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Introduction
Ecological processes are intimately linked to landscape dynamics 

observed in the high spatial variability of surface patterns (land cover 
changes). Human decisions and natural forcing are key drivers in 
landscape systems [1,2]. They occur over a wide range of spatial scales, 
from the microscale of the individual landscape unit (patch) trough the 
mesoscale of farmer property, to the macroscale of regions or states. The 
goal of this paper is to present some newly found invariance properties 
for forested landscapes. These properties refer to the invariance of the 
probability distributions for a forest parameter under a wide change 
of spatial scales [3-5]. Ecological processes and more specifically the 
organization of patchy landscapes by land cover geometry and topology 
involve a certain type of optimization. To check this interpretation of 
optimal landscape organization by modeling is the second goal of this 
paper.

The idea that patterns in nature may be obtained by optimality 
principles based on energy is not new [6,7]. Furthermore, many steady-
state patterns of minimal energy dissipation develop self-similar (i.e. 
fractal) spatial arrangements. More recently, it has been shown that 
power laws can generally be interpreted as a preferential attachment, 
which is nothing else than a kind of optimisation [8]. Closer to 
ecological topics, fractal dimensions have been extensively used as 
averaged landscape metrics for describing the spatial distribution 
of various habitats. To decide whether self-similar properties are 
common in landscape structures is still under debate as proved by the 
recent papers about scaling laws observed in arid vegetation patterns 
[9]. Other works recently demonstrated the common self-similar 
characteristics of landscape heterogeneity when defined by land cover 
diversity [10], or the characteristic of disturbance processes [11]. 

Yet, there is at present little theory on how to link these properties 
to generating processes. There would therefore be very helpful to be 
able to predict the scaling exponents based on ecological interactions 
in space [12]. If some landscapes exhibit self-similar properties, are 
rural landscapes also self-organized? A way to test this hypothesis is 
to try modeling them with parsimonious inputs and an optimization 
principle, as it has been done with Neutral Landscape Models (NLM, 
[13,14]. As detailed landscape data are rare over a long time period, 
I studied a forested landscape evolving under several mechanistic 
processes such as colonization, competition and regeneration [15]. 
This reference landscape consisted in a forested sector that covered 
more than a thousand acres and was made up of 220 patches, allowing 
a reliable probability distribution analysis for the tree-density of the 
patch sample. The multiscale study showed how a simple potential 
force field (based on a Hamiltonian function) is able to capture the self-
organization of the reference landscape. 

State-of-the-art and justification

Neutral landscape models: Neutral models are more and more 
used in ecological studies. More specifically, NLM (sensu [16] were 
first proposed to verify that (biased) random functions are able, or not, 
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Abstract
One of the main barriers in the understanding of landscape dynamics is the high spatial variability of the surface 

patterns (vegetation and land cover) to which ecological processes are intimately linked. The aim of this paper is 
to present some newly found scaling properties for forested landscapes. Furthermore, it is advocated that patchy 
landscapes can sometimes be self-organized by optimizing some effective functional.

A neutral landscape model has been developed in order to test this self-organization hypothesis. This model was 
built on the basis of a simple function, called the “Hamiltonian” analogically to physical and biological systems. The 
Hamiltonian is then minimized to optimize the identified landscape interactions. Fully controlled data coming from 
five different hundred-year runs of a process-based model appeared to be self-similar over five magnitude orders, 
without being explicitly simulated. 

The neutral model is able to reproduce the studied observations and to easily model Optimal Patchy Landscapes. 
The limits to this parsimonious approach that requires only one parameter (the Hamiltonian slope in loglog plot) 
are also discussed. The links between the effective Hamiltonian and the ecological processes still need to be 
investigated. Finally, such landscape Hamiltonian function appears to be a fruitful theoretical framework to describe 
various landscapes and potentially opens the way to a more complete dynamic landscape theory. 
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to simulate an observed landscape pattern (not to be confounded with 
neutral community theory). This approach is a kind of null-hypothesis 
test. NLM already brought many interesting insights to ecology, 
namely the definition of landscape analysis indices, critical mosaics 
for population dynamic studies and the first stage of a general spatial 
complexity theory [14]. Yet, most of these NLM focused on raster 
mosaics, while more realistic patchy landscapes (i.e. made of contiguous 
and uniform patches) are still poorly modeled [13]. In addition to 
the modeling challenges, a theoretical framework describing patchy 
landscapes still lacks. I address this question here, as an analogy with 
physical and biological systems. 

The hamiltonian in physics: Nowadays a large scientific community 
uses Cellular Potts Models (CPM). It began as an extension of the Potts 
model, itself being an extension of the Ising model, a simple early 
model of ferromagnetism [17]. In the Ising model of magnetization, 
individual atoms are characterized by their magnetic moments or 

spins σ at position i


 with constant interaction energies J with their 
neighbors. According to Boltzmann theory, the relative probability of 

any configuration of spins ( ){ }iσ


 is:

( ){ }( )
( ){ }( )H i

kTP i e

σ

σ
−

=
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(1)

where ( ){ }( )H iσ


 is the total configuration energy (also called 

the Hamiltonian), k is the Bolzmann constant and T is the system 
temperature. The higher the energy of a configuration, the less probable 
it is. In the absence of any external field, the Ising Hamiltonian is the 

sum of interactions ( ) ( )( ),J i jσ σ


 between all pairs of spins ( ),i j
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Later on, Potts models were proposed to allow multiple degenerate 
values of spins (i.e. the energy of a link depends only on whether 
the neighboring spins are the same or different and not on their 
particular values) [18]. System dynamics were then studied by the use 
of the Metropolis algorithm modelling local changes of the individual 
domain states [19,20]. The Metropolis algorithm leads the system to 
its equilibrium configuration(s) at temperature T (corresponding to 
a global energy minimum), where the time evolution is stationary. 
The T=0 Metropolis algorithm accepts only spin flips which lower the 
energy, thus bringing the system to a local energy minimum (which is 
different a priori from the global energy minimum). 

This first use of Metropolis methods led to a great expansion of 
the range of questions that Potts models could address, in particular 
concerning equilibrium and out-of-equilibrium dynamics. Fruitful 
analogies have been proposed to model metallic grain growth [21], 
liquid soap froths and finally tissue cells [22]. In the latter model, also 
called Cellular Potts Models (CPM), a continuous tissue is discretized 
in cell configuration onto a square lattice, for which each site represents 
a collection of cells of a particular type ( ){ }( )iτ σ



 (cell indices are used 
here). In this case, the system’s Hamiltonian is rewritten:
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where ( ( ), 0x yδ =  if x ≠ y and 1 if x = y) and where the (symmetric) 

interaction or boundary energy between two sites ( )( ) ( )( )( ),J i jτ σ τ σ


 

depends on the cell type at the considered link. The second term of the 

sum imposes a volume constraint to the cellular system, where ( )v σ  

is the volume in lattice sites of cell σ, Vt its constant target volume and 

( )volλ τ  the strength of the constraint. Many improvements of the 

original CPM model have been developed and successfully compared 
to observations [23]. 

It is worth noting that such a modelling approach is broadly used, 
even in human sciences. A long time ago, pioneer works emphasized 
the connection between optimal control theory and classical themes of 
capital theory [24]. Fundamental questions, the definition of income, 
how it should be measured or what its relation to wealth is, have been 
routinely solved using one-dimensional (i.e. non spatial) optimisation 
by building Hamiltonian functions describing the studied economical 
system.

Towards environmental hamiltonians

Closer to our ecosystem thoughts, dendritic river networks offer 
a useful analogy for patchy landscapes [6]. In these hydrographical 
systems, the observed power law distributions of discharge mass are 
closely linked to energy dissipation within the river basin [25]. The total 
cumulative area draining into a river link is used in these works as a 
surrogate variable for discharge and presents a self-similar behaviour 
observed in real river basins. This scaling behavior often measured in 
natural drainage networks reflects a preferential spatial aggregation 
(i.e. a topology) leading to dendritic patterns. These authors used the 
exceedence probability of the drainage area characterizing the self-
similar topology of the hydrographical network to build a Hamiltonian 
for their system [6]:

minHydro i
i

H Aγ= =∑ 	  			                  (4)

where Ai denotes the total contributing drainage area at a point i of the 
network, and the coefficient linking the local geometry to the global 
topology of the network. The value of γ used in their studies is 0.5, which 
comes from simple hydrodynamic considerations. In these works, the 
authors suggest that minimization of the Hamiltonian should be the 
leading principle for finding stable river networks (Optimal Channel 
networks or OCN), with a remarkable success: the observed excess 
probability of drainage areas, after minimization, is a decreasing 
power-law with exponent 0.45, in agreement with real river networks.

Following the seminal work of [25], I adapted geomorphologists’ 
hypotheses. I made here two basic assumptions: i) Landscapes (land 
cover spatial distribution) can self-organize at large scales when patches 
interact. Such interactions could have various natures depending 
on the landscape type. These interactions could either be dispersion 
and colonization processes or crop rotation systems and regional 
management for instances [13]; ii) such landscapes are supposed to 
globally optimize, through a principle of minimum “cost” expenditure, 
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the mosaic as a whole. This cost, similar to energy in physical systems, 
refers to the total (natural and/or human) cost of spatial arrangements, 
which are supposed to be cheaper (less constrained) at large scales. This 
second principle superimposes to local processes such as dispersion 
at local scale, competition, etc. Here, we note differences with the 
hydrographical analogy, dealing with a purely physical system [26,6]: 
It is only postulated that the optimizing principle is global: it models 
how species or land covers tended to fill space, and no additional local 
optimization process is needed 

In order to test this hypothesis, I proposed to model Optimal Patchy 
Landscapes (OPL) using this NLM. One way to proceed is to define a 
potential force field, which may be minimized in case of self-organized 
patchy landscapes. Again, this potential can be seen as a summarizing 
function of the landscape and is hereafter called the “Hamiltonian” 
function. The hydrographical network configuration (i.e. geometrical) 
self-similarity looks very close to the composition (i.e. attributive) 
self-similarity sometimes observed within patchy landscapes [9,10]. 
Patchy forested landscapes are best characterized using the tree-density 
spatial distribution of every patch [13]. We found that the tree-density 
differences between pair-patches better highlights patch interactions 
in space, while the cumulative tree-density difference distribution 
between pair-patches and its probability to exceed a defined threshold 
should be able to capture the scaling features of the landscape [6,26].

Methods
Materials 

The studied site is located in the southeast of France, on the western 
slope of the Mont Ventou and the elevation is between ~900 and 1600 
m. It consists in a forest sector managed by the French national forest 
service (ONF), with a mixture of species (Abies alba, P. nigra nigricans, 
Pinus sylvestris, P. uncinata and Fagus silvatica). Most of the real site 
is subject to active forestry management through thinning and natural 
or artificial regeneration, but further data are reduced only to natural 
evolutions. With a total surface area equal to 11.4 km², the site is made 
of 220 patches. The boundary coordinates of each patch i designed 
for the management purposes are delimited areas of roughly uniform 
stand densities di. The density is defined as the number of stems per 
hectare. As exhaustive data were not available over such a wide area 
and over such a long time period, I used the forest dynamics model 
CAPSIS [27] to simulate Fir trees and the four other species undergoing 
natural dynamics in a spatially explicit scheme. About 30 growth and 
yield models [28,29], mainly including stand-level models, diameter-
class models and individual-based models have been integrated into 
the CAPSIS platform since 1999. The “VentouG” model, developed 
into the CAPSIS platform, performed a typical simulation hereafter 
called the reference (Figure 1a). VentouG is a semi-spatialized model 
(close to “gap-models”) that mixes diameter class growth models in a 
spatialized plot to study the natural evolution of heterogeneous forests 
evolving towards mixed stands [28,15]. 

VentouG simulations played the role of observations. This study 
analyzed the five species dynamics to illustrate how generic the 
approach is. In addition, I chose to focus on the Fir species (Abies 
alba) for a more detailed analysis. The dynamical distribution of Fir 
area is interesting: it is subject to colonization by seeds that come from 
important residual stands and is sensitive to elevation. We simulated 
here the evolving tree-densities of every patch according to processes 
of: i) colonization (exponential kernel dispersion, without external 
sources to the landscape); ii) regeneration (successive stage growth, 

with regeneration heights comprised between 0.3 and 1.3 m); and 
iii) competition (mortality induced by local surroundings) between 
the stems of the five species [13,15]. All species mentioned above 
are simulated with the same processes, but with species-dependent 
calibration: they disperse (at a maximum distance between 1 to 2 km 
[30]), they have different fructification power and they compete with 
intra- as well as interspecies interactions. These ecological processes 
were explicitly applied on every stem, but no additional organizing 
processes such as large scale optimization were simulated. In general, 
simulations have shown a high sensitivity to dispersal, fructification 
and survival, especially at the seedling stage [28,29]. The run covered a 
period of 100 years with a time-step of 5 years and started with the real 
composition observed in year 2000. A fully random patchy landscape 
at the same site is shown for comparison (Figure 1b). 

The landscape hamiltonian

I intended to characterize the landscape observations in terms of 
Hamiltonian functions. In order to detect a self-similar property of 
the reference landscape s, I first defined the Hamiltonian H function 
best characterizing the studied landscape [6]. H is defined using the 
exceedence probability PE of tree-density differences ∆d between pairs 

Figure 1: (a) Evolution of spatial distributions of Fir tree densities (stems/ha) in 
the Mont Ventoux landscape. This multispecies site of about 1100 ha is called 
the reference landscape (only the Fir specie is displayed). Only year 2000 
(observed), years 2050 and 2100 (simulated with the CAPSIS based process 
model) are shown, with the same coordinates and the same logarithmic colour 
scale. (b) The same landscape with hypothetical random tree densities is 
plotted for comparison and for visualizing patch boundaries. 
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of patches for the whole landscape. In case of self-similar landscape, 
this probability sets:

( ) ( )1
EP d d d τ− −∆ ≥ ∝ 		                                                       (5)

where τ-1 is the fractal dimension (the slope in loglog plot) of the PE 
probability curve. Working here with exceedence probability allowed 
to characterize possible scaling behaviors as other cumulative functions 
would. The tree-density difference intended to capture ecological patch 
interactions. 

In the empirical studies on river networks, minimization of an 
Hamiltonian given by equation (4), with γ = 0.5, showed that the 
exceedence probability distribution for areas obeyed a power law: 

( ) ( )1
EP A a a τ− −≥ ∝ , with τ-1 approximately equal to γ. By analogy 

with these works, we propose to define our landscape Hamiltonian as: 

1

E
H

P
∝ , with		  ij ijH d γ∝ ∆                                              (6)

where Hij is the interaction strength (by analogy with physics, the 
potential or local force) associated to the tree-density difference ∆dij 
between patches i and j. For simplicity, this study supposed a direct 
proportionality (equality) between the left and the right part of both 
equations. 

Finally, the total Hamiltonian value summarizing the whole 
landscape s leads to: 

( )T ij
i j

H s H=∑∑   			                                   (7)

Here again, the HT value is by analogy with physics, the energy 
or the total “cost” of the landscape. Landscape energy has no clear 
meaning, but such function is a useful way to synthesize (to gather) 
all processes occurring in a landscape and leading to the tree-density 
pattern.

Practically, the H function used here is built from the fit made over 
fifty percentiles of the exceedence probability of observed tree-density 
differences. All tree-density differences between pairs of patches at 
every time step (2000 to 2100 with five a year step) for the reference 
landscape were computed separately. When computed separately at 
each time step, the H function shape remained relatively stable along 
time, but the information was too sparse in this case to cover many 
magnitude orders. Tree-density differences were then merged in order 
to extract an averaged H function that expressed the statistical behavior 
of the dynamic landscape. When H exhibits a self-similar shape, its 
associated γ exponent given by equation 1 and 2 was computed by 
fitting the histogram made of the 510510 observed density differences. 
The fit was obtained by a mean-squares procedure over the 20 to 
200 main bins of the histogram. The final fit given by fifty bins was 
conserved, the others helping to compute the slope’s uncertainty. There 
were too ways for using the computed averaged H function: i) it was 
possible to compute the HT value at every time step of the reference 
simulation and to characterize its regimes in time. For this purpose, I 
normalized all HT values by the biggest value found in the species data; 
ii) it is possible to use this Hamiltonian to model a new landscape with 
similar statistical properties. 

Modeling principle

Starting from the landscape Hamiltonian, it is possible to analyze 
the observed landscape or to simulate new (optimized) landscapes. 

It has been demonstrated that it is easy to simulate landscapes using 
the Hamiltonian function by minimizing its total sum [6]. The 
minimization stage could be done with the T=0 Gibbs algorithm 
(i.e. Gibbs process by means of the Metropolis-Hastings algorithm) 
developed for physical systems studies [20,21,31] and recently 
applied in ecology too [13,32]. In an adaptation to patchy landscape 
interactions, it is expressed as follows: a) compute the total landscape 
value ( )T tH s  at step t using equation (7); b) randomly choose a patch 
within the landscape and randomly change its tree-density di (bounded 
or not). Which consequently modifies all the tree-density differences 
∆dij of pair-patches ij in which this selected patch i is involved; c) 
compute the new landscape value ( )1T tH s + ; d) and finally compare 

the latter to the previous HT value. If ( ) ( )1T t T tH s H s+ ≤ , then keep 

this new configuration, otherwise keep the previous configuration, 
and reiterate at stage b); e) accept the convergence after n successless 
iterations (i.e. without any HT decrease). 

( )
,

minT ij
i j

H s dγ= ∆ =∑ 	  		                                 (8)

It has been demonstrated that this algorithm, also used in 
Bayesian framework, rapidly converges. No simulated-annealing has 
been performed in this preliminary study although it is possible and 
sometimes recommended. 

This kind of optimization is a neutral model (NLM) in the sense 
that is requires very little information, namely the H function and 
the initial conditions (giving an averaged parameter value), and no 
ecological processes. In case of a self-similar landscape H possesses only 
one parameter: the γ exponent. Following hydrographical studies, this 
exponent connects local processes with an overall topological structure 
of the landscape (i.e. patch neighborhoods) such that: if 0 < γ << 1, we 
get a structured aggregation for which fine scales are dominant; if γ >> 
1, the mosaic shows patch densities for which broad scale arrangements 
(ecological links) become dominant. 

Starting from the observations (in fact, the CAPSIS mechanistic 
simulations), it is possible to compute the exceedence probability 
distribution, then helping to define the landscape Hamiltonian, finally 
allowing to analyze in turn the original observed landscape (arrow 
A) or to compute new optimized simulations (arrow B). The flow 
chart describes the successive stages of the calculation (Figure 2). A 
landscape analysis (A) consists in computing the evolution of the total 
HT value of the observed landscape along to its dynamics (here over 
one century). Simulation study (B) was illustrated here by starting 
with the observed landscape of Mont Ventoux at year 2000, leading 
to a fully self-organized landscape at a posterior date. Simulation was 
made for the five species simultaneously and fir dynamics is analyzed 
in more detail. The dominant self-similar property was achieved after 
minimizing the HT value of the evolving landscape. Iterations of the 
simulation were not supposed to correspond to any real time step. This 
NLM did not take into account patch elevations. 

Results
Landscape hamiltonian 

The exceedence probability of tree-density differences between 
pairs of patches of the Ventoux landscape as a function of tree-
density differences exhibited a strong self-similarity (Figure 3). This 
directly comes from the ecological processes that we modeled (there 
is no minimization of H at this stage). Furthermore, the self-similarity 
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Figure 2: Flow chart describing the successive stages of the calculation: 
observations help to define the landscape Hamiltonian allowing to compute 
new simulations (arrow A) or to analyze the observed landscape (arrow B).

Figure 3: (a) Exceedence probability (noted PE) of the tree-density differences 
against tree-density differences (Δd) presented in a loglog plot. 5000 dots were 
used in the original plot, while circles correspond to the fit with 50 regular bins. 
The same plot for the random landscape of figure 1b is shown for comparison, 
while its shape is highlighted with a linear fit (line, inset). (b) Hamiltonian 
function (noted H) extracted from the exceedence probability of the reference 
landscape. Here, dots correspond to open circles in figure 2. The slope γ of this 
loglog plot is highlighted with a mean-square linear fit. 

Figure 4: Hamiltonian function computed from the exceedence probability 
of the four other tree species involved into the reference landscape: P. nigra 
nigricans (squares, dashed line); Pinus sylvestris (dots, doted-dashed line); P. 
uncinata (stars, doted line); Fagus silvatica (circles, plain line). Their respective 
slopes of this loglog curve are highlighted with a mean-square linear fit.  

covered up to nine (five in log10) magnitude orders for all of the studied 
species (not shown). This extended scale range was accessible as a large 
landscape (220 patches, up to 12 km) and all time steps were merged 
for the analysis. It leaded to slopes equal to – γ = – 0.66; – 0.80; – 0.73; 
– 0.77; – 0.66 ± 0.02 for Abies alba, P. nigra nigricans, Pinus sylvestris, 
P. uncinata and Fagus silvatica respectively. Determination coefficients 
of these fits are roughly equal to r² = 0.97 ± 0.013, all significant (p < 

10-5). Each uncertainty associated to the slope was the standard error 
computed on ten other fits with various numbers of histogram bins for 
each species. Figure 2a showed the result of this fit for the fifty bin case 
(Figure 3a circles) on an original diagram gathering 5000 bins (dots). 
As a reference, the same calculation was performed on the fully random 
mosaic: it did not show any self-similar behavior (Figure 3 inset). 

Simply inverting this exceedence probability defined the 
Hamiltonian H function, in order to favor frequent tree-density 
differences (Figure 3b). The self-similar behavior detected here indeed 
indicated that low Fir density differences were more frequent in this 
landscape. H conserved the exceedence probability slope γ, while local 
H values (i.e. associated to each pair-patch) are dimensionless. Taking 
into account very high tree-density differences (extreme points at 
left in Figure 3a) or not did not change the fit. The four other species 
also exhibited strong self-similar behavior, with Hamiltonian slopes 
mentioned above and slightly higher than the one of fir species (Figure 
4a). 

Landscape analysis and simulation

The evolution of the total HT value of Fir landscape was quite 
variable over one century (Figure 5A). Higher HT values corresponded 
to lower tree-density differences and thus to a more homogeneous 
landscape. There was a clear regime shift at year 2065, after which 
the fir Ventoux landscape tended to monotonously behave towards 
a more and more homogeneous landscape. Other species show more 
monotonous regimes, except maybe for Fagus silvatica starting to be 
limited by available elevations and competing species at the end of the 
simulation (Figure 5A). Such dynamics are also sensitive to past history 
that can vary from one species to another. 

It was possible to model a landscape self-organization by using the 
previous H function deduced from the observed fir Ventoux landscape. 
The total HT minimization procedure led to a new patchy landscape 
(Figure 5B). The final landscape was perfectly self-organized after only 
300 iterations (calculations took a few seconds on a standard PC). The 
new Hamiltonian function extracted from the fir tree-density difference 
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probabilities (equation (2)) was rigorously self-similar (Figure 5B inset) 
and exhibited the same exponent as the one used in the Hamiltonian. 
Fir species filled almost all landscape patches as the NLM did not apply 
any elevation constraint, contrarily to the reference simulation. 

Discussion
Optimized patchy landscapes

The five landscapes studied here appeared to be self-similar 
over more than nine (five in log10) magnitude orders (Figure 4a). 
Data came from a spatially explicit process-based simulation of 
the Mount Ventoux site over a hundred years [27], thus extending 
data and allowing a complete control on the landscape generation 
mechanisms. The landscape evolution studied combined local 
processes such as colonization, competition and regeneration [15,30], 
without any additional organizing process. The landscape dynamic 
was characterised with the tree-densities of the 220 patches, and then 
the tree-density differences between all of the pair-patches to capture 
spatial interactions. The five mono-species landscapes exhibited self-
similar behaviours, thus illustrating how generic the analysis might be. 
Their self-similar coefficients ranged from γ = 0.66 to 0.8, mainly due 
to dispersal and seedling stage survival differences between species. 
The (simple) way we used to estimate these coefficient values is not 

important, as we did not try to infer processes underlying observed 
patterns. This main result strongly suggested that the combination of 
ecological processes behaves as a self organized landscape. 

This observation fitted some others made in previous works [5,12]. 
For example, rural landscapes often hide a self-organization such as self-
similar heterogeneity observed over temperate and tropical landscapes 
[10]. Furthermore, self-organization was interpreted in the present work 
as global optimization, as we minimized the landscape’s Hamiltonian. 
Indeed, starting from the observed tree-density distribution in 
space, it was possible to reconstruct a self-similar landscape using a 
potential force field summarising ecological interactions (Figure 
5B). The landscape’s self-similar behaviour was the result of a global 
minimization of the sum of local landscape interactions, as was done in 
previous studies [25]. The self-similar behavior detected in the forested 
landscape was based on the observation that low tree density differences 
were more frequent, which fitted well with the concept of preferential 
attachment already mentioned  to advocate optimizing patterns [8].

In addition to this interpretation of landscape generation, the 
optimization process opens a way to an original quantification of 
landscape features. This study showed how to characterize possible 
landscape regimes in time on the basis of the integrative Hamiltonian 
function (Figure 4a). The reference fir landscape studied here clearly 
showed a regime shift around year 2065 that was not explicitly modelled 
(Figure 5A). This shift could be the response of the colonization process 
to the spatial structure encountered in the landscape. The patch’s 
surroundings indeed favoured space exploration in a first stage, and 
tree-density smoothing (homogenization) in a second stage when 
the patches were already reached. The other species’ dynamics were 
rather different, more monotonous and smoother, due to different past 
histories and different calibrated processes (dispersion and mortality). 

From a conceptual point of view, one needs to discuss the 
apparently remarkable fact that optimizing landscapes with respect to 
an Hamiltonian with parameter γ, always leads to a power-law for the 
excess probability distribution for density differences with parameter 

γτ =−1 . The T=0 Metropolis algorithm we used drives the 
system into a local minimum of the Hamiltonian, so that there may 
not be a large departure from the initial condition (already showing 
an exceedence probability distribution with exponent γ). Yet, the 
global minimum of this Hamiltonian leads to the trivial and uniform 
distribution. Detailed studies of optimized river networks [33,34], 
analytically found the global minimum for the Hamiltonian given by 
equation (4): for all γ between 0 and 1, and different from 0 and 1, 
they found τ-1 = 0.05. This was confirmed by simulated annealing 
simulations, where the global minimum can effectively be found [26]. 
However, by using T=0 Metropolis algorithm with this Hamiltonian 
and γ =0.5, one visits the local minima with τ-1 = 0.45 This value is 
in agreement with those measured in observed river networks. Such 
study and others led to the concept of “feasible optimality” according 
to which nature is “unable” to reach the true ground state (the global 
optimum) when complexity is involved. This could also be the case in 
patchy landscapes, given that one first checks how one can relate the 
Hamiltonian to ecological processes.

Some limits

The present NLM was in agreement with the parsimonious 
constraint of neutral models [13,14]. The strength of this parsimonious 
argument could also be a pitfall as the core of the method resides 
solely in the Hamiltonian H definition. If H is badly defined, the 

Figure 5: Final computation steps described by the Fig. 2 flow chart. (A) 
Normalized total HT values (i.e. the sum of Hamiltonian values over the whole 
landscape) against the time steps (in years) of the reference landscape. There 
is a regime shift around year 2065. (B) Spatial distributions of Fir tree densities 
(stems/ha) of the Mont Ventoux landscape simulated by the Neutral Landscape 
Model on the basis of the Hamiltonian function of figure 3a. The inset (b) shows 
the resulting Hamiltonian function after simulation (similar to figure 2b) in loglog 
plot. 
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NLM fails or even shows irrelevant landscape features. H is obviously 
highly dependent on the ecological parameter chosen to describe the 
landscape. In this forestry study, I focused on tree-density differences 
closely connected to ecological processes driving landscape dynamics. 
In other studies, cluster sizes of the vegetation cover were also used 
[9,11]. Agricultural landscapes for example are strongly dependent on 
the crop rotation system of farmers and would need other descriptive 
parameters. Finally, notice that NLM iterations were not directly linked 
to real time steps, even though this could be investigated if necessary 
[13]. Similarly, in a first stage here, I supposed a stationary over time H 
function, associated to an optimisation procedure towards steady-state 
or equilibrium (Figure 5B). This approximation could (and probably 
should) obviously be modified in a second stage of the description 
work of this landscape. This may be done either by forcing (driving) 
such Hamiltonian-based model or by defining dynamical rules of a new 
type. 

Present computations were also underlying spatial assumptions. 
First, this work considered in a conservative approach all the existing 
pair-patches of the landscape (Figure 3), while different choices could 
be justified as well. For example, H could sum local interactions only 
coming from neighboring patches, with various (Delaunay or distance 
based) neighborhoods, as seen in other works [9,25]. Such choice 
depends on ecological processes advocated for landscape generation. 
Indeed I argue that the forest’s pattern under study involves different 
processes that could have long distance actions due to seed and pollen 
dispersion processes. Secondly, the patch’s definition may have played 
a role in such a landscape analysis. This weakness is common to every 
study in this field: studies focusing on vegetation cluster sizes also have 
to identify thresholds in order to define vegetation patches [9,12]. 
Patches were here defined by the sylvicultural management of Mont 
Ventoux landscape. I checked that slightly modified patch geometry 
(shapes and inter-distances) as well as topology (neighborhoods) did 
not change the present results. This is due to the fact that all pair-
patches were taken into account for computations. Hence, the present 
method dedicated to Optimal Patchy Landscapes (OPL) seemed very 
robust in this sense. Thirdly, it is possible, and even probable, that 
additional processes influence the ecological pattern described here. 
We may modify or weight the Hamiltonian definition in order to take 
into account for the landscape topography, the soils, etc. 

A dynamic landscape theory 

There is presently little theory interpreting (not necessarily 
forested) landscape patterns and dynamics. Landscape ecology has 
been working on that point for a long time and is the origin of many 
powerful concepts such as heterogeneity [1]. Yet, there is still a lack of 
theoretical framework aiming at mechanistically interpreting landscape 
generating processes. No patchy landscape, the most common structure 
in rural areas, has been to my knowledge described with mathematical 
equations yet. In raster mode some composition analyses (i.e. averaged 
land cover percentages) were explored, while most of the landscape’s 
complexity resides in its configuration (its patch arrangements) and its 
dynamics [10]. Note that composition and configuration properties are 
highly dependent. 

Recent works intended to explore landscape properties, but they 
often focused on “continuous” (raster) landscapes and did not succeed 
in giving clear explanations of observed scaling behaviour [9,12]. 

In this study, I investigated the same question with an ecologically 
based Hamiltonian function and its optimisation, thus following 
some pioneer works done on similar soap foams and tissue cells 
[21,23]. These authors exported a powerful model comprising almost 
all cells/units interactions into a Hamiltonian function and optional 
constraints to describe the evolution of the system. The Hamiltonian 
function is a way to summarise landscape properties within a simple 
equation (equation 2). By construction, the H function is intimately 
linked to various ecological processes such as colonization and 
competition involved in landscape generation. In this study, a higher 
HT value corresponded to lower tree-density differences and to more 
homogeneous landscapes. Such homogenization could happen with 
“older” landscapes, stabilizing through a dominant colonisation 
process: colonizing species progressively fill the space and saturate it. 

To put in a nutshell, this Hamiltonian function appears to be a 
fruitful theoretical framework to describe various landscapes. However 
it is still phenomenological (constructed by analogy with other 
problems) and its derivation from ecological processes is not known. 
In physical systems, this exponent connects local processes with the 
overall topological structure of the landscape (i.e. close and far away 
neighborhoods). Moreover, it is probable that the minimization 
procedure using a T=0 Metropolis algorithm only makes the 
landscape relaxed into a local or “metastable” state with respect to the 
Hamiltonian. It would be interesting to apply the present approach to 
observed landscapes: we could see how often they are self-organized 
in terms of various ecological parameters and what the observed γ 
exponent values are. Yet, it will certainly be difficult to gather the large 
amount of spatial and temporal data needed for this purpose. Such an 
analytical tool also gave the opportunity to compare landscapes (with a 
similar H function) or to study in depth complex landscape dynamics 
[3,35]. Following works on hydrographical systems [6], this theoretical 
framework potentially opens the way to a more complete dynamic 
landscape theory. 
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