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Abstract.—Understanding the evolutionary history of species is at the core of molecular evolution and is done using several
inference methods. The critical issue is to quantify the uncertainty of the inference. The posterior probabilities in Bayesian
phylogenetic inference and the bootstrap values in frequentist approaches measure the variability of the estimates due to
the sampling of sites from genes and the sampling of genes from genomes. However, they do not measure the uncertainty
due to taxon sampling. Taxa that experienced molecular homoplasy, recent selection, a spur of evolution, and so forth may
disrupt the inference and cause incongruences in the estimated phylogeny. We define a taxon influence index to assess the
influence of each taxon on the phylogeny. We found that although most taxa have a weak influence on the phylogeny, a small
fraction of influential taxa strongly alter it even in clades only loosely related to them. We conclude that highly influential
taxa should be given special attention and sampling them more thoroughly can lead to more dependable phylogenies.
[Bootstrap support; taxon sampling; taxon influence; tree robustness.]

The rapid increase in published genomic sequence for
diverse organisms offers growing opportunities to in-
fer the phylogenetic tree of groups of taxa. As with the
estimate in any other inference problem, the inferred
tree is subject to errors and uncertainties. Moreover, the
inferred tree may not be stable with respect to small
perturbations in the alignment data. Since most applica-
tions of phylogenetics require accurate and dependable
phylogenetic estimates, it is crucial to determine how
confident we can and should be in the inferred phy-
logenetic tree. Two main sources of uncertainty lie in
variation among sites, studied in the bootstrap litera-
ture, and in variation among taxa, studied in the taxon
sampling literature. The aim of this article is to quantify
the influence of a taxon on the phylogenetic estimates.

The example of rodents highlights the importance
of good taxon sampling. Philippe (1997) and Cao et al.
(1997) works on rodents show that introducing a few ad-
ditional taxa in a phylogenetic study can have a strong
impact on the inferred tree. In the rodent phylogeny
studied in these two papers, claims of D’Erchia et al.
(1996) that “the guinea pig is not a rodent” based on a
16-taxa phylogeny are seriously challenged when as few
as 3 additional taxa are included in the analysis. In pre-
vious work, Lecointre et al. (1993) even argue that the
number and choice of taxa included in the analysis has
more impact on the inferred phylogeny than the choice
of an evolutionary model. The field of taxon sampling
has since been the focus of much attention (Pollock et al.
2002; Zwickl and Hillis 2002; Hillis et al. 2003; Hedtke
et al. 2006).

It is largely agreed upon (Cao et al. 1994; Philippe
1997; Rannala et al. 1998; Poe and Swofford 1999; Zwickl
and Hillis 2002; Poe 2003; Hedtke et al. 2006) that denser
taxon sampling usually leads to more accurate phyloge-
nies, especially for large number of taxa. Other studies
(Pollock et al. 2002) also suggest that if an additional
taxon is available, it is usually sound to use it in the

inference before pruning it from the tree. However, the
effect of an additional taxon depends on the position
of this taxon in the phylogeny (Goldman 1998; Geuten
et al. 2007); additional taxa that break long branches
are expected to improve the stability of the tree (Heath
et al. 2008), whereas adding additional long branches
can hinder the stability and accuracy of the inference
(Kim 1998). It is also known that adding an outgroup
can disrupt the ingroup topology even for small size
topologies (Holland et al. 2003; Shavit et al. 2007). Fur-
thermore, the yeast phylogeny studied by Rokas et al.
(2003) and reanalyzed by Gatesy et al. (2007) shows that
removing problematic taxa can lead to more stable and
accurate phylogenies.

To our knowledge, the first attempt to assess the sta-
bility of a tree with respect to taxon sampling is due
to Lanyon (1985). His method proceeds in three steps.
First and starting from a distance matrix bearing n taxa,
n reduced distance matrices are obtained, each bear-
ing n − 1 taxa, by deleting in turn each taxon from the
original matrix. Then, a tree is derived from each of
the n reduced matrix. Finally, a strict consensus tree
is constructed by combining the n jackknife trees. The
consensus tree and the tree derived from the complete
distance matrix can be compared to identify the areas
of topological agreement or disagreement. Lapointe
et al. (1994) extended Lanyon’s procedure to accommo-
date for branch lengths and briefly discussed the effect
of multiple taxa deletion instead of single ones. Both
Lanyon (1985) and Lapointe et al. (1994) procedures
are restricted to trees derived from distance data. Sid-
dall (1995) adapted Lanyon’s procedure to parsimony
analyses but changed its goal. Siddall sticks with the
complete tree derived from the original data and uses
the jackknife trees not to construct an alternative con-
sensus tree but to compute Jackknife Monophyly Index
(JMI) values for each clade of the complete tree. Like
bootstrap values, JMI values are measure the stability
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of a clade with respect to taxon sampling. All three pro-
cedures are designed to identify weak parts of the tree,
not taxa responsible for it.

In this work, we reinvestigate the use of jackknifing
to assess the stability of a tree derived from maximum
likelihood (ML) analyses with respect to taxon removal.
Unlike Siddall (1995), we are interested not only in the
unstable clades of the complete tree but also in the taxa
responsible for it. We therefore introduce Taxon Influ-
ence Index (TII), which is devoted to the detection of
highly influential taxa. TII quantifies the influence of a
taxon on the phylogeny estimate by excluding it from
the analysis and quantifying the resulting modifications
on the inferred phylogeny. We also adapt JMI values to
branches for ML analysis and define them as the num-
ber of taxa that can be excluded in turn without altering
the branch. We use two examples (placental mammalian
and reptiles) to illustrate the utility of the method.

MATERIAL AND METHODS

Methods

Taxon influence index.—Let us consider an alignment of
homologous sequences of s taxa. Removing each taxon
in turn from the alignment, we can generate s new
smaller alignments. Using any inference method, we
infer T∗ from the complete alignment and a smaller tree
Ti from the alignment lacking taxon i. We then prune
taxon i from T∗ to obtain T∗

i (Fig. 1). We hereafter refer
to T∗ as the “whole tree,” Ti as the “inferred tree,” and
T∗

i as the “pruned tree.” The TII of taxon i is the distance
between trees Ti and T∗

i : TII(i) = d(Ti, T∗
i ).

The sequences are not realigned each time a taxon is
pruned so that TII does not mix the influence of a taxon
on the alignment and its influence on the phylogenetic
estimates. Whenever the tree is perfectly stable with re-
gards to taxon sampling or when the influence of taxon
i over the result is small, we expect the pruned tree and
the inferred tree to be very similar. In the extreme case,
where a taxon is duplicated in the alignment, the two
copies of this taxon should be clustered at a tip of the
topology and removing any of them should not mod-
ify the topology, nor the tree, in the slightest. Although
TII can be used with any of the several distances on
trees, we focus here on two distances: Robinson–Foulds
(RF) distance (Robinson and Foulds 1979) and branch
score distance (BSD) (Kuhner and Felsenstein 1994). RF

FIGURE 1. TII of taxon C. The pruned tree is obtained by pruning
taxon C from the complete tree. The inferred tree is inferred directly
from A, B, D–F only. The RF distance between the pruned and inferred
trees is 2 so TII(C) = 2.

accounts only for topological differences, whereas BSD
weighs the topological differences by the length of the
affected branches.

Branch taxa support.—TII can detect any influential taxon
but the pattern of the changes is also interesting. For
example, are the branches affected when removing a
taxon always the same (indicating some weakness of
these particular branches) or are they well distributed
across the tree (indicating for example an alignment’s
short length)? The study of branch stability is helpful to
answer these questions; internal branches of the tree are
scored for their robustness to taxon removal and more
generally, changes in the taxon sample. A branch not
affected by taxon sampling is robust and can reasonably
be trusted, whereas a branch affected by many taxa,
even those far away from it, is highly sensitive to taxon
sampling and should be considered cautiously.

We define the branch taxa support BTS(b) of an inner
branch b of T∗ (the whole tree) as the number of pruned
trees Ti in which it is also present or equivalently as the
number of taxa that can be jackknifed without affecting
that branch. Since T∗ has one more leaf than Ti, it also
has one more inner branch and so not all branches of
T∗ have a counterpart in Ti. Indeed, an inner branch
connected to the terminal branch of i disappears when
taxon i is pruned from the tree. Since T∗ is a binary tree,
branch b can be found at most in s − 2 (respectively
s − 1 and s) of the Ti if it is connected to 2 terminal
branches (respectively 1 and 0). Hereafter, for easier
comparison with usual support values, the BTS(b) val-
ues are expressed as a percentage of their maximum
value and range in [0, 100]. Others schemes such as
weighing Ti with the bootstrap value of branch b in Ti
may be sensible, but here, we considered only binary
0, 1 contributions of each Ti to BTS(b). BTS values differ
from JMI values (Siddall 1995) in the way they handle
missing branches. If an inner branch cannot be found in
a jackknife tree, JMI counts the branch as present and
leave the maximum value unchanged for that branch,
whereas BTS counts it as absent but decreases the max-
imum BTS value for that branch accordingly. As such,
JMI values are artificially inflated for branches con-
nected to terminal branches, although the difference is
negligible for data sets with a large number of taxa.
Siddall (1995) also restricts JMI to rooted trees, whereas
BTS values are defined for both rooted trees and un-
rooted trees. The only difference between rooted and
unrooted trees is that the inner branch created when
rooting the tree has a perfect BTS value of 100 by con-
struction. Finally, he advises against jackknifing an out-
group. Since outgroups can have a strong impact on the
ingroup topology (Shavit et al. 2007), we think outgroup
taxa should be jackknifed like other taxa.

Extension to Bayesian methods.—Although we only con-
sider ML analysis here, TII is readily amenable to any
inference method as long as it outputs a single tree. This
is not the case for Bayesian methods. Even though the
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result of Bayesian phylogenetic inference is often sum-
marized as a majority-rule consensus tree (MRC) (e.g.,
MrBayes, Ronquist and Huelsenbeck 2003) one of the
strengths of Bayesian methods is the ability to account
for uncertainty by providing a posterior distribution
of the topology instead of a point estimate. Following
Cranston and Rannala (2007) approach on agreement
subtree, TII and BTS scores can be modified to use more
of the posterior distribution than just the MRC tree.

As for BTS scores, the modification only consists of
weighing each branch by its posterior probability Qi(b)
in each of the pruned tree: BTS(b) =

∑
i Qi(b). Qi(b), as a

posterior probability, can take any value between 0 and
1. The ML equivalent would be to weigh each branch b
by its bootstrap proportions, instead of 1 if the branch is
recovered and 0 else as we did.

To compute TII, we need to measure the “distance”
between posterior distributions instead of between
trees. Although many such distances exist (Gibbs and
Su 2002), we believe they are not well adapted to this
problem; none of them includes any information about
the tree structure. We instead propose the following,
inspired by Cranston and Rannala (2007). We build, for
each taxon i a pruned posterior distribution Q∗

i from the
complete posterior distribution Q∗ by pruning taxon
i from the topologies of the posterior and condensing
resulting identical trees. In addition, we also compute
an inferred posterior distribution Qi (from the jackknife
data set lacking taxon i). The TII is then defined as the
average distance between a random tree from Qi and a
random tree from Qi,

TII(i) = EQ∗
i ⊗Qi

[d(T, T′)] =
∑

T,T′

Q∗
i (T)Qi(T

′)d(T, T′)

with d(∙, ∙) is the same distance as before. Although with
this definition the TII is not strictly a distance anymore,
it is easy to compute as the average distance between
the Markov chain Monte Carlo of Q∗ and Qi once they
reach convergence.

Material

We examined two empirical data sets, one consisting
of mitochondrial protein sequences of placental mam-
mals and the other of mitochondrial DNA sequences of
reptiles.

Sequence data.—The placental mammal data set was
taken from Kitazoe et al. (2007) and consists of
mitochondrial protein sequences (3658 amino acid
sites in total) from 61 placental mammals, belonging to
Laurasiathera, Supraprimates, Xenartha, and Afrothe-
ria plus 7 outgroup taxa, belonging to Monotremata
and Marsupialia. The gaps were excluded and the
sequences were not realigned when removing a taxon.
Although the original data set contains 69 taxa, two
of them, labeled tenrec1 and tenrec2 are genetically
so close, as shown by the phylogenies published in
Kitazoe et al. (2007), that we decided to keep only

tenrec1 and relabeled it tenrec (Echinops telfairi). Our
placental mammal data set thus consists of only 68 taxa,
instead of 69 in the original data. As pointed out by
Kitazoe et al., these data present relatively long se-
quences, good taxon sampling, and very little missing
data. Another advantage of mammals is that their phy-
logeny has been intensively studied and that many
problems and hard-to-resolve clades have been iden-
tified (Prasad et al. 2008). Of particular interest is the
position of the guinea pig (Cavia porcellus) in the order
Rodentia, which has long been a heated issue among
molecular phylogeneticists (Graur et al. 1991; Hasegawa
and Fujiwara 1993; Cao et al. 1994, 1997; D’Erchia et al.
1996; Philippe 1997; Belfiore et al. 2008).

The reptile data set was taken from Jonniaux and Ku-
mazawa (2008) and consists of complete mitochondrial
DNA sequences (11,264 nucleotides in total) from 28
taxa, belonging for most to Squamata. The outgroup
consisted of two actinopterygian fishes Crossostoma
lacustre and Oncorhyncus mykiss. The gaps were ex-
cluded from the alignment and the sequences were not
realigned when removing a taxon. The data set did not
include any missing sites and the associated molecular
phylogeny is quite well resolved. The question of inter-
est for this data set is the branching order of 4 lizard
infraorders (Gekkota, Anguimorpha, Iguania, and Scin-
comorpha; Evans 2003).

Phylogenetic Analysis

Although the use of TII is amenable to any phyloge-
netic inference method, we restricted the analysis to ML
for the sake of brevity.

Evolution model.—Phylogenetic trees mammals were in-
ferred using PhyML (Guindon and Gascuel 2003). For
the placental mammals, we used the mtMam + I + Γ4
model, selected by ProtTest 1.4 (Abascal et al. 2005) as
the best model no matter what the criterion (AIC, BIC).
The mtMam empirical rate matrix is the one used in
the best four models (mtMAM and any combination
of +I and +Γ4), followed by mtREV in the next four
models. The hill-climbing search was initiated at the
BIONJ tree of the alignment, the default starting tree for
PhyML, and 200 replicate ML bootstrap analyses were
performed. For the reptiles, we used the GTR + I + Γ4
model, selected by ModelTest 3.06 (Posada and Cran-
dall 1998) as the best for the AIC criterion. Thanks to
moderate size of the data set, we used 10 random trees
in addition to the default BIONJ starting tree. Again,
200 replicate ML bootstrap analyses were performed.

Analyses with PhyML were scripted using custom
shell scripts. The TII and BTS scores were computed
using R scripts (available on demand from ABH).

RESULTS

Inference Quality

We checked that the inferred tree Ti was a better ML
estimate of the tree than T∗

i for the jackknife alignment.
Since Ti is inferred to maximize the likelihood of the
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jackknife data set, whereas T∗
i maximizes the likelihood

of the complete data set before being pruned, we expect
the likelihood scores to be systematically higher for Ti
than for T∗

i . Results from our analyses confirm it.

Placental Mammals

TII distribution and influential taxa.—TII values of the taxa
are plotted in Fig. 2. We note that guinea pig has the
highest TII (12), confirming previous findings of guinea
pig being hard to place in the mammalian tree (Cao et al.
1994). The result is robust to model choice (with or with-
out rate across sites (RAS) and with mtREV instead of
mtMAM), with guinea pig TII always being the high-
est, between 12 and 14. The comparison of the pruned
and inferred tree (not shown) for guinea pig reveals that
removing as little as one taxon can affect the topology
even in remote places; removing the guinea pig disrupts
the clades of the insectivores and modifies the position
of the northern tree shrew (Tupaia belangeri), 6 branches
away from it.

Using a cutoff value of 8, which represents two stan-
dard deviations from the mean, three taxa are identified
as influential (marked in bold and annotated in Fig. 3)
and concentrated among Glires: guinea pig, European
red squirrel (Sciurus vulgaris), and rabbit (Oryctolagus cu-
niculus). No matter what distance is used (RF or BSD)
the same taxa stand out as influential (Fig. 2) and the
TII-induced order is conserved; only 4 of the remaining
65 taxa change rank when changing the distance. But
the number of influential taxa is highly dependent on
the model: it varies from 4 for the mtMam + I + Γ to
10 ∼ 12 for mtMam + Γ and mtREV + Γ . Fortunately,
there is an important overlap; for example, the 3 taxa in-
fluential under mtMam + I + Γ are part of the set of taxa
influential under mtMam+Γ . Conversely, 20 taxa (again
varying with the model from 7 in mtREV/mtMAM + Γ
to 20 in mtMam + I+ Γ ) are extremely stable in the sense
that their removal does not disturb the topology at all.

FIGURE 2. Dot-plot and histogram of TII values for BSD (left) and
RF (right) distance for placental mammals. Taxa with TII higher ≥0.75
(BSD) or ≥8 (RF) are labeled with their names. Taxa with exact same
location have been jittered for better legibility.

Remarkably, the stable taxa are well distributed over the
tree and are either part of a clade of just two sister taxa
or at the end of a long branch.

Branch taxa support.—With the exception of influential
taxa and extremely stable taxa, most of the TII values are
4. This means that most inferred trees are slightly differ-
ent from the corresponding pruned trees, with a differ-
ence of only two branches. We use the stability scores
to check whether these differences are well distributed
over the whole topology T∗ or concentrated on a lim-
ited number of branches. The results are shown in Fig. 3
(inset). Interestingly, there is no correlation between BTS
scores and branch lengths (0.12, P = 0.33) even when re-
stricting the analysis to the branches with BTS < 100%.

Two branches with very low BTS scores belong to
the Afrotheria (Fig. 3), indicating a poorly resolved
clade. Indeed, even if a taxon is only weakly connected
to the Afrotheria, removing it from the analysis often
changes the inner configuration of the Afrotheria clade.
These branches also have very low bootstrap values
(11%, 54%). The same branches emerge again as sensi-
tive to taxon sampling when removing up to the three
most influential taxa, confirming that they are intrinsi-
cally hard to resolve.

A detailed comparison between BTS scores and boot-
strap values is informative about their similarities and
differences. First, bootstrap is more conservative than
BTS: All branches with 100% bootstrap values also have
100% BTS, but some branches (20) with 100% BTS do
not have 100% bootstrap values (marked in light gray
in Fig. 3). Second, even though there is a significant
correlation between BTS and bootstrap values (0.55,
P=10−6), this correlation rests on most branches having
both 100% bootstrap and BTS values. For the 9 branches
whose both BTS and bootstrap values are lower than
100% (marked in dark gray in Fig. 3), the correlation
is very low (0.25). Except for the two branches afore-
mentioned, the bootstrap values are much smaller than
their BTS equivalent: they vary between 11% and 75%,
whereas all BTS scores are over 92%. This remark is
consistent with (Siddall 1995), which noted that “Com-
parison of [BTS] and [bootstrap values] demonstrate
that [BTS] is consistently and significantly greater than
[bootstrap values]. Simple linear correlation [. . .] indi-
cated that they are not independent”.

Reptiles

TII distribution and influential taxa.—TII values of reptile
taxa are plotted in Fig. 4. The most influential taxa are
Shinisaurus crocodilus and Coleonyx variegatus with a TII
of 8. When accounting for branch lengths, we must add
Sceloporus occidentalis to that list. Apart from a modifi-
cation at the deepermost node of the tree, all three taxa
induce very localized changes, limited to the relative
branching order of the scincomorphans, the anguimor-
phans, and the iguanians. The first remark confirms
the observation previously made on mammals that the
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FIGURE 3. a) Placental mammals phylogeny with BTS scores and bootstrap values. 100% bootstrap and BTS values are omitted. Branches
with 100% BTS scores but <100% bootstrap are annotated with their bootstrap scores in light gray circles. Branches with <100% bootstrap and
BTS scores are annotated with their bootstrap (left) and BTS (right) scores in gray rectangles. The dark gray rectangles correspond to the two
branches with very low BTS. Influential taxa (RF TII ≥8) are in bold and annotated by their TII. Stable taxa are annotated with ∗. Inset b) BTS
scores (in %) of internal branches.

influence of a taxon need not be limited to low-level
clades containing that taxon.

This is further confirmed when looking at the next
most influential taxa, those with a TII of 6. Although

most (6 out of 9) are located in the poorly resolved
clades, three influential taxa highlight the low reliability
of these clades while being located far away from them
(Fig. 5)
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FIGURE 4. Dot-plot and histogram of TII values for BSD (left) and
RF (right) distance for reptiles. Taxa with TII higher ≥0.076 (BSD) or
≥8 (RF) are labeled with their names. Taxa with exact same location
have been jittered for better legibility.

Branch taxon support.—We observe the same pattern
for reptiles as for mammals: no correlation between
BTS and branch lengths. BTS values always higher
than their bootstrap counterpart. However, correla-
tion between BTS and bootstrap values is significant
(>0.95, P < 0.001) no matter whether all or only weak

branches are considered. We observe again that al-
though most branches have a BTS score of 1 and are
thus robust to taxon sampling, a limited number (here
3) have very low BTS values. These branches corre-
spond to clades containing anguimorphans, scincomor-
phans, amphisbaenians, and iguanians, indicating a
poorly resolved part of the phylogeny. These results
are consistent with the uncertainty over the monophyly
of Scincomorpha but at odds with the dichotomy be-
tween Iguania and Scleroglossa (Evans 2003). They are
in agreement with a recent classification of Vidal and
Hedges (2009), based on nuclear DNA, which rejects
monophyly of both Scleroglossa (iguanians are highly
nested within squamates) and Scincomorpha (Scinco-
morpha is redefined to include a single family and a
new unranked taxon is created). They are also consis-
tent with the phylogenies presented in Jonniaux and
Kumazawa (2008, Fig. 3 and S1) and highlight the diffi-
culty to correctly resolve the branching order of the four
infraorders.

DISCUSSION

Influential Taxa and Rogue Taxa

TII is used to detect influential taxa, that is, to say
taxa that strongly impact the phylogenetic estimates.
TII procedure is similar to Lanyon (1985) but the focus

FIGURE 5. a) Reptile phylogeny with BTS scores and bootstrap values. 100% bootstrap and BTS values are omitted. Branches with 100% BTS
scores but <100% bootstrap are annotated with their bootstrap scores in light gray circles. Branches with <100% bootstrap and BTS scores are
annotated with their bootstrap (top) and BTS (bottom) scores in dark gray rectangles. Influential taxa (RF TII ≥ 6) are in bold and annotated by
their TII. Stable taxa are annotated with ∗. Inset b) BTS scores (in %) of internal branches.
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is different; Lanyon focused on constructing a consensus
tree whereas we are interested in detecting influential
taxa and assessing the stability of the tree constructed
on the complete alignment. BTS values are closer to
(Siddall 1995) JMI and (Thorley and Wilkinson 1999)
measure of leaf stability. However, leaf stability exam-
ines only the impact of a taxon on triplets not on the
complete topology, and JMI makes unnatural choices
in handling missing taxa. Rosenberg and Kumar (2001)
and Pollock et al. (2002) also used the same jackknif-
ing procedures but both authors were interested in the
general impact of taxon sampling on the overall ac-
curacy of the reconstructed tree and thus considered
simulation experiments in which the true phylogeny
is known, which is often not the case in practice. TII
is more general as it quantifies both the influence of
each taxon and the stability of each branch in relation to
taxon sampling.

Finally, the issue of what to do with influential taxa
remains open, as an influential taxon might not be a
rogue taxon. The term “rogue” is generally restricted
to taxa whose presence impedes phylogeny estimation
(Wilkinson 1996; Sullivan and Swofford 1997) and the
characterization of a taxon as such requires further
investigations and independent lines of evidence. In-
deed, a taxon that has a stabilizing beneficial effect on
the phylogeny estimate is certainly influential but def-
initely not rogue. Siddall (1995) proposes a criterion
to distinguish “critical” or stabilizing taxa from “prob-
lematic” or rogue, ones base on the number of equally
parsimonious trees. Unfortunately, his criterion is in-
herent to parsimony analyses. We argue that influential
taxa should not automatically be discarded from the
analysis but rather encourage further investigations.
In the reptile case study, a denser taxon sampling of
reptile infraorders may improve the accuracy of the
reconstructed phylogeny, but without further lines of
evidence, we can only say that they are influential not
beneficial nor rogue. In the mammals study case, stabi-
lizing rodents may be more beneficial as removing the
guinea pig from the analysis decreases the overall boot-
strap values of the tree. Discovering why only some
taxa and not others disrupt the phylogeny may help
understand how and why evolution models fail us.

TII and BTS Scores

TII and BTS scores are negatively correlated: a high
average TII means a low average BTS score and vice-
versa. In the placental mammal phylogeny, only 20 taxa
have absolutely no impact on the tree topology when
pruned from the data set. This fraction is small at first
sight but reflects the presence of two overall unstable
clades: the first one consisting of aardvark (Oryctero-
pus afer) and tenrec (E.) and the second one of ele-
phant shrew (Elephantulus sp. VB001) and cape golden
mole (Chrysochloris asiatica). These two clades account
by themselves for 37 taxa with a TII of 4. The num-
ber of taxa modifying the tree elsewhere than in these
two branches reduces to 11: American pika (Ochotona

collaris), cape golden mole, dugong (Dugong dugon),
elephant shrew, Eurasian red squirrel, fat dormouse
(Myoxus glis), greater cane rat (Thryonomys swinderi-
anus), guinea pig, mouse (Mus musculus), nine-banded
armadillo (Dasypus novemcinctus), and rabbit. In the rep-
tile phylogeny, where no unstable clade drives down
BTS values to the same extent: 12 taxa (out of 28) do not
change the tree at all and 7 more barely change it.

As expected, most taxa leave the tree completely or
almost completely unchanged. In both case studies, half
of the stable taxa belong to clades with only two taxa.
This is not surprising because the two taxa of such a
clade, especially if the terminal branches are very short,
have very similar sequences and are almost redundant.
Removing any one of them affects the inference pro-
cess only marginally. For sister taxa with short terminal
branch lengths, it might be worthwhile to prune the two
taxa at the same time.

TII and Long Branches

When two non-adjacent taxa share many homopla-
sic character states along long branches, some methods
(most famously parsimony) interpret such similarity as
homology. The resulting tree depicts the two taxa as
sister to one another, attributing the shared changes to
a branch joining them; this effect is termed long-branch
attraction (Felsenstein 1978). We can therefore expect
taxa at the end of long terminal branches to affect the
inference and have high TII.

And indeed, in the mammal phylogeny, the 11 taxa
retaining positive TII after controlling for the two unsta-
ble branches are at the end of terminal branches that are
significantly longer than the average terminal branch
(Wilcoxon signed ranks test, increase = 81%, P = 0.002).
However, the reverse is not true, only 8 (44%) from the
17 taxa at the end of the 25% longest terminal branch
lengths are influential. This ratio never exceeds 47%,
achieved for the 20% longest terminal branches. In the
reptile phylogeny, influential taxa are at the end of av-
erage branches (decrease = 10%, P > 0.4). Influential
taxa are therefore not just an artifact of long terminal
branches.

Relation with Bootstrap Support

The most popular method to assess uncertainty is
to compute bootstrap values. This approach has strong
theoretical justification in certain circumstances
(Hasegawa and Kishino 1989; Kishino and Hasegawa
1989; Shimodaira and Hasegawa 1999) but the link be-
tween bootstrap values and support for a clade is far
from straightforward (Zharkikh and Li 1992; Hillis and
Bull 1993). More importantly, bootstrap aggregates dif-
ferent sources of uncertainties and is unable to pinpoint
specific sources of uncertainty, be it problematic sites
(Bar-Hen et al. 2008), taxa, or branches. Finally, boot-
strap is not designed to study the uncertainty induced
by taxon sampling.

Most branches are highly resilient to taxon sampling
and only a few poorly resolved to begin with are clearly
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affected by taxon sampling. Comparison of BTS scores
with bootstrap values suggests that poor taxon sam-
pling and influential species make a more localized
contribution to phylogenetic variability than the broad
impact of site sampling. More importantly, branches
with BTS scores <100% are also among those with low-
est bootstrap values. The very low bootstrap values
of these branches probably arise from two correlated
causes. First, the branch might just be wrong or in-
trinsically hard to resolve because it encompasses taxa
whose positions in the tree are unclear. These taxa, by
being in poorly sampled clades or by exhibiting peculiar
features could equally be in several places in the tree.
Therefore, only some of the equally likely topologies
will contain the branch of interest. Second, there might
not be a real phylogenetic signal supporting this branch,
any subtle modification of the data set, be it pruning a
taxon or bootstrapping sites will result in a different
topology. Bootstrapping sites modifies the alignment to
a greater extent than pruning a taxon and mimics the
stochastic variations induced by sampling the sites. It
thus captures at least two sources of variations for these
branches: the first is normal sensitivity to the align-
ment’s length, predicted by standard sampling theory.
The second is excessive sensibility to the alignment in-
duced by influential taxa: if a taxon position is unclear
and essentially random within a given clade, the boot-
strap topology will change depending on the resampled
proportions of sites favoring one or another position of
that influential taxon. This is consistent with the reptile
phylogeny: low bootstrap nodes correspond to species
switching from one place to another, whereas high boot-
strap nodes are completely stable with respect to taxon
sampling. BTS scores help isolate the two sources.

Limitations and Future Work

TII and BTS score computations require the estima-
tion of quite a few trees; the number of trees to infer
grows linearly with the number of taxa, and because
of increasing complexity with a larger number of taxa,
the inference time for each of them also increases. This
is not specific to the proposed measures and holds for
many quantities computed on trees. The total computa-
tion time increases more than linearly with the number
of taxa. Computation of TII values and BTS scores is fast
as it only requires comparison at the branch level. TII is
thus useful for moderate data sets but not for very large
ones.

By pruning only one taxon at the time, we are able
to detect single taxon that exhibit peculiar evolutionary
features, as corroborated by previous findings about
the guinea pig (Cao et al. 1997), but we are unable to
detect troublesome groups of taxa. To do so, we would
need to remove two, three, or more taxa at a time. The
large number of possibilities make inference of all the
small trees unrealistic. The most promising paths to
tackling this problem are to cluster taxa or to remove
them sequentially. The first option is to “cartoon” the
phylogenies by clustering taxa in groups whose inner

phylogeny is well supported and choosing one repre-
sentative in each group while discarding all the others
to reduce the size of the topology. The second option is
to remove the taxa sequentially: remove the highest TII
taxon first, compute the TII again on the remaining taxa,
remove the new highest TII taxon and so on until either
a given number of taxa have been filtered or the highest
TII does not exceed some threshold. We have however
no good criterion to choose the number of taxa to filter
out or the threshold.

Bootstrap and posterior probabilities are good ways
to assess the uncertainty induced by site sampling but
aggregate many sources of uncertainty with no way
to easily ascertain which factors contribute most. They
are also much more difficult to correctly interpret than
thought at first (Yang 2007; Susko 2009). Furthermore,
they are not designed to study the impact of taxon sam-
pling on the inference. We show that some taxa have a
large impact on the phylogenetic estimation and pro-
pose an index to identify them quantitatively with the
ambition to better characterize the factors of uncertainty
in phylogenetic reconstructions.
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