λ the j-th order derivative of ψλ with respect to λ, under the convention that

ψ
(0)
λ = ψλ. All these functions are periodic and of class C2 in Ω. Denote L

(j)
λ the operator

whose coefficients are the j-th order derivatives with respect to λ of the coefficients of Lλ.
In other words,

L
(0)
λ ψ = Lλψ, L

(1)
λ ψ = 2 eA∇ψ + [∇ · (Ae)− q · e− 2λ eAe]ψ, L

(2)
λ ψ = −2 eAeψ

and L
(j)
λ ψ = 0 for all j ≥ 3 and for all ψ ∈ C2(Ω) and λ ∈ R. Differentiating the relation

Lλψλ − k(λ)ψλ = 0 with respect to λ yields

Lλψ
(1)
λ − k(λ)ψ

(1)
λ + 2 eA∇ψλ + [∇ · (Ae)− q · e− 2λ eAe]ψλ − k′(λ)ψλ

= (Lλ − k(λ))ψ
(1)
λ + (L

(1)
λ − k′(λ))ψλ = 0,

Lλψ
(j)
λ − k(λ)ψ

(j)
λ + j

(
2 eA∇ψ(j−1)

λ + [∇ · (Ae)− q · e− 2λ eAe]ψ
(j−1)
λ

)
−j k′(λ)ψ

(j−1)
λ − 2C2

j eAeψ
(j−2)
λ −

∑
2≤l≤j

Cl
j k

(l)(λ)ψ
(j−l)
λ

= (Lλ − k(λ))ψ
(j)
λ + j(L

(1)
λ − k′(λ))ψ

(j−1)
λ + C2

j L
(2)
λ ψ

(j−2)
λ −

∑
2≤l≤j

Cl
j k

(l)(λ)ψ
(j−l)
λ

= 0 for all j ≥ 2,

(4.1)

where Cm
n = n!/(m!(n−m)!) for all integers m,n such that m ≤ n. Similarly, since νA∇ψλ =

λ (νAe)ψλ on ∂Ω for all λ ∈ R, one gets that, for all λ ∈ R,

νA∇ψ(j)
λ − λ (νAe)ψ

(j)
λ − j (νAe)ψ

(j−1)
λ = 0 on ∂Ω, for all j ≥ 1. (4.2)

Let i and I be the functions defined by
i(s, x, y) = Bφ e

−λ∗s ×

[
2m+1∑
j=0

(−1)j Cj
2m+1 s

2m+1−j ψ
(j)
λ∗ (x, y)

]
,

I(t, x, y) = i(x · e− c∗(e)t, x, y).
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Notice that

i(s, x, y) ∼ Bφ e
−λ∗s s2m+1 ψλ∗(x, y) ∼ φ(s, x, y)− p−(x, y) as s→ +∞, (4.3)

uniformly in (x, y) ∈ Ω, from (1.23) and the fact that minΩ ψλ∗ > 0. It also follows from (4.1)
and (4.2) applied to λ = λ∗ that νA(x, y)∇I(t, x, y) = 0 for all (t, x, y) ∈ R× ∂Ω, and

It −∇ · (A(x, y)∇I) + q(x, y) · ∇I − ζ−(x, y) I = 0 in R× Ω. (4.4)

Now, for µ ∈ R and a > 0, denote
h(s, x, y) = e−µs ×

[
2m+2∑
j=0

(−1)j Cj
2m+2 (s+ a)2m+2−j ψ(j)

µ (x, y)

]
,

H(t, x, y) = h(x · e− c∗(e)t, x, y).

Because of (4.2), there holds νA(x, y)∇H(t, x, y) = 0 for (t, x, y) ∈ R× ∂Ω. Notice that

h(s, x, y) ∼ e−µs s2m+2 ψµ(x, y) as s→ +∞, uniformly in (x, y) ∈ Ω. (4.5)

It also follows from the definition of m and from the proof of Proposition 4.5 of [20] that one
can choose µ− λ∗ > 0 small enough and a > 0 large enough so that{

hs(s, x, y) ≤ 0 for all (s, x, y) ∈ [0,+∞)× Ω,

Ht −∇ · (A(x, y)∇H) + q(x, y) · ∇H − ζ−(x, y)H ≤ −υ e−µs (s+ a)2m+2 < 0
(4.6)

for all (t, x, y) ∈ R× Ω such that s = x · e− c∗(e)t ≥ 0, where

υ =
|k(2m+2)(λ∗)|κ∗ (µ− λ∗)2m+2

4 (2m+ 2)!
> 0 and κ∗ = min

Ω
ψλ∗ > 0. (4.7)

Even if it means decreasing µ− λ∗, one can also assume without loss of generality that

λ∗ < µ < λ∗(1 + β), (4.8)

where one recalls that β > 0 is such that the function (x, y, u) 7→ ∂f
∂u

(x, y, p−(x, y) + u) is of

class C0,β(Ω× [0, γ]), for some γ > 0.
Let θ be a C2(Ω) nonpositive periodic function satisfying (3.4). Let ψ+ be given by (1.17),

and denote m+ = minΩ ψ
+ > 0. Because of (1.23) and µ > λ∗, one can choose a real number

s such that s ≥ 1 and

0 ≤ h(s, x, y) ≤ φ(s, x, y)− p−(x, y)

2
≤ m+ for all (s, x, y) ∈ [s− 1,+∞)× Ω.

Let χ ∈ C2(R; [0, 1]) be as in (3.6) and let g be the function defined in R× Ω by

g(s, x, y) = −h(s, x, y)χ(s+ θ(x, y)) + ψ+(x, y) (1− χ(s+ θ(x, y))).
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Notice that χ(s+ θ(x, y)) = 0 for all (s, x, y) ∈ (−∞, s− 1]× Ω, and that g is bounded, C2

in R×Ω and periodic with respect to the variables (x, y). Furthermore, g ≥ −m+ in R×Ω,
and, for all (s, x, y) ∈ R× Ω,

s ≤ s− 1 =⇒ g(s, x, y) = ψ+(x, y) ≥ 0,

s ≥ s− 1 =⇒ g(s, x, y) ≥ −h(s, x, y) ≥ −φ(s, x, y)− p−(x, y)

2
.

(4.9)

We then claim that

lim sup
ς→−∞

sup
(s,x,y)∈R×Ω, ρ∈(0,ρ+/2]

φ(s, x, y)− ρ g(s+ ς, x, y)− p+(x, y)

ρψ+(x, y)
≤ −1,

where ρ+ = minΩ[(p+ − p−)/ψ+] > 0. Assume not. There exist then 0 < ε ≤ 1 and three
sequences (sn, xn, yn)n∈N in R× Ω, (ρ′n)n∈N in (0, ρ+/2] and (ςn)n∈N such that limn→+∞ ςn =
−∞ and

φ(sn, xn, yn)− ρ′n g(sn + ςn, xn, yn)− p+(xn, yn)

ρ′n ψ
+(xn, yn)

≥ −1 + ε

for all n ∈ N. As in the proof of Lemma 3.1, it follows that the sequence (sn + ςn)n∈N is
bounded from below, whence limn→+∞ sn = +∞. The last part of the argument is different
from that of Lemma 3.1, since g is not nonnegative anymore. For each n ∈ N, there holds

ρ+

2
+
φ(sn, xn, yn)− p+(xn, yn)

ψ+(xn, yn)
≥ ρ′nm

+

ψ+(xn, yn)
+
φ(sn, xn, yn)− p+(xn, yn)

ψ+(xn, yn)

≥ −(1− ε)ρ′n ≥ −(1− ε)
ρ+

2
> −ρ

+

2

since 0 < ρ′n ≤ ρ+/2, and g ≥ −m+ in R×Ω. This leads to a contradiction as in Lemma 3.1.
Therefore, one can choose s0 ≤ 0 such that

φ(s, x, y)− ρ g(s+ s0, x, y)− p+(x, y)

ψ+(x, y)
≤ −ρ

2

for all ρ ∈ (0, ρ+/2] and (s, x, y) ∈ R× Ω.
Set

G(t, x, y) = g(x · e− c∗(e)t, x, y) e−ωt

for all (t, x, y) ∈ R× Ω, where

ω =
µ+

2
> 0

and µ+ > 0 is given in (1.17). The function G is of class C2(R × Ω) and, because of (4.6),
there exists a continuous, bounded and (x, y)-periodic function B in R× Ω such that

Gt −∇ · (A(x, y)∇G) + q(x, y) · ∇G = B(x · e− c∗(e)t, x, y) e−ωt, (4.10)

where {
B(s, x, y) ≥ (−ζ−(x, y) + ω)h(s, x, y) if s ≥ s+ ‖θ‖∞ (≥ 0),

B(s, x, y) = (ζ+(x, y) + µ+ − ω)ψ+(x, y) if s ≤ s− 1.
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For all (s, x, y) ∈ R× Ω, define

C(s, x, y) = hs(s, x, y)χ(s+ θ(x, y))− (h(s, x, y) + ψ+(x, y))χ′(s+ θ(x, y)).

The function C is continuous and bounded in R × Ω, and periodic in the variables (x, y).
Observe that C(s, x, y) ∼ −µe−µss2m+2ψµ(x, y) as s→ +∞, uniformly in (x, y) ∈ Ω, whence
C(s, x, y) = o(−φs(s, x, y)) as s → +∞ from (1.23), (2.2) and µ > λ∗. Choose ρ− > 0 as
in (3.12) and s+ ≥ 0 such that

∀ (s, x, y) ∈ [s+,+∞)× Ω,



p−(x, y) < φ(s, x, y) ≤ p−(x, y) +
ρ−

2
,

−ρ
−

2
≤ g(s+ s0, x, y) = −h(s+ s0, x, y) ≤ 0,

B(s+ s0, x, y) ≥ (−ζ−(x, y) + ω)h(s+ s0, x, y),

C(s+ s0, x, y) = hs(s+ s0, x, y) ≤ 0,

|C(s, x, y)| ≤ −φs(s, x, y).

(4.11)

Lastly, define

M = max
(x,y)∈Ω, p−(x,y)−‖g‖∞≤u≤p+(x,y)+‖g‖∞

∣∣∣∣∂f∂u (x, y, u)

∣∣∣∣ ≥ 0, (4.12)

let ρ+
1 > 0, s− ≤ 0 and δ > 0 be given as in (3.14), (3.15) and (3.16), and set

ε1 = min

(
ρ+

1

4
,

δ

4 ‖C‖∞
,
1

2

)
> 0, ε0 = m+ ε1 > 0 and σ =

M ‖g‖∞ + ‖B‖∞
ω ‖C‖∞

≥ 0. (4.13)

Step 2: Comparison with sub- and super-solutions. Assume now that the initial condi-

tion u0 satisfies (1.19) and (1.20). For all (t, x, y) ∈ [0,+∞)× Ω, define{
u(t, x, y) = φ(sσ0(t, x), x, y)− 2 ε1 g(sσ0(t, x) + s0, x, y) e

−ωt,

u(t, x, y) = φ(s−σ0(t, x), x, y) + 2 ε1 g(s−σ0(t, x), x, y) e
−ωt,

where sκ(t, x) = x · e− c∗(e)t+ κ− κe−ωt and σ0 shall be chosen below.
As in Step 1 of the proof of Proposition 3.2, one can choose t0 > 0 such that (3.25) holds.

Then we claim that

max
[
u(t0, x, y), p

−(x, y)
]
≤ u(t0, x, y) in Ω, (4.14)

for σ0 large enough. If not, there exist two sequences (xn, yn)n∈N in Ω and (σn)n∈N such that
limn→+∞ σn = +∞ and

φ(sσn(t0, xn), xn, yn)− 2 ε1 g(sσn(t0, xn) + s0, xn, yn) e−ωt0 > u(t0, xn, yn)

for all n ∈ N. As in Step 2 of the proof of Proposition 3.2, it follows that
limn→+∞ sσn(t0, xn) = +∞ and limn→+∞ xn · e = +∞. There holds

φ(sσn(t0, xn), xn, yn)− p−(xn, yn)

U(t0, xn, yn)− p−(xn, yn)
− 2 ε1 g(sσn(t0, xn) + s0, xn, yn) e−ωt0

U(t0, xn, yn)− p−(xn, yn)

>
u(t0, xn, yn)− p−(xn, yn)

U(t0, xn, yn)− p−(xn, yn)
.
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The right-hand side converges to 1 as n → +∞, from (3.23), while the first term of the
left-hand side converges to 0, from (2.2). Lastly, the second term in the left-hand converges
to 0 too, from (1.23) and µ > λ∗. This leads to a contradiction, which yields (4.14) for σ0

large enough.
Similarly, there holds

u(t0, x, y) ≤ min
[
u(t0, x, y), p

+(x, y)
]

in Ω, (4.15)

for σ0 large enough. Assume not. Then there exist two sequences (xn, yn)n∈N in Ω and
(σn)n∈N such that limn→+∞ σn = +∞ and

φ(s−σn(t0, xn), xn, yn) + 2 ε1 g(s−σn(t0, xn), xn, yn) e−ωt0 < u(t0, xn, yn)

for all n ∈ N. As in Step 2 of the proof of Proposition 3.2, it follows that the se-
quence (s−σn(t0, xn))n∈N is bounded from below, whence limn→+∞ xn · e = +∞ and
limn→+∞ u(t0, xn, yn)− p−(xn, yn) = 0. Since φ > p− and ε1 ∈ (0, 1/2], it follows from (4.9)
that 2 ε1 g(s−σn(t0, xn), xn, yn) e−ωt0 ≥ −(φ(s−σn(t0, xn), xn, yn)− p−(xn, yn))/2, whence

φ(s−σn(t0, xn), xn, yn)− p−(xn, yn)

2 (U(t0, xn, yn)− p−(xn, yn))
<
u(t0, xn, yn)− p−(xn, yn)

U(t0, xn, yn)− p−(xn, yn)
.

One gets a contradiction as in Step 2 of the proof of Proposition 3.2.
As a consequence, (4.15) holds for σ large enough and one can choose σ0 ≥ σ large enough

so that (4.14) and (4.15) are fulfilled for σ = σ0.
Let us now check that u and u are respectively sub- and super-solutions of (1.1) for t ≥ t0,

when u > p− and u < p+. Notice first that νA(x, y)∇u(t, x, y) = νA(x, y)∇u(t, x, y) = 0 as
soon as (x, y) ∈ ∂Ω, from (3.4), (4.2) and the definition of g. It follows from (4.10) and the
definition of sσ0(t, x) that

Lu(t, x, y) = f(x, y, φ(sσ0(t, x), x, y))− f(x, y, u(t, x, y)) + σ0 ω φs(sσ0(t, x), x, y) e
−ωt

−2 ε1B(sσ0(t, x) + s0, x, y) e
−ωt − 2 ε1 σ0 ωC(sσ0(t, x) + s0, x, y) e

−2ωt.

If u(t, x, y) > p−(x, y) and sσ0(t, x) ≥ s+, where s+ is given by (4.11), then it follows from
the first four properties of (4.11) and from the inequalities 0 < ε1 ≤ 1/2 and φs < 0, that
Lu(t, x, y) ≤ 0. If u(t, x, y) > p−(x, y) and sσ0(t, x) ≤ s−, where s− is given by (3.15),
then it follows from (3.15), φs < 0, s0 ≤ 0 and ω = µ+/2 that Lu(t, x, y) ≤ 0. Lastly, if
p−(x, y) < u(t, x, y) and s− ≤ sσ0(t, x) ≤ s+, then it follows from (3.16), (4.12), (4.13) and
σ0 ≥ σ that Lu(t, x, y) ≤ 0 too. Since u(t0, x, y) ≤ u(t0, x, y) and p−(x, y) ≤ u(t, x, y) for all
(t, x, y) ∈ [0,+∞)× Ω, one concludes from the parabolic maximum principle that

max
[
u(t, x, y), p−(x, y)

]
≤ u(t, x, y) for all (t, x, y) ∈ [t0,+∞)× Ω.

Similarly, there holds

Lu(t, x, y) = f(x, y, φ(s−σ0(t, x), x, y))− f(x, y, u(t, x, y)) + σ0 ω φs(s−σ0(t, x), x, y) e
−ωt

+2 ε1B(s−σ0(t, x), x, y) e
−ωt − 2 ε1 σ0 ωC(s−σ0(t, x), x, y) e

−2ωt.
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As above, it follows then from (3.15), (3.16), (4.11), (4.12), (4.13), and from φs < 0, s0 ≤ 0,
ω = µ+/2 and σ0 ≥ σ that Lu(t, x, y) ≥ 0 for all (t, x, y) ∈ [t0,+∞)×Ω such that u(t, x, y) <
p+(x, y). Since u(t0, x, y) ≥ u(t0, x, y) and u(t, x, y) ≤ p+(x, y) for all (t, x, y) ∈ [0,+∞)×Ω,
one concludes from the parabolic maximum principle that

u(t, x, y) ≤ min
[
u(t, x, y), p+(x, y)

]
for all (t, x, y) ∈ [t0,+∞)× Ω.

Step 3: Time-global sharp estimates as x · e− c∗(e)t is very large. We now claim that,
for any η > 0, there are Dη > 0 and ση ∈ R such that

∀ (t, x, y) ∈ [0,+∞)× Ω, [x · e− c∗(e)t ≥ ση] =⇒[
φ(x · e− c∗(e)t+ η, x, y)−Dη ψλ∗(x, y) e

−λ∗(x·e−c∗(e)t)

≤ u(t, x, y) ≤ φ(x · e− c∗(e)t− η, x, y) +Dη ψλ∗(x, y) e
−λ∗(x·e−c∗(e)t)

]
.

(4.16)

Let η > 0 be any positive real number. We are going to trap u, for very large x · e− c∗(e)t,
between a sub- and a super-solution which are larger and smaller than the left- and right-
hand sides of (4.16), respectively.

Define, for all (t, x, y) ∈ [0,+∞)× Ω,

uη(t, x, y) = i(s+ η/2, x, y) + h(s, x, y)−Dη ψλ∗(x, y) e
−λ∗s + p−(x, y),

where s = x · e − c∗(e)t, i and h have been defined in Step 1, and the real number Dη > 0
shall be chosen later. Remember now that the function (x, y, ξ) 7→ ∂f

∂u
(x, y, p−(x, y) + ξ) is

assumed to be of class C0,β(Ω× [0, γ]) for some β > 0 and γ > 0. Therefore, there exists a
real number r ≥ 0 such that∣∣f(x, y, p−(x, y) + ξ)− f(x, y, p−(x, y))− ζ−(x, y) ξ

∣∣ ≤ r ξ1+β (4.17)

for all (x, y, ξ) ∈ Ω × [0, γ]. From (1.24) with B = Bφ, (4.3), (4.5) and (4.8), there exists
ση ≥ 0 such that

0 < φ(s+ η, x, y)− p−(x, y) ≤ i(s+ η/2, x, y) + h(s, x, y) ≤ γ,

0 < h(s, x, y) ≤ i(s+ η/2, x, y),

r 21+β i(s+ η/2, x, y)1+β ≤ υ e−µs (s+ a)2m+2

(4.18)

for all (s, x, y) ∈ [ση,+∞)× Ω, where υ > 0 is given in (4.7), and

i(x · e+ η/2, x, y) + h(x · e, x, y) ≤ u0(x, y)− p−(x, y) (4.19)

for all (x, y) ∈ Ω such that x · e ≥ ση. Then choose Dη > 0 large enough so that

i(ση + η/2, x, y) + h(ση, x, y)−Dη ψλ∗(x, y) e
−λ∗ση ≤ 0 (4.20)

for all (x, y) ∈ Ω. In order to prove the first inequality of (4.16), it is then enough to prove,
from (4.18), that

uη(t, x, y) ≤ u(t, x, y) for all (t, x, y) ∈ [0,+∞)× Ω such that x · e− c∗(e)t ≥ ση. (4.21)
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Observe that

uη(0, x, y) ≤ u0(x, y) for all (x, y) ∈ Ω such that x · e ≥ ση

from (4.19), and that

uη(t, x, y) ≤ p−(x, y) ≤ u(t, x, y) for all (t, x, y) ∈ [0,+∞)× Ω such that x · e− c∗(e)t = ση,

from (4.20). Moreover, νA(x, y)∇uη(t, x, y) = 0 for all (t, x, y) ∈ [0,+∞) × ∂Ω, since
νA(x, y)∇I = νA(x, y)∇H = νA(x, y)∇p− = νA(x, y)∇ψλ∗ − λ∗ (νA(x, y)e) ψλ∗ = 0 for
all (x, y) ∈ ∂Ω. Lastly, remember that u ≥ p−. Therefore, from the parabolic maximum
principle, in order to prove (4.21), it is enough to check that Luη(t, x, y) ≤ 0 for all (t, x, y) ∈
Ω−

η , where

Ω−
η = {(t, x, y) ∈ [0,+∞)× Ω such that x · e− c∗(e)t ≥ ση and uη(t, x, y) > p−(x, y)}.

From (4.4), (4.6) and Lλ∗ψλ∗ = k(λ∗)ψλ∗ in Ω, it is straightforward to see that

Luη(t, x, y) ≤ ζ−(x, y)
(
i(s+ η/2, x, y) + h(s, x, y)−Dη ψλ∗(x, y) e

−λ∗s
)

−υ e−µs (s+ a)2m+2 + f(x, y, p−(x, y))− f(x, y, uη(t, x, y))

for all (t, x, y) ∈ Ω−
η , where s = x · e − c∗(e)t. From (4.18), there holds 0 < uη(t, x, y) −

p−(x, y) ≤ γ for all (t, x, y) ∈ Ω−
η , whence

f(x, y, uη(t, x, y)) ≥ f(x, y, p−(x, y)) + ζ−(x, y) (uη(t, x, y)− p−(x, y))

−r (uη(t, x, y)− p−(x, y))1+β.

Furthermore, 0 < uη(t, x, y) − p−(x, y) ≤ 2 i(x · e − c∗(e)t + η/2, x, y) in Ω−
η . Therefore, it

follows that, for all (t, x, y) ∈ Ω−
η ,

Luη(t, x, y) ≤ −υ e−µs (s+ a)2m+2 + r 21+β i(s+ η/2, x, y)1+β ≤ 0

from (4.18). As a consequence, (4.21) holds, and then the first inequality in (4.16) as well.
Define now, for all (t, x, y) ∈ [0,+∞)× Ω,

uη(t, x, y) = i(s− η/2, x, y) +Dη ψλ∗(x, y) e
−λ∗s + p−(x, y),

where s = x · e− c∗(e)t. Even if it means increasing ση and Dη, it follows from (1.24) with
B = Bφ, (4.3) and (4.8) that one can assume that (4.18), (4.19) and (4.20) hold, as well as

∀ (s, x, y) ∈ [ση,+∞)× Ω, 0 < i(s− η/2, x, y) ≤ φ(s− η, x, y)− p−(x, y),

∀ (x, y) ∈ Ω, [x · e ≥ ση] =⇒ [u0(x, y)− p−(x, y) ≤ i(x · e− η/2, x, y)] ,

∀ (x, y) ∈ Ω, i(ση − η/2, x, y) +Dη ψλ∗(x, y) e
−λ∗ση + p−(x, y) ≥ p+(x, y).

(4.22)

In order to prove the second inequality of (4.16), it is then enough to prove that

u(t, x, y) ≤ uη(t, x, y) for all (t, x, y) ∈ [0,+∞)× Ω such that x · e− c∗(e)t ≥ ση. (4.23)
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It also follows from (4.22) that

u0(x, y) ≤ uη(0, x, y) for all (x, y) ∈ Ω such that x · e ≥ ση,

and that

u(t, x, y) ≤ p+(x, y) ≤ uη(t, x, y) for all (t, x, y) ∈ [0,+∞)× Ω such that x · e− c∗(e)t = ση.

Moreover, νA(x, y)∇uη(t, x, y) = 0 for all (t, x, y) ∈ [0,+∞)× ∂Ω. Remember that u ≤ p+.
Therefore, from the parabolic maximum principle, in order to prove (4.23), it is enough to
check that Luη(t, x, y) ≥ 0 for all (t, x, y) ∈ Ω+

η , where

Ω+
η = {(t, x, y) ∈ [0,+∞)× Ω such that x · e− c∗(e)t ≥ ση and uη(t, x, y) < p+(x, y)}.

From (4.4), from Lλ∗ψλ∗ = k(λ∗)ψλ∗ and from the KPP condition (1.6), there holds

Luη(t, x, y) = ζ−(x, y)
(
i(s− η/2, x, y) +Dη ψλ∗(x, y) e

−λ∗s
)

+f(x, y, p−(x, y))− f(x, y, uη(t, x, y))

≥ 0

for all (t, x, y) ∈ Ω+
η , where s = x · e− c∗(e)t. As a consequence, (4.23) holds, and then the

second inequality in (4.16) as well.

Step 4: Conclusion. By using the fact that e−λ∗s = o(φ(s, x, y) − p−(x, y)) as s → +∞
uniformly in (x, y) ∈ Ω, it follows from the same arguments as in Proposition 3.4 that, if
v(t, x, y) is a solution of (1.1) in R× Ω such that
∃ a ≥ b ∈ R, φ(x · e− c∗(e)t+ a, x, y) ≤ v(t, x, y) ≤ φ(x · e− c∗(e)t+ b, x, y) in R× Ω,

∀ η > 0, ∃ Dη > 0, ∃ ση ∈ R, [s = x · e− c∗(e)t ≥ ση] =⇒[
φ(s+ η, x, y)−Dη ψλ∗(x, y) e

−λ∗s ≤ v(t, x, y) ≤ φ(s− η, x, y) +Dη ψ−λ∗(x, y) e
−λ∗s

]
,

then v(t, x, y) = φ(s, x, y) = U(t, x, y) in R× Ω.
Finally, from this Liouville type result and Steps 2 and 3, the proof of property (1.25) of

part 2) of Theorem 1.5 (with τ = 0 due to our assumption B = Bφ) can be done with the
same arguments as those used in the proof of property (1.21) of Theorem 1.3. The proof of
Theorem 1.5 is then complete. �
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