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Abstract
This paper deals with the challenging problem of counting the number of solu-

tions of a CSP, denoted #CSP. Recent progress has been made using search meth-
ods, such as Backtracking with Tree-Decomposition (BTD) [Jégou and Terrioux,
2003], which exploit the constraint graph structure in order to solve CSPs. We
propose to adapt BTD for solving the #CSP problem. The resulting exact counting
method has a worst-case time complexity exponential in a specific graph param-
eter, called tree-width. For problems with a sparse constraint graph but a large
tree-width, we propose an iterative method which approximates the number of so-
lutions by solving a partition of the set of constraints into a collection of partial
chordal subgraphs. Its time complexity is exponential in the maximum clique size
- the clique number - of the original problem, which can be much smaller than
its tree-width. Experiments on CSP and SAT benchmarks show the practical effi-
ciency of our proposed approaches1.

Software available at http://mulcyber.toulouse.inra.fr/projects/toulbar2/

1 Introduction
The Constraint Satisfaction Problem (CSP) formalism offers a powerful framework
for representing and solving efficiently many problems. Finding a solution is NP-
complete. A more difficult problem consists in counting the number of solutions. This
problem, denoted #CSP, is known to be #P-complete [Valiant, 1979]. This problem has
numerous applications in computer science, particularly in AI, e.g. in approximate rea-
soning [Roth, 1996], in belief revision [Darwiche, 2001], in diagnosis [Kumar, 2002],

1A preliminary version appears in [Favier et al., 2009].
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in guiding backtrack search heuristics to find solutions to CSPs [Zanarini and Pesant,
2009], and in other domains outside computer science such as in statistical physics
[Burton and Steif, 1994] or in computational biology for protein structure prediction
[Mann et al., 2007].

In the literature, two principal classes of approaches have been proposed. In the
first class, methods find exactly the number of solutions in exponential time. In the
second class, methods give approximations in a reasonable time. For the first class, a
natural approach consists in extending classical search algorithms such as FC or MAC
in order to enumerate all solutions. But the more solutions there are, the longer it takes
to enumerate them.

Here, we are interested in search methods that exploit the problem structure, provid-
ing time and space complexity bounds. This is the case for the d-DNNF compiler c2d
[Darwiche, 2004] and AND/OR graph search [Dechter and Mateescu, 2004, 2007] for
counting. We propose to adapt Backtracking with Tree-Decomposition (BTD) [Jégou
and Terrioux, 2003] to #CSP. This method was initially proposed for solving structured
CSPs. Our modifications to BTD, resulting in an algorithm called #BTD, are similar to
what has been done in the AND/OR context [Dechter and Mateescu, 2004, 2007], ex-
cept that #BTD is based on a cluster tree-decomposition instead of a pseudo-tree, which
naturally enables #BTD to exploit dynamic variable orderings inside clusters whereas
AND/OR search uses a static ordering.

Most of the recent work on counting has been realized on a specific case of #CSP
called #SAT, the model counting problem associated with SAT [Valiant, 1979]. Ex-
act methods for #SAT extend systematic SAT solvers, adding component analysis
[Bayardo and Pehoushek, 2000] (Relsat solver) and caching [Sang et al., 2004]
(Cachet, further improved by sharpSAT [Thurley, 2006]) for efficiency purposes.

Approaches using approximations estimate the number of solutions. They propose
poly-time or exponential time algorithms which should offer reasonably good approxi-
mations of the number of solutions, with theoretical guarantees about the quality of the
approximation, or not. Most of the work has been done by sampling either the original
OR search space [Wei and Selman, 2005, Gomes et al., 2007a, Gogate and Dechter,
2007, Kroc et al., 2008], or the original AND/OR search space [Gogate and Dechter,
2008]. All these methods except that in [Wei and Selman, 2005] provide a lower bound
on the number of solutions with a high-confidence interval obtained by randomly as-
signing variables until solutions are found. A possible drawback of these approaches
is that they might find no solution within a given time limit due to inconsistent partial
assignments. For large and complex problems, this results in zero lower bounds or
it requires time-consuming parameter (e.g. sample size) tuning in order to avoid this
problem. Another solution is to rely on a complete search method, withdrawing any
time limit, in order to check whether every variable assignment made during the sam-
pling process is globally consistent or not and then backtrack as done in [Gogate and
Dechter, 2007].

Another approach involves reducing the search space by adding streamlining XOR
constraints [Gomes et al., 2006, 2007b]. However, it does not guarantee that the result-
ing problem is easier to solve. A good overview of state-of-the-art exact and approxi-
mate counting methods for #SAT is given in [Gomes et al., 2009].

In this paper, we propose to relax the problem, by partitioning the set of constraints
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into a collection of structured chordal subproblems. Each subproblem is then solved
using #BTD. Finally, an approximate number of solutions on the whole problem is
obtained by combining the results of each subproblem. The resulting approximate
method is called Approx#BTD. The task of counting the number of solutions of each
subproblem should be relatively easy if the original instance has a sparse graph. In fact,
it depends on the tree-width of the subproblems, which is bounded by the maximum
clique size of the original instance called the clique number. In the case of a sparse
graph, we expect this number to be small. This also forbids using our approach for
CSPs with global constraints (i.e. having a complete constraint graph) or propositional
CNF formulae with very large clauses. Approx#BTD gives also a trivial upper bound
on the number of solutions.

Other relaxation-based counting methods have been tried in the literature such as
mini-bucket elimination and iterative join-graph propagation [Kask et al., 2004], or
in the related context of Bayesian inference, iterative belief propagation and the edge
deletion framework [Choi and Darwiche, 2006]2. These approaches do not exploit the
local structure of the instances as it is done by search methods such as #BTD, thanks to
local consistency and dynamic variable ordering.

In the next section, we introduce notation and the notion of a tree-decomposition.
Section 3 describes #BTD for exact counting and Section 4 presents Approx#BTD for
approximate counting. Experimental results are given in Section 5, then we conclude.

2 Preliminaries
A Constraint Satisfaction Problem [Montanari, 1974] is a quadruplet P = (X ,D,C,R).
X is a set of n variables with finite domains D. The domain of variable xi ∈ X with
i ∈ [1,n] is denoted dxi ∈ D. The maximum domain size is d = maxi∈[1,n] |dxi |. C is
a set of m constraints. Each constraint c ∈ C is a set {xc1 , . . . ,xck} ⊆ X of variables.
The problem is called a binary CSP if all the constraints have k ≤ 2. A relation rc ∈ R
is associated with each constraint c such that rc represents the set of allowed tuples
over dxc1

× ·· ·× dxck
for the assignment of the variables in c. Note that we can also

define constraints by using functions or predicates for instance. An assignment of Y =
{x1, . . . ,xk}⊆X is a tuple A = (v1, . . . ,vk) from dx1×·· ·×dxk . We note the assignment
(v1, . . . ,vk) in the more meaningful form (x1 ← v1, . . . ,xk ← vk). The projection of a
tuple A over a subset of variables c⊆Y is denoted A [c]. A constraint c is said satisfied
by A if c⊆ Y and A [c] ∈ rc, violated otherwise. A is said consistent with respect to a
given subproblem if it satisfies all its constraints. A solution is an assignment of all the
variables satisfying all the constraints.

The structure of a CSP can be represented by the graph (X ,C), called the constraint
graph, whose vertices are the variables of X and with an edge between two vertices if
the corresponding variables share a constraint in C. A graph is chordal if every cycle
of length at least four has a chord, i.e. an edge joining two non-consecutive vertices
along the cycle.

2It starts by solving an initial polytree-structured subproblem, further augmented by progressively recov-
ering some edges, until the whole problem is solved. Approx#BTD starts directly with a possibly larger
chordal subproblem.
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Figure 1: A tree-decomposition of a small problem with 8 variables.

A tree-decomposition [Robertson and Seymour, 1986] of a CSP P is a pair (C ,T )
with T = (I,F) a tree with vertices I and edges F and C = {Ci : i ∈ I} a family of
subsets of X , such that each cluster Ci is a node of T and satisfies: (1) ∪i∈ICi = X ,
(2) for each constraint c ∈ C, there exists i ∈ I with c ⊆ Ci, (3) for all i, j,k ∈ I, if k
is on a path from i to j in T , then Ci ∩C j ⊆ Ck. The width of a tree-decomposition
(C ,T ) is equal to maxi∈I |Ci|− 1. The tree-width of P is the minimum width over all
its tree-decompositions. Finding an optimal tree-decomposition is NP-Hard [Arnborg
et al., 1987].

A tree-decomposition can be found by triangulation of (i.e. adding edges to) the
constraint graph such that it becomes chordal and then by searching the maximal
cliques of the triangulated constraint graph (resulting in the clusters C ) and finally
by selecting a maximum spanning tree T on the cluster graph with edges between Ci
and C j if Ci∩C j 6= /0 and edge weights equal to |Ci∩C j|. In the experiments, we used
the Min-Fill greedy heuristic (it locally adds the minimum number of edges to the con-
straint graph), a very usual heuristic aimed at the production of tree-decompositions
with a small tree-width [Rose, 1970].

In the following, from a tree-decomposition, we consider a rooted tree (I,F) with
root C1 and we note Sons(Ci) the set of son clusters of Ci and Desc(Ci) the set of
variables which belong to Ci or to any descendant C j of Ci in the subtree rooted in Ci.

Example 1. Consider the CSP the constraint graph of which is provided in Figure
1(a). We assume that each domain is {a,b,c,d} and each constraint ci j = {xi,x j} has
a relation rci j such that xi 6= x j, which defines a graph coloring problem.

Figure 1(b) represents an optimal tree-decomposition for the chordal graph of
Figure 1(a). We have C1 = {x1,x2,x3}, C2 = {x2,x3,x4,x5}, C3 = {x4,x5,x6}, and
C4 = {x3,x7,x8}. For instance, Desc(C2) = C2 ∪ C3 = {x2,x3,x4,x5,x6}. The tree-
width is 3.
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3 Exact solution counting with #BTD
The essential property of a tree decomposition is that assigning Ci∩C j (C j ∈ Sons(Ci))
by the assignment A separates the initial problem into two subproblems, which can
then be solved independently and the product of their number of solutions returned as
the total number of solutions. The first subproblem, denoted P j/A [Ci∩C j ] and rooted in
C j, is defined by the variables in Desc(C j), with variables Ci ∩C j assigned by A , and
by all the constraints involving at least one variable in Desc(C j) \Ci. The remaining
constraints, together with the variables they involve, define the remaining subproblem.

A tree search backtracking algorithm can exploit this property by using a suitable
variable assignment ordering : the variables of any cluster Ci must be assigned before
the variables that remain in its son clusters. In this case, for any cluster C j ∈ Sons(Ci),
once Ci∩C j is assigned, the subproblem rooted in C j conditioned by the current assign-
ment A of Ci ∩C j can be solved independently of the rest of the problem. The exact
number of solutions nb of this subproblem P j/A [Ci∩C j ], called a #good and represented
by a pair (A [Ci ∩ C j],nb), can be recorded, which means it will never be computed
again for the same assignment of Ci∩C j. This is why algorithms such as BTD [Jégou
and Terrioux, 2003] and AND/OR graph search [Dechter and Mateescu, 2004, 2007],
exploiting the related notions of structural goods and pseudo-tree [Freuder and Quinn,
1985] respectively, are able to keep their time (and space) complexity exponential in
the size of the largest cluster only.

We denote S j/A the number of solutions of subproblem P j/A [Ci∩C j ] compatible with
an assignment A of (Ci∩C j)∪Y , Y ⊆ C j. It corresponds to the number of extensions
of A on Desc(C j) satisfying all the constraints in P j/A [Ci∩C j ]. The total number of
solutions of P is S1/ /0.

Example 2. Consider the CSP in Example 1. (x1,x2, . . . ,x8) is a suitable variable
ordering for the tree-decomposition of Figure 1(b). Given A = (x1← a,x2← b,x3←
c), the variable set of P2/A [C1∩C2] is Desc(C2), (with dx2 = {b},dx3 = {c} and dx4 =
dx5 = dx6 = {a,b,c,d}) and its constraint set is {c24,c25,c34,c35,c45,c46,c56}.

For instance, S2/A = S3/(x4←a,x5←d) +S3/(x4←d,x5←a) = 2+2 = 4. And the number
of solutions of P4/(x3←c) is S4/A = 6. Thus, there are S2/A ×S4/A = 24 extensions of A
being solutions of P . Note that for P4/(x3←c), ((x3← c),6) is a #good. So, for any other
assignment A ′ of C1 with x3 assigned to c, it is not necessary to compute the number of
solutions of P4/A ′[C1∩C4] because the #good ((x3← c),6) will be exploited in this case.
The total number of solutions is S1/ /0 = 576.

#BTD is described in Algorithm 1. Given an assignment A , a cluster Ci, and a
set VCi of unassigned variables of Ci, #BTD (A , Ci, VCi ) looks for the number Si/A of
extensions B of A on Desc(Ci) such that A [Ci \VCi ] = B[Ci \VCi ]. The first call is #BTD
( /0,C1,C1) and it returns the number of solutions S1/ /0. Inside a cluster Ci, it proceeds
classically by assigning a value to a variable and by backtracking if any constraint
is violated. When every variable in Ci is assigned, #BTD computes the number of
solutions of the subproblem rooted in the first son of Ci, if there is one (otherwise the
current subproblem is totally assigned and contains only one solution). More generally,
let us consider C j, a son of Ci. Given a current assignment A of Ci, #BTD checks
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whether the assignment A [Ci ∩C j] corresponds to a #good. If so, #BTD multiplies
the recorded number of solutions with the current number of solutions NbSol (Si/A ).
Otherwise, it extends A on Desc(C j) in order to compute its number of consistent
extensions nb (S j/A ). Then, it records the #good (A [Ci∩C j],nb). #BTD computes the
number of solutions of the subproblem rooted in the next son of Ci. Finally, when each
son of Ci has been examined, #BTD tries to modify the current assignment of Ci. The
number of solutions of the subproblem rooted in Ci is the sum of solution counts for
every assignment of Ci.

Algorithm 1: #BTD(A , Ci, VCi ) : integer

if VCi = /0 then
if Sons(Ci) = /0 then return 1;1
else

S← Sons(Ci) ;
NbSol← 1 ;
while S 6= /0 and NbSol 6= 0 do

choose C j in S ;
S← S r{C j};
if (A [Ci∩C j],nb) is a #good of P j/A [Ci∩C j ] then

NbSol← NbSol×nb;
else

nb← #BTD(A ,C j,C j r (Ci∩C j));
record #good (A [Ci∩C j],nb) of P j/A [Ci∩C j ];
NbSol← NbSol×nb;

return NbSol;
else

choose x ∈VCi ;2
d← dx ;
NbSol← 0 ;
while d 6= /0 do

choose a in d ;
d← d r{a};
if A ∪ (x← a) does not violate any c ∈C then3

NbSol← NbSol+#BTD(A ∪ (x← a), Ci, VCi r{x});

return NbSol;

Theorem 1. #BTD is sound, complete and terminates.

Proof. #BTD exploits two kinds of problem decomposition. The first one is based on
conditioning. The second one is based on tree-decomposition. In the first case (Else
branch starting at line 2 in Algorithm 1), let P x

a be the subproblem derived from P
by assigning variable x to value a. We have P =

S
a∈dx P x

a . We denote SolP the set
of solutions of P and SP = |SolP |. For any two distinct values a and b of dx, we have
SolP x

a ∩SolP x
b
= /0. Thus, the set {SolP x

a |a∈ dx} is a partition of SolP and SP = ∑
a∈dx

SP x
a .

In the second case of problem decomposition (If branch starting at line 1 in Algo-
rithm 1), we are dealing with independent subproblems. Two CSPs P1 =(X1,D1,C1,R1)
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and P2 = (X2,D2,C2,R2) are independent if and only if X1 ∩X2 = /0. If P = P1 ∪P2
with P1 and P2 two independent subproblems, then the solutions of P is the Carte-
sian product of the solutions of P1 and P2. Therefore, SP = SP1 × SP2 . In the case
of a tree-decomposition, given a cluster Ci and an assignment A of Y ⊂ X such that
Desc(Ci)∩ Y = Ci, we have all the subproblems P j/A [Ci∩C j ],∀C j ∈ Sons(Ci) mutually
independent. Then A has Si/A = ∏

C j∈Sons(Ci)
S j/A consistent extensions on Desc(Ci).

If (I ,nb) is a #good of P j/A [Ci∩C j ] such that A [Ci∩C j] = I , then A has nb consistent
extensions on Desc(C j) : S j/A = nb.

Theorem 2. #BTD has time complexity in O(n ·m · dw+1) and space complexity in
O(n · s ·ds).

Proof. Space complexity. #BTD only records #goods. These are assignments on the
intersections Ci ∩C j with C j a son of Ci. Therefore, if s is the size of the largest of
these intersections, #BTD has a space complexity of O(n · s · ds) because the number
of these intersections is bounded by n, while the number of #goods associated to one
intersection is bounded by ds and the size of a #good is at most s.

Time complexity. In the worst case, #BTD explores all the clusters (at most n) and
tries all the values of every variable inside each cluster, each time checking at most
m constraints at line 3. Thanks to its #good recording mechanism, it never explores
the same cluster with the same assignment of its variables twice. The number of as-
signments of a cluster is bounded by dw+1 with w = maxCi∈C |Ci|−1, the width of the
tree-decomposition. Consequently, #BTD has a time complexity in O(n ·m ·dw+1).

In practice, for problems with a large tree-width, #BTD may run out of time and
memory, as shown in Section 5. In this case, we are interested in an approximate
method.

4 Approximate solution counting with Approx#BTD
We consider here CSPs with a large tree-width but a sparse constraint graph. We define
a collection of easy-to-solve subproblems of an original problem P by partitioning the
set of constraints, that is the set of edges in the constraint graph in the case of a binary
CSP. The constraint graph (X ,C) will be partitioned into k subgraphs (X1,E1), . . . ,
(Xk,Ek), such that ∪Xi = X , ∪Ei = C and ∩Ei = /0. We add the extra property that each
(Xi,Ei) is chordal (without adding extra edges as for building a tree-decomposition).
Thus, each (Xi,Ei) will be associated to a chordal subproblem Pi (with corresponding
sets of variables Xi and constraints Ei), which should have a small tree-width and be
efficiently solved using #BTD.

Assume that SPi is the number of solutions for each subproblem Pi, 1 6 i 6 k. We
will estimate the number of solutions of P exploiting the following property. Let A
be any assignment of X , we denote P(A |= P ) the probability of “A is a solution of

P ”. We have P(A |= P ) =
SP

∏x∈X dx
, assuming a uniform prior probability distribution
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among the different value assignments. We also have

P(A |= P ) = P(A |= P1∧A |= P2∧ . . .∧A |= Pk)
= P(A |= P1)P(A |= P2 | A |= P1) . . .P(A |= Pk | A |= P1∧ . . .∧A |= Pk−1)

In order to simplify these conditional probabilities, we assume probability indepen-
dence between the (A |= Pi) terms, which is true only if ∩Xi = /0. Thus, we have

P(A |= P )≈ P(A |= P1)P(A |= P2) . . .P(A |= Pk)

Now, we can easily deduce the following property in order to estimate SP .

Property 1. Given a CSP P = (X ,D,C,R) and a partition {P1, ...,Pk} of P induced
by a partition of C in k elements.

SP ≈

⌈(
k

∏
i=1

SPi

∏x∈Xi dx

)
×∏

x∈X
dx

⌉
(1)

Recall that this approximation returns an exact answer if all the subproblems are
independent (∩Xi = /0) or k = 1 (P is already chordal as in Example 1) or if there exists
an inconsistent subproblem Pi (P has no solution)3. Moreover, we can provide a trivial
upper bound on the number of solutions due to the fact that each subproblem Pi is a
relaxation of P (the same argument is used in [Pesant, 2005] to construct an upper
bound):

SP ≤ min
i∈[1,k]

SPi

∏x∈Xi dx
×∏

x∈X
dx (2)

Approx#BTD is described in Algorithm 2. Applied to a problem P with constraint
graph (X ,C), the method builds a partition {E1, ...,Ek} of C such that the constraint
graph (Xi,Ei) is chordal for all 1 6 i 6 k. Each chordal subgraph is produced by the
MaxChord+ algorithm4 [Dearing et al., 1988], described in Algorithm 3. An example
of a partition found by Approx#BTD is given in Figure 2. Subproblems associated to
(Xi,Ei) are solved with #BTD. The method returns an approximation to the number of
solutions of P based on Property 1.

Theorem 3. Approx#BTD is sound, complete and terminates.

Proof. It suffices to prove that we have a partition of the constraints at the end of the
while loop in order to be able to apply Property 1. This can be easily shown by
induction using the invariants X = X ′ ∪

(
∪i

j=1X j

)
and “Q = (C′,E1,E2, . . . ,Ei) is a

partition of C” inside the loop.

3Due to the celling function in Equation 1, if the approximation returns zero then P has no solution.
4MaxChord+ returns a maximal subgraph for binary CSPs. For non-binary CSPs, we do not guarantee

subgraph maximality and add to the subproblem all the constraints totally included in the extracted chordal
subgraph. In Figure 2, the edge {x3,x5} has been removed from the first part because it is associated to the
ternary constraint {x3,x4,x5} not totally included in this part.
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Algorithm 2: Approx#BTD(X ,C) : integer

G′← (X ,C) ;
i← 0 ;
while G′ 6= ( /0, /0) do

i← i+1 ;
(X ′,C′)← G′ ;
(Xi,Ei)←MaxChord+(X ′,C′) ;
Let P i be the subproblem associated with (Xi,Ei) ;
SPi ←#BTD( /0,C i

1,C
i
1) with C i

1 the root cluster of P i optimal tree-decomposition ;
G′← (X ′′,C′r Ei) with X ′′ be the set of variables induced by C′r Ei ;

k← i ;

return
⌈(

∏
k
i=1

SPi

∏x∈Xi
dx

)
×∏x∈X dx

⌉
;

Theorem 4. Approx#BTD has time complexity in O(n2 ·m · dw′+1) and space com-
plexity in O(n · s′ ·ds′) with s′ < w′+1≤ c≤ w+1≤ n.

Proof. Space complexity. Approx#BTD has the same space complexity as #BTD
applied on the largest subproblem Pi w.r.t. the largest cluster intersection denoted
s′ = maxC i

u,C i
v∈C i,u6=v,i∈[1,k] |C i

u∩C i
v|.

Time complexity. The number of iterations of Approx#BTD is less than n. At each
step, the first variable considered by MaxChord+ at line 4 will have all its constraints
totally included in the maximal chordal subgraph. Each chordal subgraph and its as-
sociated optimal tree-decomposition can be computed in O(nm) [Dearing et al., 1988].
Thus, the time complexity of Approx#BTD is in O(n2 ·m ·dw′+1) with the largest sub-
problem tree-width w′ = maxC i

u∈C i,i∈[1,k] |C i
u|−1. Because each Pi is a partial chordal

subgraph of P , its tree-width w′ is equal to the maximum clique size in its subgraph
[Fulkerson and Gross, 1965] which is by definition less than or equal to the maximum
clique size of the original problem, called the clique number c, inferior to the problem
tree-width w+1.

5 Experimental results
We implemented #BTD and Approx#BTD counting methods on top of toulbar2
C++ solver5. The experimentations were performed on a Linux 2.6 GHz Intel Xeon
computer with 2GB. Reported times (total CPU times as given by the #SAT solvers or
reported by the bash command ”time” if not) are in seconds. For #BTD and Approx-
#BTD, the total time does not include the task of finding a variable elimination or-
dering6. We limit to one hour the time spent for solving a given instance. Inside
#BTD (line 3), we use generalized arc consistency (only for constraints with 2 or 3
unassigned variables) instead of backward checking, for efficiency reasons. The min

5http://mulcyber.toulouse.inra.fr/projects/toulbar2/ version 0.8.1.
6Which was always fast to compute (linear complexity).
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Algorithm 3: MaxChord+(X ,C) : (set of variables, set of constraints)
/*Original MaxChord algorithm */
foreach v ∈ X do Y (v)← /0;
Choose v0 ∈ X ;4
S←{v0};
C′← /0;
l← |X |;
while l > 1 do

forall u ∈ X r S such as {u,v0} ⊆ c ∈C do
if Y (u)⊆ Y (v0) then

Y (u)← Y (u)∪{v0};
C′←C′∪{u,v0};

Choose v0 = argmaxv∈XrS |Y (v)| ;
S← S∪{v0};
l← l−1;

/*Additional part: selection of all the (non-binary) constraints of C embedded in the
maximal chordal subgraph (X ,C′) */

C′′← /0;
foreach c ∈C do

if ∀{u,v} ⊆ c, {u,v} ∈C′ then
C′′←C′′∪{c};

return (X ,C′′) ;

domain / max degree dynamic variable ordering, modified by a conflict back-jumping
heuristic [Lecoutre et al., 2006], is used inside the clusters. Our methods exploit a
binary branching scheme. The variable is assigned to its first value or this value is
removed from the domain.

We performed experiments on SAT and CSP benchmarks7. We selected academic
(random k-SAT wff, All-Interval Series ais, Towers of Hanoi hanoi) and industrial (cir-
cuit fault analysis ssa and bit, logistics planning logistics) satisfiable instances. CSP
benchmarks are graph coloring instances (counting the number of optimal solutions).
For #SAT solvers only, CSP instances are translated into SAT by using the direct en-
coding (one Boolean variable per domain value, one clause per domain to enforce at
least one domain value is selected, and a set of binary clauses to forbid multiple value
selection).

5.1 Evaluation of exact methods
We compared #BTD with state-of-the-art #SAT solvers Relsat [Bayardo and Pe-
houshek, 2000] v2.02, Cachet [Sang et al., 2004] v1.22 (with a default memory limit
of 5 MB), sharpSAT [Thurley, 2006] v1.1, and also c2d [Darwiche, 2004] v2.20
which also exploits the problem structure (with a default memory limit of 512 MB and
a limit of 64 MB for storing its d-DNNF). c2d and #BTD methods use the Min-Fill

7From www.satlib.org, www.satcompetition.org and
mat.gsia.cmu.edu/COLOR02/.
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Figure 2: A partition of a CSP with 6 variables found by Approx#BTD. The original
problem has 5 binary constraints ({x1,x2},{x1,x4},{x1,x6},{x2,x3},{x5,x6}) and one
ternary constraint {x3,x4,x5}. We have k = 2,w′ = 2,c = w = 3.

variable elimination ordering heuristic (except for hanoi where we used the default file
order) to construct a tree-decomposition / d-DNNF.

Our results are summarized in Table 1. The columns are : instance name, number
of variables (and also the number of Boolean variables on translated CSP instances),
maximum domain size, width of the tree-decomposition, exact number of solutions if
known, time for c2d, sharpSAT, Cachet, Relsat, and #BTD. We noticed that
#BTD can solve instances with relatively small tree-widths (except for ais and le450
which have few solutions). Exact #SAT solvers generally perform better than #BTD
on SAT instances (except for hanoi5), with sharpSAT obtaining the best results, but
have difficulties on translated CSP instances. Here, #BTD maintaining arc consistency
performed better than #SAT solvers using unit propagation.

5.2 Evaluation of approximate methods
Table 2 gives an analysis of Approx#BTD on the tested instances. The columns are :
instance name, number of variables, maximum domain size, exact number of solutions
if known, width of the tree-decomposition for the original problem, maximum width of
the tree-decomposition for all the chordal subproblems, number of subproblems in the
partition, approximate number of solutions and upper-bound on the number of solutions
as given by Equation 2, and time for Approx#BTD. Our approximate method exploits
a partition of the constraint graph in such a way that the resulting subproblems to solve
have a small tree-width on these instances (w′ ≤ 26). It has the practical effect that the
method is relatively fast whatever the original tree-width. Notice that the upper-bound
is generally very poor even with a small number of subproblems (e.g. ssa).

We also compared Approx#BTD with the approximation method SampleCount
[Gomes et al., 2007a]. With parameters (s = 20, t = 7,α = 1), SampleCount-LB
provides an estimated lower bound on the number of solutions with a high-confidence
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#BTD
vars) Time Time Time Time Time

SAT
wff.3.100.150 100

2

39 1.8e21 * mem - - mem
wff.3.150.525 150 92 1.4e14 * mem 266. 2509 mem
wff.4.100.500 100 80 - * mem - - mem
ssa7552-038 1501 25 2.84e40 0.15 0.06 0.22 67 0.65
ssa7552-158 1363 9 2.56e31 0.10 0.03 0.07 3 0.19
ssa7552-159 1363 11 7.66e33 0.09 0.04 0.07 4 0.27
ssa7552-160 1391 12 7.47e32 0.12 0.04 0.08 5 0.30
2bitcomp 5 125 36 9.84e15 0.43 0.05 0.14 1 16.24
2bitmax 6 252 58 2.10e29 17.00 0.87 1.51 20 mem
ais6 61 41 24 0.05 0.01 0.03 < 1 0.08
ais8 113 77 40 0.51 0.17 0.58 < 1 3.27
ais10 181 116 296 16.64 4.13 29.19 6 543
ais12 265 181 1328 1147 161. 2173 229 -
logistics.a 828 116 3.8e14 - 0.17 3.78 10 mem
logistics.b 843 107 2.3e23 - 1.38 12.34 433 mem
hanoi4 718 46 1 7.18 1.11 32.64 3 1.87
hanoi5 1931 58 1 - mem - - 26.75
CSP (Graph Coloring)
2-Insertions 3 37 (148) 4 9 6.84e13 235. mem - - 7.80
2-Insertions 4 149 (596) 4 38 - - mem - - -
DSJC125.1 125 (625) 5 65 - - mem - - mem
games120 120 (1080) 9 41 - - mem - - mem
GEOM30a 30 (180) 6 6 4.98e14 0.86 5.53 - - 0.10
GEOM40 40 (240) 6 5 4.1e23 1.00 mem - - 0.09
le450 5a 450 (2250) 5 315 3840 - 32.31 318 326 1100
le450 5b 450 (2250) 5 318 120 - 13.12 227 187 1364
le450 5c 450 (2250) 5 315 120 - 2.18 19.09 57 47.53
le450 5d 450 (2250) 5 299 960 - 4.40 14.60 36 92.03
mug100 1 100 (400) 4 3 1.3e37 0.19 23.88 - - 0.02
myciel5 47 (282) 6 21 - - mem - - mem

Table 1: Comparison of exact methods. Legend: mem: out of memory, - : out of time
(for c2d, * : out of memory for storing NNF).
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interval (99% confidence), after seven runs. With parameters (s = 20, t = 1,α = 0),
called SampleCount-A in the following table, it gives only an approximation with-
out any guarantee, after the first run of SampleCount-LB.

Our results are summarized in Table 3. The columns are : instance name, exact
number of solutions if known, approximate number of solutions and time for Approx-
#BTD and SampleCount-A, and estimated lower bound on the number of solu-
tions and time for SampleCount-LB. The quality of the approximation found by
Approx#BTD is relatively good and it is comparable (except for ssa, logistics, and
myciel6-7 benchmarks) to SampleCount-A, which takes more time.

For graph coloring, Approx#BTD outperforms also a dedicated CSP approach
producing an estimated lower bound : 2 Insertion 3 ≥ 2.3e12, games120 ≥ 4.5e42,
and mug100 1≥ 1.0e28 in 1 minute each; myciel5≥ 4.1e17 in 12 minutes, times were
measured on a 3.8GHz Xeon as reported in [Gomes et al., 2007b].

6 Conclusion
In this paper, we have proposed two methods for counting solutions of CSPs. These
methods are based on a structural decomposition of CSPs. We have presented an exact
method, which is adapted to problems with a small tree-width. For problems with a
large tree-width and a sparse constraint graph, we have presented a new approximate
method whose quality is comparable with existing methods, which is much faster than
other approaches, and which requires no parameter tuning (except for the choice of a
tree decomposition heuristic). Exploring other structural parameters [Nishimura et al.,
2007, Samer and Szeider, 2010] should deserve future work. A practical improvement
of our approach would be to impose a limit on the maximum clique size of the extracted
chordal subproblems when the original problem has large arity constraints or a large
clique number. Conversely, denser non-chordal subproblems could be produced and
solved in an anytime manner as done in [Choi and Darwiche, 2006] when the original
problem has a small clique number.

A direction of future work is also to extend our approach to the problem of (ap-
proximate) inference in probabilistic discrete graphical models.
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P n d SP w w′ k ŜP Time

SAT
wff.3.100.150 100

2

1.80e21 39 3 6 ≈ 3.10e21 ≤ 5.05e27 0.03
wff.3.150.525 150 1.14e14 92 3 13 ≈ 1.58e15 ≤ 1.13e42 0.18
wff.4.100.500 100 - 80 6 48 ≈ 1.59e16 ≤ 4.87e29 0.47
ssa7552-038 1501 2.84e40 25 6 4 ≈ 9.33e38 ≤ 3.79e142 1.34
ssa7552-158 1363 2.56e31 9 5 3 ≈ 2.22e25 ≤ 1.41e79 0.77
ssa7552-159 1363 7.66e33 11 5 3 ≈ 6.53e27 ≤ 6.33e88 0.85
ssa7552-160 1391 7.47e32 12 5 3 ≈ 4.50e26 ≤ 3.36e106 1.09
2bitcomp 5 125 9.84e15 36 6 4 ≈ 8.61e16 ≤ 6.81e27 0.02
2bitmax 6 252 2.10e29 58 6 4 ≈ 4.53e29 ≤ 7.19e45 0.10
ais6 61 24 41 12 8 ≈ 1 ≤ 1.81e9 0.04
ais8 113 40 77 16 11 ≈ 1 ≤ 3.49e15 0.20
ais10 181 296 116 21 23 ≈ 1 ≤ 2.06e22 0.84
ais12 265 1328 181 26 23 ≈ 1 ≤ 3.19e29 2.47
logistics.a 828 3.8e14 116 10 24 ≈ 1 ≤ 4.91e180 14.85
logistics.b 843 2.3e23 107 13 25 ≈ 1 ≤ 2.15e169 14.08
hanoi4 718 1 46 10 8 ≈ 1 ≤ 4.26e106 1.40
hanoi5 1931 1 58 12 11 ≈ 1 ≤ 4.48e309 16.05
CSP (Graph Coloring)
2-Insertions 3 37 4 6.84e13 9 1 3 ≈ 1.91e13 ≤ 6.00e17 0.01
2-Insertions 4 149 4 - 38 1 6 ≈ 1.30e22 ≤ 1.64e71 0.07
DSJC125.1 125 5 - 65 3 7 ≈ 1.23e13 ≤ 2.27e70 0.12
games120 120 9 - 41 8 6 ≈ 1.12e78 ≤ 1.92e99 9.84
GEOM30a 30 6 4.98e14 6 5 2 ≈ 7.29e14 ≤ 1.81e15 0.04
GEOM40 40 6 4.1e23 5 5 2 ≈ 4.8e23 ≤ 1.72e24 0.01
le450 5a 450 5 3840 315 4 13 ≈ 1 ≤ 2.41e216 3.17
le450 5b 450 5 120 318 4 13 ≈ 1 ≤ 5.72e213 3.23
le450 5c 450 5 120 315 4 20 ≈ 1 ≤ 1.49e201 7.42
le450 5d 450 5 960 299 4 20 ≈ 1 ≤ 8.58e200 7.38
mug100 1 100 4 1.3e37 3 2 2 ≈ 5.33e37 ≤ 7.18e41 0.01
myciel5 47 6 - 21 1 8 ≈ 7.70e17 ≤ 8.53e32 0.03
myciel6 95 7 - 35 1 13 ≈ 5.49e29 ≤ 9.80e73 0.19
myciel7 191 8 - 66 1 21 ≈ 4.25e35 ≤ 2.96e161 1.23

Table 2: Analysis of Approx#BTD performance and subproblem features.
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P SP
Approx#BTD SampleCount-A SampleCount-LB

ŜP Time ŜP Time ŜP Time
SAT
wff.3.100.150 1.8e21 ≈ 3.10e21 0.1 ≈ 1.37e21 959.8 - -
wff.3.150.525 1.4e14 ≈ 1.58e15 0.2 ≈ 3.80e14 0.7 ≥ 2.53e12 4.6
wff.4.100.500 - ≈ 1.59e16 0.5 ≈ 4.15e16 2045.0 - -
ssa7552-038 2.84e40 ≈ 9.33e38 1.3 ≈ 1.11e40 134.0 ≥ 3.54e38 1162.0
ssa7552-158 2.56e31 ≈ 2.22e25 0.8 ≈ 1.43e30 14.1 ≥ 1.43e30 177.0
ssa7552-159 7.66e33 ≈ 6.53e27 0.8 ≈ 6.49e34 32.8 ≥ 1.64e32 182.0
ssa7552-160 7.47e32 ≈ 4.50e26 1.1 ≈ 5.08e32 144.0 ≥ 2.31e31 1293.0
2bitcomp 5 9.84e15 ≈ 8.61e16 0.1 ≈ 4.37e15 0.2 ≥ 3.26e15 1.2
2bitmax 6 2.10e29 ≈ 4.53e29 0.1 ≈ 1.62e29 1.7 ≥ 2.36e26 10.3
ais6 24 ≈ 1 0.1 ≈ 12 0.1 ≥ 12 0.2
ais8 40 ≈ 1 0.2 ≈ 16 1.5 ≥ 12 15.9
ais10 296 ≈ 1 0.8 ≈ 124 45.9 ≥ 20 312.0
ais12 1328 ≈ 1 2.5 ≈ 0 9.2 ≥ 0 9.2
logistics.a 3.8e14 ≈ 1 14.8 ≈ 7.25e11 171.0 ≥ 0 605.0
logistics.b 2.3e23 ≈ 1 14.1 ≈ 2.13e23 199.0 ≥ 0 229.0
hanoi4 1 ≈ 1 1.4 ≈ 0 5.2 ≥ 0 5.2
hanoi5 1 ≈ 1 16.0 ≈ 0 6.1 ≥ 0 6.2
CSP (Graph Coloring)
2-Insertions 3 6.84e13 ≈ 1.91e13 0.1 ≈ 4.73e12 1.0 ≥ 4.73e12 7.4
2-Insertions 4 - ≈ 1.30e22 0.1 ≈ 0 3.8 ≥ 0 3.8
DSJC125.1 - ≈ 1.23e13 0.1 ≈ 0 73.1 ≥ 0 73.2
games120 - ≈ 1.12e78 9.8 ≈ 7.33e64 13.8 ≥ 1.35e61 91.1
GEOM30a 4.98e14 ≈ 7.29e14 0.1 ≈ 1.23e13 0.4 ≥ 3.28e12 3.7
GEOM40 4.1e23 ≈ 4.8e23 0.1 ≈ 2.14e20 1.5 ≥ 6.50e19 9.3
le450 5a 3840 ≈ 1 3.2 ≈ 0 8.6 ≥ 0 8.6
le450 5b 120 ≈ 1 3.2 ≈ 0 8.6 ≥ 0 8.6
le450 5c 120 ≈ 1 7.4 ≈ 0 110.0 ≥ 0 111.0
le450 5d 960 ≈ 1 7.4 ≈ 0 54.6 ≥ 0 54.6
mug100 1 1.3e37 ≈ 5.33e37 0.1 ≈ 4.2e34 2.1 ≥ 4.20e34 15.6
myciel5 - ≈ 7.69e17 0.1 ≈ 7.29e17 0.9 ≥ 7.29e17 6.4
myciel6 - ≈ 5.49e29 0.2 ≈ 9.38e40 4.5 ≥ 7.42e36 30.7
myciel7 - ≈ 4.26e35 1.2 ≈ 1.37e80 27.7 ≥ 5.56e74 163.0

Table 3: Comparison of approximate methods. Legend: - : out of time (1 hour).
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