Draft Genome Sequence of the Xanthomonas cassavae Type Strain CFBP 4642.
Stéphanie Bolot, Alejandra Munoz Bodnar, Sébastien Cunnac, Erika Ortiz, Boris Szurek, Laurent Noel, Matthieu Arlat, Marie Agnes Jacques, Lionel Gagnevin, Perrine Portier, et al.

To cite this version:
Stéphanie Bolot, Alejandra Munoz Bodnar, Sébastien Cunnac, Erika Ortiz, Boris Szurek, et al.. Draft Genome Sequence of the Xanthomonas cassavae Type Strain CFBP 4642.. Genome Announcements, American Society for Microbiology, 2013, 1 (4), 10.1128/genomeA.00679-13. hal-02642222

HAL Id: hal-02642222
https://hal.inrae.fr/hal-02642222
Submitted on 28 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Cassava (Manihot esculenta Crantz) is the third most important source of calories in the tropics, after rice and maize, and millions of people in Africa, Asia, and Latin America depend on cassava. South America, probably the Amazon region, is considered the center of origin for the cassava species. It was only in the 16th century that Portuguese navigators introduced cassava to the west coast of Africa, from where it later disseminated to East Africa. Most of the spread within the African continent, however, took place only during the 20th century due to colonial powers encouraging its cultivation (1). Nowadays, cassava is grown in all Sub-Saharan countries, and Africa produces more cassava than the rest of the world combined (1). Cassava plants are frugal with respect to environmental conditions (drought, poor soil) and hold great promise as a future staple crop in Africa, since this species might not only tolerate but even profit from climate change (2).

Cassava plants can suffer from two bacterial diseases, bacterial blight and bacterial necrosis, caused by two species of Xanthomonas. The causal agent of bacterial blight, X. axonopodis pv. manihotis, is a vascular pathogen which has been well studied over the last years (3). Recently, draft genome sequences of 65 strains have been elucidated (4). Much less is known about the nonvascular pathogen X. cassavae, which causes bacterial necrosis in Africa (5). The comparison of a vascular and a nonvascular pathogen, both infecting cassava, might give important clues about determinants of tissue specificity during colonization of the host plant. This prompted us to sequence the X. cassavae type strain CFBP 4642 (NCPPB 101, ICMP 204, LMG 673), which was isolated in Malawi in 1951.

Type strain CFBP 4642 was sequenced using the Illumina HiSeq2000 platform (GATC Biotech, Germany). The shotgun sequencing yielded 95,437,238 read pairs (64,851,255 100-bp paired-end reads with an insert size of 250 bp and 30,585,983 50-bp mate-pair reads with an insert size of 3 kb). A combination of Velvet (6), SOAPdenovo, and SOAPGapCloser (7) yielded 83 contigs larger than 500 bp (N50, 158,383 bp) with the largest contig of 425 kb for a total assembly size of 5,263,056 bp.

The comparison of a vascular and a nonvascular pathogen, both infecting cassava, might give important clues about determinants of tissue specificity during colonization of the host plant. This whole-genome shotgun project has been deposited in GenBank under the accession no. ATMC00000000.

ACKNOWLEDGMENTS

This work was supported by grant ANR-2010-GENM-013 from the French Agence Nationale de la Recherche.


REFERENCES


