, Afr. J. Biotechnol

-. Mery and . Database,

S. Maldonado, We also wish to acknowledge the skillful technical assistance of C. Garchery and M.C. Lapize. This work was supported by MetaboP parthnership (2005 to 2007), a French program in plant genomics (Génoplante-GENE036) and by a grant from the

J. W. Allwood, C. De-vos, A. Moing, C. Deborde, A. Erban et al., Plant metabolomics and its potential for systems biology research: background concepts, technology and methodology, Plant metabolomics, Methods and Protocols, vol.860, pp.31-63, 2011.

D. C. Centeno, S. Osorio, A. Nunes-nesi, A. L. Bertolo, R. T. Carneiro et al., Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening, Plant Cell, vol.23, issue.1, pp.162-184, 2011.

Y. H. Choi, H. K. Kim, A. Hazekamp, C. Erkelens, A. Lefeber et al., Metabolic differentiation of Cannabis sativa cultivars using 1 H-NMR spectroscopy and principal component analysis, J. Nat. Prod, vol.67, pp.953-957, 2004.

R. Chollet, J. Vidal, and M. H. Oleary, Phosphoenolpyruvate carboxylase: A ubiquitous, highly regulated enzyme in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol, vol.47, pp.273-298, 1996.

S. A. Cohen and D. P. Michaud, Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-n-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino-acids via highperformance liquid-chromatography, Anal. Biochem, vol.211, pp.279-287, 1993.

J. E. Cornah, V. Germain, J. L. Ward, M. H. Beale, and S. M. Smith, Lipid utilization, gluconeogenesis, and seedling growth in Arabidopsis mutants lacking the glyoxylate cycle enzyme malate synthase, J. Biol. Chem, vol.279, issue.41, pp.2916-42923, 2004.

R. Consonni, M. Stocchero, and S. Porretta, Triple concentrated tomato paste: discrimination between Italian and chinese products, J. Agric. Food Chem, vol.57, pp.4506-4513, 2009.

V. Dal-cin, D. M. Tieman, T. Tohge, R. Mcquinn, R. C. De-vos et al., Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit, Plant Cell, vol.23, issue.7, pp.2738-2753, 2011.

M. Defernez and I. J. Colquhoun, Factors affecting the robustness of metabolite fingerprinting using 1 H-NMR spectra, Phytochemistry, vol.62, pp.1009-1017, 2003.

P. J. Eastmond and I. A. Graham, Re-examining the role of the glyoxylate cycle in oilseeds, Trends Plant Sci, vol.6, pp.72-77, 2001.

G. Del-campo, I. Berregi, R. Caracena, and J. I. Santos, Quantitative analysis of malic and citric acids in fruit juices using proton nuclear magnetic resonance spectroscopy, Anal. Chim. Acta, vol.556, pp.462-468, 2006.

E. Enfissi, F. Barnechec, I. Ahmed, C. Lichtléc, C. Gerrisha et al., Integrative transcript and metabolite analysis of nutritionally enhanced DE-ETIOLATED1 downregulated tomato Fruit, 2010.

T. Fan, Metabolite profiling by one-and two-dimensional NMR analysis of complex mixtures, Progr. Nucl. Magn. Reson. Spectro, vol.28, pp.161-219, 1996.

A. R. Fernie, R. N. Trethewey, A. J. Krotzky, and L. Willmitzer, Innovation-Metabolite profiling: from diagnostics to systems biology, Nat. Rev. Mol. Cell Biol, vol.5, pp.763-769, 2004.

A. R. Fernie and H. J. Klee, The use of natural genetic diversity in the understanding of metabolic organization and regulation. Front, Plant Sci, vol.2, issue.59, pp.1-10, 2011.

H. Ferry-dumazet, L. Gil, C. Deborde, A. Moing, S. Bernillon et al., MeRy-B: a web knowledgebase for the storage, visualization, analysis and annotation of plant, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00648167

H. Profiles, BMC Plant Biol, vol.11, pp.104-126

J. Gehlen, R. Panstruga, H. Smets, S. Merkelbach, M. Kleines et al., Effects of altered phosphoenolpyruvate carboxylase activities on transgenic C3 plant Solanum tuberosum, Plant Mol. Biol, vol.32, pp.831-848, 1996.

I. A. Graham, K. J. Denby, and C. J. Leaver, Carbon catabolite repression regulates glyoxylate cycle gene-expression in cucumber, Plant Cell, vol.6, pp.761-772, 1994.

L. Gilbert, M. Alhagdow, A. Nunes-nesi, B. Quemener, F. Guillon et al., GDP-dmannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato, Plant J, vol.60, issue.3, pp.499-508, 2009.

M. Gromova and C. Roby, Toward Arabidopsis thaliana hydrophilic metabolome: assessment of extraction methods and quantitative 1 H-NMR, Physiol. Plant, vol.140, pp.111-127, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00514220

C. Guillet, D. Just, N. Benard, A. Destrac-irvine, P. Baldet et al., A fruit-specific phosphoenolpyruvate carboxylase is related to rapid growth of tomato fruit, Planta, vol.214, pp.717-726, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02670209

J. Hagel and P. J. Facchini, Plant metabolomics: Analytical platforms and integration with functional genomics, Phytochem. Rev, vol.7, pp.479-497, 2008.

J. M. Hagel, A. M. Weljie, H. J. Vogel, and P. J. Facchini, Quantitative 1H nuclear magnetic resonance metabolite profiling as a functional genomics platform to investigate alkaloid biosynthesis in opium poppy, Plant Physiol, vol.147, pp.1805-1821, 2008.

R. D. Hall, I. D. Brouwer, and M. A. Fitzgerald, Plant metabolomics and its potential application for human nutrition, Physiol. Plant, vol.132, pp.162-175, 2008.

S. Hamza and Y. Chupeau, Reevaluation of conditions for plantregeneration and agrobacterium-mediated transformation from tomato (Lycopersicon esculentum), J. Exp. Bot, vol.44, pp.1837-1845, 1993.

E. Holmes, P. Foxall, J. K. Nicholson, G. H. Neild, S. M. Brown et al., Automatic data reduction and pattern-recognition methods for analysis of H-1 nuclear-magnetic-resonance spectra of human urine from normal and pathological states, Anal. Biochem, vol.220, pp.284-296, 1994.

H. K. Kim, Y. H. Choi, and R. Verpoorte, NMR-based metabolomic analysis of plants, Nat. Protoc, vol.3, pp.1001-1012, 2010.

A. Kunst, B. Draeger, and J. Ziegenhorn, Carbohydrates, U.V. methods with hexokinase and glucose-6-phosphate dehydrogenase, Bergmeyer HU (Ed). Methods in Enzymatic Analysis, pp.163-172, 1984.

R. D. Law and W. C. Plaxton, Regulatory phosphorylation of banana fruit phosphoenolpyruvate carboxylase by a copurifying phosphoenolpyruvate carboxylase-kinase, Eur. J. Biochem, vol.247, pp.642-651, 1997.

B. Lebouteiller, A. Gousset-dupont, J. N. Pierre, J. Bleton, A. Tchapla et al., Physiological impacts of modulating phosphoenolpyruvate carboxylase levels in leaves and seeds of Arabidopsis thaliana, Plant Sci, vol.172, pp.265-272, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02655591

L. Gall, G. Colquhoun, I. J. Davis, A. L. Collins, G. J. Verhoeyen et al., Metabolite profiling of tomato (Lycopersicon esculentum) using genetic modification, J. Agric. Food Chem, vol.51, pp.2447-2456, 2003.

J. C. Lindon and J. K. Nicholson, Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics, Annu. Rev. Anal. Chem, vol.1, pp.45-69, 2008.

M. Miyao and H. Fukayama, Metabolic consequences of overproduction of phosphoenolpyruvate carboxylase in C3 plants, Arch. Biochem. Biophys, vol.414, pp.197-203, 2003.

A. Moing, M. Maucourt, C. Renaud, M. Gaudillère, R. Brouquisse et al., Quantitative metabolic profiling by 1-dimensional, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02681364

H. , analyses: application to plant genetics and functional genomics, Funct. Plant Biol, vol.31, pp.889-902

A. Moing, L. Svanella, D. Rolin, M. Gaudillère, J. P. Gaudillère et al., Compositional changes during the fruit development of two peach cultivars differing in juice acidity, J. Am. Soc. Hortic. Sci, vol.123, pp.770-775, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02693089

F. Mounet, A. Moing, V. Garcia, J. Petit, M. Maucourt et al., Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development, Plant Physiol, vol.149, issue.3, pp.1505-1528, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02666886

B. Nieri, A. Ciurli, L. Pistelli, S. M. Smith, A. Alpi et al., Glyoxylate cycle enzymes in seedlings and in mature plants of tomato, Lycopersicon esculentum Mill.). Plant Sci, vol.129, issue.1, pp.39-47, 1997.

B. O'leary, E. T. Fedosejevs, A. T. Hill, J. Bettridge, J. Park et al., Tissue-specific expression and posttranslational modifications of plantand bacterial-type phosphoenolpyruvate carboxylase isoenzymes of castor oil plant, Ricinus communis L, J. Exp. Bot, vol.62, issue.15, pp.5485-5495, 2011.

E. Pua, S. Chandramouli, P. Han, and P. Liu, Malate synthase gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Williams), J. Exp. Bot, vol.54, issue.381, pp.309-316, 2003.

T. Rademacher, R. E. Hausler, H. J. Hirsch, L. Zhang, V. Lipka et al., An engineered phosphoenolpyruvate carboxylase redirects carbon and nitrogen flow in transgenic potato plants, Plant J, vol.32, pp.25-39, 2002.

U. Roessner, L. Willmitzer, and A. R. Fernie, High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies, Plant Physiol, vol.127, issue.3, pp.749-764, 2001.

A. Ross, G. Schlotterbeck, F. Dieterle, and H. Senn, Chap 3-NMR spectroscopy techniques for application to metabonomics, The Handbook of Metabonomics and Metabolomics, pp.55-112, 2007.

. Fatma,

C. Rothan and M. Causse, Natural and artificially induced genetic variability in crop and model plant species for plant systems biology, EXS, vol.97, pp.21-53, 2007.

D. Ryan and K. Robards, Analytical chemistry considerations in plant metabolomics, Sep. Purif. Rev, vol.35, pp.319-356, 2006.

K. Saito and F. Matsuda, Metabolomics for Functional Genomics, Systems Biology, and Biotechnology, Annu. Rev. Plant Biol, vol.61, pp.463-489, 2010.

A. P. Sobolev, A. Segre, and R. Lamanna, Proton high-field NMR study of tomato juice, Magn. Reson. Chem, vol.41, pp.237-245, 2003.

A. P. Sobolev, E. Brosio, R. Gianferri, and A. L. Segre, Metabolic profile of lettuce leaves by high-field NMR spectra, Magn. Reson. Chem, vol.43, pp.625-638, 2005.

M. Stitt and T. Rees, Pathways of carbohydrate oxidation in leaves of Pisum sativum and Triticum aestivum, Phytochemistry, vol.17, pp.1251-1256, 1978.

L. W. Sumner, P. Mendes, and R. A. Dixon, Plant metabolomics: largescale phytochemistry in the functional genomics era, Phytochemistry, vol.62, pp.817-836, 2003.

C. Sweetman, L. G. Deluc, G. R. Cramer, C. Ford, and K. L. Soole, Regulation of malate metabolism in grape berry and other developing fruits, Phytochemistry, vol.70, pp.1329-1344, 2009.

J. Trygg, E. Holmes, and T. Lundstedt, Chemometrics in metabonomics, J. Proteome Res, vol.6, pp.469-479, 2007.

J. S. Velterop and F. Vos, A rapid and inexpensive microplate assay for the enzymatic determination of glucose, fructose, sucrose, Lmalate and citrate in tomato (Lycopersicon esculentum) extracts and in orange juice, Phytochem. Anal, vol.12, pp.299-304, 2001.

J. L. Ward, J. M. Baker, S. J. Miller, C. Deborde, M. Maucourt et al., An inter-laboratory comparison demonstrates that 1 H-NMR metabolite fingerprinting is a robust technique for collaborative plant metabolomic data collection, Metabolomics, vol.6, pp.263-273, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02667728

P. J. White, Recent advances in fruit development and ripening: an overview, J. Exp. Bot, vol.53, issue.377, pp.1995-2000, 2002.