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The arbuscular mycorrhizal symbiosis associates soil fungi with the roots of the majority of
plants species and represents a major source of soil phosphorus acquisition. Mycorrhizal
interactions begin with an exchange of molecular signals between the two partners. A
root signaling pathway is recruited, for which the perception of fungal signals triggers
oscillations of intracellular calcium concentration. High phosphate availability is known to
inhibit the establishment and/or persistence of this symbiosis, thereby favoring the direct,
non-symbiotic uptake of phosphorus by the root system. In this study, Medicago truncatula
plants were used to investigate the effects of phosphate supply on the early stages of the
interaction. When plants were supplied with high phosphate fungal attachment to the roots
was drastically reduced. An experimental system was designed to individually study the
effects of phosphate supply on the fungus, on the roots, and on root exudates. These
experiments revealed that the most important effects of high phosphate supply were on
the roots themselves, which became unable to host mycorrhizal fungi even when these
had been appropriately stimulated. The ability of the roots to perceive their fungal partner
was then investigated by monitoring nuclear calcium spiking in response to fungal signals.
This response did not appear to be affected by high phosphate supply. In conclusion, high
levels of phosphate predominantly impact the plant host, but apparently not in its ability to
perceive the fungal partner.
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INTRODUCTION
As an essential component of many biomolecules such as nucleic
acids, proteins, and membrane phospholipids, phosphorus (P)
plays an essential role in the structure and physiology of all
living cells. In plants, P availability is considered the second
most important limiting factor for growth after nitrogen. While
P is generally abundant in soil, it is mostly present in insolu-
ble and poorly mobile forms and therefore partly unavailable to
plants (Schachtman et al., 1998). Roots take up P as inorganic
phosphate (Pi), and this leads to the creation of Pi depletion
zones around them, a phenomenon that can lead to P depri-
vation. Crop plants are thus commonly supplied with chemical
P fertilizers, which raises several major economic and envi-
ronmental concerns related to energy use, freshwater pollution,

Abbreviations: AM, Arbuscular mycorrhiza; CFP, cyan fluorescent protein; CO4,
tetramer of N-acetylglucosamine; COs, chitooligosaccharides; GSE, germinated
spore exudates; LCO, lipochitooligosaccharides; P, phosphorus; Pi, inorganic
phosphate; SEM, standard error of the mean, YFP, yellow fluorescent protein

and mineral P resource scarcity (Cordell et al., 2009; Gilbert,
2009).

In addition to several mechanisms of internal P remobilization
(Plaxton and Tran, 2011), plants facing P deprivation display a
number of adaptive responses that enhance their P uptake capacity.
The means by which roots can acquire Pi from the soil can be clas-
sified into two main pathways (Smith and Smith, 2011). The direct
uptake pathway, present in all plants, involves the activity of root
Pi transporters. The efficiency of this pathway can be enhanced
through the solubilization of chelated soil P by secreted organic
acids and enzymes, the expression of high-affinity Pi transporters
(Poirier and Bucher, 2002; Grunwald et al., 2009), or changes in
root system architecture that provide access to a larger volume
of soil (Péret et al., 2011). Some of these adaptations occur in
response to local Pi availability (Svistoonoff et al., 2007), while
others are regulated at the systemic level as a function of the plant
P nutritional status (Thibaud et al., 2010).

The majority of plant species possess an additional P uptake
route called the symbiotic pathway. This involves an intimate
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connection between roots and soil fungi. Among such organ-
isms, arbuscular mycorrhizal (AM) fungi interact with the largest
number of plant partners (approximately 80% of plant species;
Smith and Read, 2008), forming the most widespread symbiosis
on earth (Brachmann and Parniske, 2006). In this root endosym-
biosis, the fungal partner colonizes the root cortex where it forms
specialized structures called arbuscules that serve as an exchange
interface. At the same time, the fungus develops a dense hyphal
network that extends far into the soil while still remaining con-
nected to the root. This extraradical mycelium provides the plant
with water and nutrients that would otherwise remain inaccessible
to roots. Among supplied nutrients, Pi is considered as quanti-
tatively the most important (Smith and Read, 2008). AM fungi
can obtain free Pi from the soil using high-affinity Pi transporters
expressed in the mycelium (Harrison and van Buuren, 1995). Once
taken up by the extraradical mycelium, P is translocated along the
hyphae in the form of polyphosphates, which are then depoly-
merized so that Pi can be transferred to root cells in exchange for
hexoses (Ohtomo and Saito, 2005). This last step involves both
plant and fungal transporters located at the periphery of arbus-
cules (Bapaume and Reinhardt, 2012). In some cases the symbiotic
pathway can account for the entire P uptake, as demonstrated by
the use of radiolabeled P made available only to the fungus (Smith
et al., 2004; Smith and Smith, 2011).

Prior to contact, AM fungi and their host roots release molec-
ular factors into the rhizosphere. Certain features of host–fungal
signaling are similar to those described for the nitrogen-fixing
symbiosis that associates rhizobia with legumes, and in particular
the essential role of several plant genes comprising the so-called
“common signaling pathway” (Singh and Parniske, 2012). A hall-
mark of this signaling pathway is the induction of peri- and
intra-nuclear oscillations of calcium concentration (known as cal-
cium spiking) in response to microbial compounds (Ehrhardt
et al., 1996; Kosuta et al., 2008; Chabaud et al., 2011). This calcium
signal is likely decoded by a calcium- and calmodulin-dependent
kinase, leading to the activation of appropriate transcription fac-
tors and downstream genes necessary for the establishment of the
functional interaction.

In the case of mycorrhizal interactions, early molecular signals
exchanged between the symbionts were identified only recently.
Plant roots release strigolactones into the rhizosphere that can
stimulate hyphal branching and respiratory metabolism of AM
fungi (Akiyama et al., 2005; Besserer et al., 2006, 2008). Through
the analysis of pea mutants defective in strigolactone biosyn-
thesis, these compounds were found to be important for a
normal level of mycorrhizal root colonization (Gomez-Roldan
et al., 2008), although symbiotic structures appeared morpholog-
ically unaltered in the mutants. A similar phenotype of reduced
mycorrhization was observed in Petunia mutants defective for the
strigolactone exporter PhPDR1 (Kretzschmar et al., 2012), which
demonstrated that strigolactone transport is essential for the func-
tion of these signals in AM symbiosis. These studies suggest an
important role for strigolactones in the stimulation of the fun-
gus outside the roots, and possibly also in the progression of AM
fungal hyphae within roots.

Reciprocally, AM fungi release compounds that trigger a vari-
ety of responses in plant roots, including calcium spiking, changes

in gene expression and lateral root formation (Parniske, 2008).
Two classes of such compounds were identified recently, both
comprising an N-acetylglucosamine oligomer backbone. Firstly,
lipochitooligosaccharides called Myc-LCOs, structurally similar
to the Nod factors that mediate the nitrogen-fixing symbiosis, are
able to stimulate lateral root formation and the colonization of
roots by AM fungi (Maillet et al., 2011). Secondly, short-chain chi-
tooligosaccharides (Myc-COs) can trigger nuclear calcium spiking
in host plant root cells and their concentrations in fungal exudates
are stimulated by strigolactones (Genre et al., 2013).

The establishment of the AM symbiosis can be disturbed
by environmental conditions, including P availability which can
inhibit the symbiotic interaction (e.g., Menge et al., 1978; Thom-
son et al., 1986; Breuillin et al., 2010; Bonneau et al., 2013). This
is often interpreted as a means for plants to avoid the carbon cost
of symbiosis (up to 20% of photosynthetic carbon can be directed
to AM fungi; Bago et al., 2000) when sufficient Pi can be acquired
through the direct uptake pathway (Nagy et al., 2009). Nonethe-
less, this regulation also deprives the plant of other benefits of AM
symbiosis, including improved water uptake, nitrogen supply, and
enhanced resistance to pathogens (Smith and Read, 2008). Inter-
estingly, recent studies have demonstrated a cross-talk between
Pi and nitrogen availabilities to control AM associations (Javot
et al., 2011; Bonneau et al., 2013), thus indicating a high level of
integration of mycorrhizal responses to mineral nutrition.

Depending on the experimental system, both the extent to
which and the stage when the symbiosis is inhibited by P can
differ markedly (Gosling et al., 2013). This suggests the existence
of multiple regulatory mechanisms that can either prevent the
establishment of the symbiosis in the first place or lead to the
elimination of the AM fungus from roots after it has engaged in a
functional interaction (Koide and Schreiner, 1992). Some authors
have reported a direct effect of P on AM spore germination and
hyphal growth (de Miranda and Harris, 1994), while others were
unable to detect any effect of P supply on these presymbiotic events
(e.g., Schwab et al., 1983; Balzergue et al., 2011). In some cases indi-
rect effects of P on the fungus through an alteration of root exudate
content have been demonstrated (Nair et al., 1991; Tawaraya et al.,
1998). Evidence has also been gathered for downregulation by P of
well established AM interactions, via a reduced production of root
compounds (Akiyama et al., 2002). The diversity of these observa-
tions suggests that multiple layers of control exist (Breuillin et al.,
2010) and that the predominent regulatory mechanisms depend
to a large extent on the plant and fungal species under study, as
well as on the co-culture conditions and mode of P supply.

In a previous study carried out with pea, we found that the AM
symbiosis could be arrested almost completely by a high P supply
at a very early stage, prior to the attachment of the fungus on the
root (Balzergue et al., 2011). We also confirmed previous reports
(Yoneyama et al., 2007; López-Ráez et al., 2008) that the synthesis
and exudation of strigolactones are negatively affected by a high
availability of Pi, and showed that this effect, like the inhibition of
AM symbiosis, is regulated at the systemic level (Balzergue et al.,
2011). These observations revealed strigolactones as good can-
didates for mediating the effect of Pi on AM symbiosis. Under
conditions of P sufficiency, a strong reduction of strigolactone
release would prevent the stimulation of AM fungi and hence the

Frontiers in Plant Science | Plant Nutrition October 2013 | Volume 4 | Article 426 | 2

http://www.frontiersin.org/Plant_Nutrition/
http://www.frontiersin.org/Plant_Nutrition/archive


“fpls-04-00426” — 2013/10/27 — 17:06 — page 3 — #3

Balzergue et al. Phosphate regulation of mycorrhizal symbiosis

establishment of the interaction. However, an exogenous supply of
strigolactones was unable to restore mycorrhization under high P
conditions, indicating that reduced strigolactone production was
not the sole explanation for the absence of mycorrhizae (Breuillin
et al., 2010; Balzergue et al., 2011). Therefore, additional mech-
anisms targeting the early steps of AM symbiosis establishment
remain to be discovered.

The aim of the present study was to investigate how the AM
symbiosis is inhibited by P in the model legume Medicago truncat-
ula, with a particular focus on early stages of the interaction. We
attempt to determine whether a high P supply primarily targets the
plant or fungal partner and investigate the plant nuclear calcium
spiking response to the fungus or fungal signals.

MATERIALS AND METHODS
BIOLOGICAL MATERIALS AND GROWTH CONDITIONS
Seeds of M. truncatula Gaertn genotype Jemalong A17 were scar-
ified for 7 min in concentrated sulfuric acid and rinsed several
times with sterile water. Seeds were then surface-sterilized in 2.6%
sodium hypochlorite for 2 min and rinsed five times with sterile
water. Seeds were transferred to water-agar plates [0.8% (w/v)] for
5 days at 4◦C in the dark, then for 24 h at 25◦C (16 h photope-
riod). Germinated seedlings were transferred to pots containing
150 mL of sterilized charred clay (Oil-Dri, Brenntag, France) as
a substrate. Plants were placed in a growth chamber with a 16 h
photoperiod (22◦C day, 20◦C night). They were fertilized daily
with half-strength Long Ashton nutrient solution (Hewitt, 1966)
containing a final concentration of either 0.0075 mM (low P) or
3.75 mM (high P) sodium dihydrogen phosphate.

Medicago truncatula root organ cultures expressing the
35S:NupYC2.1 construct (Sieberer et al., 2009) were obtained as
described by Chabaud et al. (2011) and grown in vertical Petri
dishes to favor a regular fishbone-shaped root system (Chabaud
et al., 2002). Transgenic M. truncatula plants expressing the
35S:NupYC2.1 construct were obtained by Agrobacterium tume-
faciens transformation (Genre et al., 2013). T1 and T2 lines
expressing the transgene were selected for use in this study.

Sterile spores of Rhizophagus irregularis (DAOM 197198, for-
merly Glomus intraradices; Krüger et al., 2012) were purchased
from Agronutrition (Labège, France). Spores of Gigaspora gigantea
(isolate HC/F E30, Herbarium Cryptogamicum Fungi, Univer-
sity of Torino, Italy) were produced and sterilized as described in
Besserer et al. (2006).

PLANT INOCULATION AND DETERMINATION OF MYCORRHIZAL RATE
Plants were inoculated with 90 spores of R. irregularis per pot. Sixty
spores were mixed with the substrate and 30 were added close to the
seedling. The percentage of root length colonized by the fungus
(i.e., showing arbuscules, vesicles, or both) was determined by
the gridline intersection method (Giovannetti and Mosse, 1980),
using a dissecting microscope after sampling of root fragments
and staining with Schaeffer black ink (Vierheilig et al., 1998).

DETERMINATION OF PHOSPHATE CONTENT
Leaf or root tissue samples were ground in 10% (w:v) perchlo-
ric acid using a FastPRep system with lysing matrix A (MP
Biomedicals). Inorganic phosphate content in the supernatant was

determined by the colorimetric method based on molybdenum
blue described in Nanamori et al. (2004). Briefly, absorbance at
820 nm was measured after incubation of supernatant samples
with ammonium molybdate in the presence of sulfuric acid and
ascorbic acid.

GENE EXPRESSION ANALYSIS
Gene expression analysis was carried out by reverse transcription-
quantitative PCR (RT-qPCR) as part of a Dynamic ArrayTM

integrated fluidic circuits experiment, using a 96.96 Dynamic
Genotyping chip (Fluidigm, BMK-M-96.96GT).

Non-inoculated M. truncatula plants were grown for 2 weeks
(16 h photoperiod, 70% humidity) and fertilized with low P or
high P nutrient solution. For each condition, the entire root sys-
tems of four plants were pooled and ground in liquid nitrogen.
Extraction of total RNA was performed using the RNeasy plant
mini kit (Qiagen) according to the manufacturer’s protocol. The
RNA concentration was determined with a Nano Drop® ND-
1000 and RNA quality was estimated using an Agilent RNA 6000
nano series II chip prior to DNase treatment (Ambion® TURBO
DNA-free). One microgram of RNA was reverse-transcribed using
SuperScriptTM III reverse transcriptase (Invitrogen). cDNA sam-
ples were diluted to a concentration of 60 ng/μL and subjected
to pre-amplification (TaqMan® PreAmp kit). For each condition,
three independent biological replicates were performed and each
sample was analyzed in technical duplicate.

Primers used for qPCR are listed in Table 1. Real qPCR efficien-
cies were calculated using LinRegPCR software (Ramakers et al.,
2003) for each primer pair (the average efficiency was calculated
for all reactions using this primer pair). The expression of the
genes of interest was calculated relative to four reference genes
(geometric mean of MtEF1α, MtHLC, MtPDF2, and MtPPRep)
taking into account the real PCR efficiency for each primer pair
(Pfaffl, 2001).

INOCULATION SYSTEM TO INDEPENDENTLY CONTROL HOST AND
FUNGAL P STATUS
Root exudates of M. truncatula were produced as follows. Plants
were grown for 3 weeks and fertilized with low P or high P nutri-
ent solution. The plants were gently uprooted and the roots still
attached to the shoot were carefully freed from the substrate,
rinsed, and then exudates were produced by immersion of roots
in 200 mL of the same nutrient solution for 24 h. A fresh batch
of root exudates was produced for each treatment of spores, and
filter-sterilized before use.

Replicates of 500 sterile spores of R. irregularis were put into
40 μm cellular sieves (BD FalconTM) placed in 6-well plates
(Nunc). Eight milliliters of sterile root exudates were added to
each batch of spores. Plates were incubated at 30◦C in the dark
under 2% CO2 for a total period of 15 days during which three
treatments with root exudates were performed. For the second
and third treatments, sieves containing spores were transferred to
fresh plates prior to addition of fresh root exudates.

In parallel, M. truncatula plants were grown for 10 days in 15-
mL plastic cylinders, the bottom of which was closed by a piece of
nylon membrane. To place the roots of these plants in contact with
the AM fungus, the membrane was removed and each cylinder was
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Table 1 | Oligonucleotide sequences.

EF1α Forward CTTTGCTTGGTGCTGTTTAGATGG Maillet et al. (2011)

Reverse ATTCCAAAGGCGGCTGCATA

HLC Forward GTACGAGGTCGGTGCTCTTGA Mbengue et al. (2010)

Reverse GCAACCGAAAATTGCACCATA

PDF2 Forward GTGTTTTGCTTCCGCCGTT Kakar et al. (2008)

Reverse CCAAATCTTGCTCCCTCATCTG

PPRep Forward GGAAAACTGGAGGATGCACGTA Kakar et al. (2008)

Reverse ACAAGCCCTCGACACAAAACC

PT1 Forward GGGATGTTATGCACATTACTT Liu et al. (2008)

Reverse CCAGTAGCTAAATGCAAACAG

PT2 Forward GGGATGTTATGCACATTACTT Liu et al. (2008)

Reverse CCTATGGAGTGGAAAAATAGA

PT3 Forward TTCAGCAAGCAATTCGCAAAACG Grunwald et al. (2009)

Reverse GTGAACCAGTAGCCCGGAACAGTA

PT5 Forward CTGAGTATGCGAACAAGAAGA Grunwald et al. (2009)

Reverse ACGCCAGTAATAGGTAAGTGC

PHR1 Forward ATCACTCACGCGCTGCGATG Branscheid et al. (2010)

Reverse AACGGCAACGAACGGATGCG

PHO2 Forward GGAGCCTCCACAGTTCTTCAAG Branscheid et al. (2010)

Reverse AAGGACAAGAGCCTGCAGAGAG

Mt4 Forward AATGATTGCTGGGAATGAACCTT Branscheid et al. (2010)

Reverse TTCCAAAGAGAAAATCCCATCAA

Spx Forward CAGGATAGGTGCTGAGTTTAGCTCT Branscheid et al. (2010)

Reverse GAGAAACAGGAAACACGCGAA

D27 Forward GAGATGATATTCGGCCAGGAAC Liu et al. (2011a)

Reverse GCATGGTTTTTCTTAGCCTTGC

CCD7 Forward CCAAACAAACCTGAAAGCAA

Reverse ATTTCCAAATTCCCATGAGC

CCD8 Forward ACTACAACTTCAGGCACCTC

Reverse GAGATTCAACTTGCCGATGG

MAX1 Forward TTGGGTTTGGTTAGCCCTTG Liu et al. (2011a)

Reverse CGCAGTTAGGGTCAAACCTTTC

Primers used for qRT-PCR to quantify primary transcripts of reference genes (EF1α, HLC, PDF2, PPRep), phosphate related genes (PT1, PT2, PT3, PT4, PT5, PHR1,
PHO2, Mt4, Spx), and strigolactone biosynthesis related genes (D27, CCD7, CCD8, MAX1). The last column indicates the articles in which these sequences were
originally published, where applicable. EF1α, translation elongation factor 1α; HLC, helicase; PDF2, rotodermal factor2; PPRep, pentatricopeptide repeat protein; PT,
phosphate transporter; PHR1, phosphate starvation response 1; PHO2, phosphate2; D27, Dwarf27; CCD, carotenoid cleavage dioxygenase; MAX1, more axillary
growth1.

placed on a cellular sieve containing stimulated spores. Assembled
systems were placed in charred clay substrate watered with low P or
high P nutrient solution to ensure sufficient moisture for 5 days.
At the end of the experiments, whole root systems were stained
and observed as described above for the assessment of AM root
colonization.

NUCLEAR CALCIUM SPIKING ANALYSES
Oscillations of nuclear calcium concentration were monitored
using the NupYC2.1 calcium sensor (Watahiki et al., 2004)
driven by the cauliflower mosaic virus 35S promoter (Sieberer

et al., 2009). The cameleon sensor protein YC2.1 undergoes a
conformational change when bound to calcium, which leads to
a change in the YFP to CFP ratio by Förster resonance energy
transfer (FRET). Compared to other calcium sensors, cameleon
proteins offer the advantages of being addressed to a particular cell
compartment, as well as sensitive detection at the single-cell level.
NupYC2.1 corresponds to a translational fusion of YC2.1 with the
nuclear protein nucleoplasmin, ensuring nuclear localization of
the sensor.

Root organ cultures or whole plants were grown on M medium
(Bécard and Fortin, 1988) containing 0.035 mM (low P) or 3.5 mM
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(high P). For inoculation, G. gigantea spores were pregerminated
on either low P or high P M medium at 30◦C in the dark under
2% CO2. Three days later, germinated spores were transferred to
corresponding low P or high P plates containing M. truncatula root
organ cultures expressing the 35S:NupYC2.1 construct. Roots and
fungi were covered with Biofolie 25TM (Dutscher SAS, Brumath,
France) as described in Genre et al. (2005). After 15 days of co-
culture, zones containing highly branched hyphae were visually
selected to search for epidermal cells contacted by hyphopodia.
These cells, as well as underlying cells, were directly analyzed using
a confocal laser-scanning microscope as described in Chabaud
et al. (2011). Calcium spiking was recorded over 10 min under
each hyphopodium analyzed. In parallel, root samples were taken
from other zones containing highly branched hyphae, in order to
assess the frequency of hyphopodium formation in low P and high
P. These roots were stained and examined as detailed above for the
presence of mycorrhizal structures.

For the analysis of calcium spiking in response to fungal sig-
nals, young lateral roots excised from root organ cultures or whole
transgenic plants were placed in a microchamber. One hundred
microlitre of treatment solution was applied to the roots imme-
diately prior to analysis under the confocal microscope. Negative
controls were performed on the same root explants that were used
for treatment. Explants incubated in water were analyzed for 10–
15 min prior to treatment. No calcium spiking could be detected
in water, except in rare cases (<3% of nuclei) where one isolated
spike was observed. Explants were then treated by CO4 or ger-
minated spore exudates (GSEs), and spiking was always observed
within the first 10 min following treatment. For each treatment
several roots were tested, and for each root 10–15 nuclei were
observed. Solutions used for treatment were either 10−8 M CO4
or R. irregularis GSEs obtained as described in Genre et al. (2013).
YFP and CFP fluorescence intensities were recorded over 30 min
and data were processed as described in Genre et al. (2013).

STATISTICAL ANALYSES
Statistical analyses were performed using SigmaStat or Statgraph-
ics Centurion XV.II professional software packages. Data sets that
satisfied normality and homoscedasticity criteria were compared
using the Student’s t-test or analysis of variance (ANOVA) fol-
lowed by the Fisher’s least significant difference (LSD) tests. The
unequal variance t-test (Welch’s test) was used for two-sample
comparisons when data fitted a normal distribution but variances
were unequal. The Mann–Whitney’s rank sum test was used when
data did not fit a normal distribution.

RESULTS
CHOICE OF P FERTILIZATION REGIMES
In order to study signaling events involved in the establishment
of the AM symbiosis in M. truncatula, we first needed to deter-
mine the experimental conditions necessary to obtain a clear
P-dependent phenotype. Plants were inoculated with spores of
the AM fungus R. irregularis and fertilized with nutrient solu-
tions containing different concentrations of Pi. The percentage of
the root length colonized by the fungus (i.e., showing arbuscules,
vesicles, or both) was determined after 5 weeks of co-culture.
The Pi concentration that had been used to inhibit mycorrhizal

FIGURE 1 | Effect of P fertilization on AM root colonization of M.

truncatula. Plants were inoculated with spores of R. irregularis and
fertilized with low P or high P nutrient solutions containing 0.0075 or
3.75 mM Pi, respectively. The extent of root colonization was determined
5 weeks post-inoculation after observation of stained root samples, and is
shown as the fraction of the root length with arbuscules, vesicles, or both.
Error bars represent SEM. n = 6 plants per condition. Different letters
indicate a statistically significant difference according to the unequal
variance t -test (P < 0.001).

colonization in pea (0.75 mM; Balzergue et al., 2011) was not
adequate for M. truncatula (not shown). A Pi concentration of
3.75 mM was sufficient to almost completely block mycorrhiza-
tion, with root colonization remaining under 2% [vs 62% at
0.0075 mM Pi (Figure 1)]. The two fertilization regimes of 0.0075
and 3.75 mM Pi will subsequently be referred to as low P and
high P, respectively. It is worth noting that although very few colo-
nization events were observed under high P, whenever the fungus
successfully entered the roots the subsequent steps of the interac-
tion appeared to proceed normally and arbuscules did not display
any morphological abnormalities. Biomass and Pi content were
determined under these two contrasting fertilization conditions.
High P supply hardly affected plant growth: shoot biomass was
significantly but only moderately increased while root biomass
remained unchanged (Figure 2). Total biomass was unaffected by
P supply (Student’s t-test, P = 0.606). In contrast high P condi-
tions strongly enhanced Pi content in leaves, and to a lesser extent
in roots (Figure 2).

To further investigate the nutritional status of plants grown
under low P and high P, and validate the contrasting conditions of
P supply, the expression of a set of marker genes was examined.
Phosphate transporter genes known to be regulated by P supply,
such as MtPT1, MtPT2, MtPT3, and MtPT5 (Liu et al., 2008; Grun-
wald et al., 2009) were found to be 2.2- to 4.7-fold more highly
expressed under low P (Figure 3A). The expression levels of other
genes related to P starvation signaling (Mt4 and MtSpx; Burleigh
and Harrison, 1997; Duan et al., 2008) were also respectively 31.9-
and 3.8-fold higher under low P. The upregulation of Mt4 in low P
was particularly strong, consistent with the Northern blot analysis
reported by Burleigh and Harrison (1998). In contrast MtPHO2,
a negative regulator of P starvation responses (Delhaize and Ran-
dall, 1995; Bari et al., 2006) was more highly expressed under high
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FIGURE 2 | Effect of P supply on growth and internal Pi content. Plants
were grown for 5 weeks with low P or high P fertilization. Error bars represent
the SEM. (A) Shoot (gray bars) and root (white bars) fresh weights were
determined; n = 5 plants per condition. Different letters indicate a statistically
significant difference according to the Student’s t -test (shoots: upper case,

P = 0.045; roots: lower case, P = 0.223). (B) Free Pi content was measured
in extracts from leaves (gray bars) and roots (white bars); n = 3 plants per
condition. Different letters indicate statistically significant differences
according to the Student’s t -test (leaves: upper case, P < 0.001; roots: lower
case, P < 0.001).

P. Another important regulator of Pi starvation responses is PHR1
(Rubio et al., 2001), a transcription factor known to be regulated
at the post-translational level (Miura et al., 2005). As expected, the
expression of MtPHR1 was unaffected by P (Figure 3A).

We next set out to determine whether the P supply condi-
tions affect the biosynthesis of the important root-derived signals
strigolactones. Because strigolactones are produced in very low
quantities, their biochemical detection is difficult in many species,
and the expression of biosynthetic genes is commonly used as
an indirect assessment of strigolactone production (Vogel et al.,
2010). We found that the expression of four genes involved
in strigolactone biosynthesis, MtD27, MtCCD7, MtCCD8, and
MtMAX1, were downregulated under high P (Figure 3B). This
effect was most important for MtD27, which encodes the first
enzyme in the strigolactone biosynthetic pathway (Alder et al.,
2012), indicating a reduced synthesis of strigolactones under high
P conditions.

INOCULATION SYSTEM TO INDEPENDENTLY CONTROL HOST AND
FUNGAL P STATUS
The marked reduction in mycorrhizal colonization of roots under
high P could be attributed to the effects of P on either the plant or
the fungus or both plant and fungus. One of the aims of our study
was to discriminate between these possibilities. In experiments
described above (Figure 1), the fungus and plant were grown in
the same nutrient solution. We designed an experimental system
in which the plant and fungus are grown separately during the pre-
inoculation stages of the experiment, and can thus be exposed to
different Pi concentrations (see Section“Materials and Methods”).
This system was inspired by a synchronized mycorrhization device
described by Lopez-Meyer and Harrison (2006). We modified the
system to suit our needs (Figure 4). Fungal spores were treated
in vitro with root exudates obtained from plants grown under

low P or high P (Figure 4A). It is worth noting that spores were
exposed to both the nutrient solution itself and to the root exudates
produced in this particular nutrient solution. Another set of plants
were grown, also under low P or high P (Figure 4B), and put in
contact with stimulated spores (Figure 4C). During co-culture,
plants and spores were watered with either low P or high P. This
experimental design uncouples the effects of P on the spores (either
directly or through the composition of root exudates) from those
exerted on the root itself. Various combinations using spores and
plants associated with low P or high P fertilization were performed.
Hyphopodia and colonization events were counted following co-
culture and these results are presented in Figure 4D.

Very few colonization events were observed when both plants
and spores were treated with high P, as compared with a com-
bination of plants and spores treated with low P (compare
combinations 1 and 2 in Figure 4D). Combinations of plants
and spores treated in different conditions were next examined. A
one-way ANOVA identified two groups of combinations: one with
high frequency of colonization contained all combinations involv-
ing low P recipient plants, and the other with lower frequency of
colonization comprised combinations with high P recipient plants.
When spores pre-stimulated with low P root exudates were used
to inoculate plants pre-grown in high P, irrespective of the fertil-
ization solution used during contact (Figure 4D, combinations 3
and 6), very few colonization events were observed. This suggests
that the unfavorable conditions applied to plants were dominant
to the favorable conditions applied to spores. Conversely, when
plants grown under low P were inoculated with spores treated
with high P root exudates, roots were colonized to a high level,
similar to that observed when both partners were under low P
conditions (Figure 4D, combination 4 vs 1). Therefore, the con-
ditions in which the spores were stimulated again appeared to
have little importance. In addition, the nutrient solution used
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FIGURE 3 | Effect of Pi supply on the expression of selected genes.
Expression levels were determined relative to constitutive reference genes.
Error bars represent the SEM; n = 3 biological replicates per condition.
Asterisks indicate a statistically significant difference between low P and high

P (P < 0.05) for each gene, according to the Student’s t -test or to the unequal
variance t -test where appropriate. (A) Genes involved in Pi acquisition (root Pi
transporters: MtPT1, MtPT2, MtPT3, MtPT5 ) and markers of Pi starvation
(MtPHO2, MtPHR1, Mt4, MtSpx ). (B) Strigolactone biosynthetic genes.

during the contact phase seemed to have little influence on the
symbiotic outcome, as shown with the low P spores/low P plants
and low P spores/high P plant combinations: colonization levels
were not affected by the nutrient solution used during contact
(combinations 1 vs 5 and 3 vs 6, respectively, in Figure 4D).

P EFFECTS ON NUCLEAR CALCIUM SPIKING RESPONSES IN THE
M. truncatula ROOT EPIDERMIS
Under high P conditions the interaction between roots and AM
fungi leads to a very low level of colonization. Importantly,
the interaction appears to be arrested prior to the formation of
hyphopodia (Figure 4D), suggesting that very early events are
perturbed in these conditions. Among several possibilities, we
considered the hypothesis that plants grown under high P might
be unable to recognize molecular signals produced by their fun-
gal partner. Since the activation of nuclear-associated calcium
oscillations (spiking) is one of the earliest cellular responses to

the presence of the fungus, we used this as a marker for the
early perception of the fungus by the plant. Spiking analyses can
be carried out using in vitro root organ cultures derived from
Agrobacterium rhizogenes-transformed “hairy roots,” since these
are particularly well adapted for the observation of the early stages
of mycorrhization (Chabaud et al., 2002).

The most intense calcium spiking responses have been observed
in epidermal cells in response to hyphopodium formation on the
root surface (Chabaud et al., 2011). Transgenic root organ cultures
of M. truncatula expressing the cameleon Nup-YC2.1 nuclear cal-
cium reporter (Chabaud et al., 2011) were used to monitor changes
in calcium concentration in epidermal root cells in contact with
AM hyphopodia. Roots grown in low P or high P were inoculated
with spores of G. gigantea. This particular AM fungus was chosen
because it possesses naturally fluorescent hyphae which facilitate
the observation of hyphal branching and hyphopodia formation
(Séjalon-Delmas et al., 1998). Regardless of the P concentration, G.
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FIGURE 4 | Inoculation system to independently control host and fungal

P status. (A–C) Steps in the experimental design. (A) Medicago truncatula
plants grown in low P or high P produced root exudates used to stimulate R.
irregularis spores placed in cellular sieves. Three treatments with root
exudates were applied over a total of 15 days. (B) Another set of M.
truncatula seedlings were grown in small plastic containers closed by a mesh
(dotted line) for 10 days in low P or high P. (C) The mesh was removed from
the containers used in (B) and the seedlings placed inside the sieves
containing stimulated spores (obtained in (A)), so that the roots were in direct
contact with the spores. Assembled units were watered with low P or high P
nutrient solution for 5 days. (D) Mycorrhizal structures were examined on

whole root systems of each plant. Root zones displaying hyphopodia alone
(open bars) or colonization events (closed bars) were counted. Colonization
events corresponded to zones where AM fungi had formed a hyphopodium
and penetrated the root (with or without formation of arbuscules). Several
combinations of low P (LP) and high P (HP) applied to spores, recipient plants
and fertilization during contact were tested (numbered from 1 to 6). Error bars
represent the SEM. n = 6 plants per combination. Numbers of colonization
events were compared across combinations using one-way ANOVA followed
by Fisher’s LSD test. Normality of residues was verified using the
Kolmogorov–Smirnov’s test. Different letters indicate statistically significant
differences (P < 0.05).

gigantea spores germinated equally well and germinating hyphae
produced from first- to fourth-order branching. A more intense
branching pattern was observed in the immediate vicinity of roots
under low P, and only extremely rarely under high P conditions.
Likewise, hyphopodia formation was only very rare under high P
conditions: when equivalent amounts of roots taken from zones
with intense hyphal branching were sampled from low P and high
P plates and stained for observation, only two hyphopodia could
be observed under high P vs 13 under low P. These results are
fully consistent with the mycorrhizal phenotype observed in whole
plants (Figure 4D). Calcium spiking was monitored in epidermal
cells situated directly underneath hyphopodia (Figure 5). Under
low P (Figure 5A), the cells closest to the hyphopodia exhibited
calcium spiking of high frequency (Figure 5B, nucleus number
1), while spikes were less frequent in cells situated further away
from the hyphopodium (Figure 5B, nucleus numbers 2, 3, and
4) as previously observed by Chabaud et al. (2011). Under high P,
although only rare hyphopodia were formed, similar nuclear cal-
cium spiking was observed in the underlying cells (Figures 5C,D).
Therefore, once a hyphopodium had formed, the root response in
terms of calcium spiking could not be distinguished between low
P and high P.

In addition to hyphopodium-induced calcium responses, it has
also been shown that calcium spiking can be induced by both
crude fungal exudates and candidate fungal signal molecules such

as Myc-COs (Genre et al., 2013). To investigate whether such
responses are perturbed under high P conditions, roots were
treated with fungal compounds in the absence of the fungus.
In the present study we tested both crude GSEs (Chabaud et al.,
2011) and purified chitin tetramers (CO4; Genre et al., 2013).
GSEs contain both Myc-LCOs (Maillet et al., 2011) and a vari-
ety of short-chain chitooligosaccharides including CO4 (Genre
et al., 2013). It is likely that they also contain other biologically
active molecules not yet characterized. For the study of cal-
cium spiking responses to fungal compounds, roots were taken
either from whole transgenic plants or from transgenic root organ
cultures. Studying whole plants takes into account a potential
contribution from the P status of the aerial part of the plant.
Regardless of the type of root material, the spiking responses
were highly irregular over time for a given nucleus, and also quite
variable between different nuclei (see Figures 5 and 6 for root
organ cultures). This typical feature of spiking responses to AM
fungi makes it difficult to compare response intensities between
conditions. Nevertheless, two parameters can be measured unam-
biguously: the proportion of nuclei that exhibit a spiking response
(at least one spike/30 min imaging), and the number of spikes
over a given period of time. Although some quantitative aspects
of the spiking response may escape this analysis, it certainly
allows to determine whether a root responds or not to a given
stimulus.
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FIGURE 5 | Nuclear calcium spiking in root cells localized under

hyphopodia. (A,C) Hyphopodia (white arrows) formed on low P or high P
roots, respectively. Scale bars: 20 μm. The false green color corresponds
to the fluorescence produced either by root nuclei containing the
cameleon probe or by fungal autofluorescence. Images correspond to the
superposition of the bright field image and the fluorescent image. Image
(A) shows the surface of the root and the contact between a

hyphopodium and epidermal cells. Panel (C) corresponds to a focal plane
underneath the hyphopodium, in the root epidermis. Circles with numbers
identify the nuclei in which calcium spiking was recorded. (B,D) The
graphs represent oscillations of nuclear calcium concentration measured
over 10 min in the nuclei shown in (A) and (C), respectively. Vertical axis:
arbitrary unit for YFP fluorescence/CFP fluorescence ratio, horizontal axis:
time (minutes).

In root organ cultures grown under low P as well as high P, a
majority (77–78%) of nuclei exhibited calcium spiking with an
average of 3.6–4.4 spikes over 30 min in response to 10−8 M
CO4 (Table 2). Roots of whole transgenic plants also responded
strongly to CO4, with cells of low P- and high P-grown plants
exhibiting similar calcium spiking responses (83 and 94% of pos-
itive nuclei and 6.5 and 4.1 spikes/positive nucleus, respectively;
Table 2). Finally, the response to R. irregularis GSEs was investi-
gated in root organ cultures and once again, roots grown under
low P and high P exhibited robust and similar calcium spiking
responses (Table 2; Figure 6). Statistical analyses failed to detect
any significant effect of Pi concentration on either the percentage
of responding nuclei or the number of spikes over 30 min imaging,
whatever the material analyzed and the treatment applied.

DISCUSSION
CHOICE AND VALIDATION OF P SUPPLY CONDITIONS AFFECTING AM
SYMBIOSIS
Although the inhibition of the AM symbiosis by high Pi concen-
tration is a general phenomenon, the concentrations needed to
observe this effect depend on the plant species, mode of inoc-
ulation and the fertilization conditions. For example, 0.75 mM
Pi was sufficient to inhibit the AM symbiosis almost completely

in pea (Balzergue et al., 2011), while a concentration of 10 mM
Pi was necessary to obtain a similar effect in Petunia (Breuillin
et al., 2010). In M. truncatula, Pi concentrations of 1 and 1.3 mM
only had a moderate effect on root colonization (Branscheid et al.,
2010; Bonneau et al., 2013, respectively). In our hands, a concen-
tration of 3.75 mM Pi in the nutrient solution almost completely
suppressed the AM symbiosis by preventing the formation of
hyphopodia. The few hyphopodia that were formed in high P
were functional, since they led to normal colonization of the root
cortex and the formation of arbuscules (although the overall root
colonization was severely reduced due to the limited number of
fungal entry points). Therefore, under these experimental condi-
tions, the effects of a high P supply appear to be focused on the
earliest stages of the AM association.

The consequences of a high P supply on growth and P accu-
mulation can differ depending on the plant species and culture
conditions. In our case, high P conditions resulted in Pi accu-
mulation, especially in leaves, rather than in stimulated growth
(Figure 2). This small impact of P supply on plant growth is
not unusual in M. truncatula: similar observations have been
reported by other authors on this species (Grunwald et al., 2009;
Bonneau et al., 2013). It is possible that under our conditions
other nutrients or culture parameters (e.g., light intensity) are
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FIGURE 6 | Nuclear calcium responses induced by GSE treatment in

low P and high P roots. Root organ cultures expressing the nuclear
cameleon probe were grown in low P (A) or high P (B). Lateral
roots were treated with 100 μL of germinated spore exudates (GSEs).

The graphs represent calcium oscillations measured in several
representative nuclei for each condition. Vertical axis: arbitrary unit for
YFP fluorescence/CFP fluorescence ratio, horizontal axis: time
(minutes).

Table 2 | Nuclear calcium spiking in response to CO4 or GSE treatment in low P or high P roots.

Treatment Plant material Phosphate

condition

Number of

analyzed roots

Number of

analyzed nuclei

Average proportion

of positive nuclei (%)

Average number of spikes/

30 min/positive nucleus

10−8 M CO4 Root organ cultures Low P 6 56 77 3.6

High P 8 89 78 4.4

10−8 M CO4 Whole plants Low P 4 33 83 6.5

High P 5 32 94 4.1

GSE Root organ cultures Low P 3 27 96 5.5

High P 3 29 97 5.1

The table indicates the number of independent root samples analyzed and the number of nuclei in which fluorescence was monitored. Positive nuclei are those
showing at least one spike over the 30-min recording period. Data obtained in low P and high P were compared for each combination of treatment and material. No
statistically significant difference was found between low P and high P for the percentage of positive nuclei, according to Student’s t-test or Mann–Whitney’s test
(P > 0.9 in all cases). The effect of phosphate concentration on the number of spikes/30 min imaging was tested by nested ANOVA to take into account possible
variations between sampled roots (root factor nested in the phosphate concentration). Normality of residues was verified using the Kolmogorov–Smirnov’s test. No
statistically significant difference between low P and high P was found using Fisher’s LSD test (P > 0.1 for all combinations of treatment and material).

more important growth-limiting factors than P. In any case, these
results suggest that the responses to P nutrition that depend on
internal P concentration rather than on external P availability
(Thibaud et al., 2010) should be markedly contrasted between
low P and high P. In agreement with this hypothesis, the expres-
sion profiles of marker genes of P status under low P and high P
(Figure 3A) were similar to those described in the literature (Liu
et al., 2008; Grunwald et al., 2009; Branscheid et al., 2010). This
indicates that after 2 weeks of growth a clear difference in P status

is already established between the plants grown under low P or
high P.

HIGH P PRIMARILY AFFECTS THE PLANT PARTNER IN AM
INTERACTIONS
Among the mechanisms that could account for the limited root
colonization in high P conditions, it is possible to envisage direct
effects of external Pi on the fungus (i.e., effects not exerted
through the plant via for example a modification of root exudate
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content). Such effects could include effects on spore germina-
tion or hyphal growth, as has been reported in a few cases (de
Miranda and Harris, 1994). However, the fact that the Pi con-
centrations that abolish the symbiosis in pea hardly have any
effect in Medicago (Balzergue et al., 2011; this manuscript) while
an identical fungal inoculum was used, argues against this pos-
sibility. Nevertheless, it does not exclude the possibility that
these effects become more important at the higher Pi concen-
trations used for M. truncatula. We tested this directly by using
the experimental set-up in which plant and fungus are grown
separately before contact (Figure 4). Germinated spores pre-
stimulated under high P were able to successfully colonize low
P-grown roots, indicating that the presence of high P during
the spore pre-stimulation stage had not decreased their symbiotic
capacity.

The same experimental system was exploited to investigate the
importance of the potential effects of Pi supply on the com-
position of root exudates. Phosphate supply has been reported
to alter the composition of root exudates, and the amount of
inhibitors or activators of AM fungal development (Vierheilig,
2004; Nagahashi and Douds, 2011). These changes could account
for the reduced mycorrhizal potential of plants grown in high
P (Akiyama et al., 2002; Yoneyama et al., 2007). Such bioactive
compounds include strigolactones (Akiyama et al., 2005; Besserer
et al., 2006), which on the basis of biosynthetic gene expression
(Figure 3B) are likely to be less abundant in root exudates pro-
duced under high P compared to those produced under low P
(Liu et al., 2011a). However, root exudates also contain a number
of other compounds potentially active on AM fungi, including
various flavonoids (Scervino et al., 2007) and hydroxy fatty acids
(Nagahashi and Douds, 2011). The impact of root exudates pro-
duced under high P was therefore addressed as a whole, rather
than by examining a limited number of known compounds. For
this, it is useful to focus on two particular experimental condi-
tions shown in Figure 4D: spores pre-stimulated with high P or
low P root exudates, both confronted with low P-grown plants
(combinations 1 and 4 in Figure 4D). In both cases the fungus
was able to colonize roots successfully, indicating that root exu-
dates produced in high P did not contain strong inhibitors of
AM fungi. Conversely, germinated spores pre-stimulated in low P
root exudates poorly colonized high P-grown roots. Therefore,
the stimulation of spores with low P root exudates, supposed
to be rich in fungal stimulants, was not sufficient to obtain
a high rate of root colonization. This is consistent with our
previous observation in pea that treatment with exogenous strigo-
lactones was not sufficient to improve root colonization in high P
(Balzergue et al., 2011). Furthermore, results in the present arti-
cle extend this conclusion to the entire, complex content of root
exudates.

Finally, only plants grown under low P are efficiently colonized
by AM fungi (regardless of the conditions of spore pre-stimulation
and fertilization during contact). Thus, the conditions in which
the plant has been grown prior to contact determine whether it
will be a good or a bad host for AM fungi. Therefore, a high level
of P fertilization seems to inhibit AM symbiosis predominantly
by acting on the plant itself rather than on the content of its root
exudates or on the fungal partner.

HIGH P DOES NOT INHIBIT THE ROOT CALCIUM SPIKING RESPONSE TO
FUNGAL FACTORS
Since mycorrhization under high P was arrested during the earliest
stages before fungal attachment to roots, our investigations on pos-
sible underlying mechanisms focused on these very early stages.
Our data suggest that the presymbiotic plant-to-fungus molecular
signaling is affected under high P, but that these effects are not
decisive in determining the outcome of the interaction. Alterna-
tively, failure to recognize signals has been proposed as a possible
cause of lack of mycorrhizal colonization (Koide and Schreiner,
1992).

To test this further, host nuclear calcium spiking responses to
fungal signals were monitored using a cameleon reporter probe
(Sieberer et al., 2009). Similar nuclear calcium spiking responses
were observed in epidermal cells underneath hyphopodia both
under low P and high P (Figure 5). In M. truncatula mutants defec-
tive in genes necessary for the generation (dmi1, dmi2) or decoding
(dmi3) of calcium spiking, numerous hyphopodia are formed but
the root colonization process is arrested at the root epidermal
surface (Marsh and Schultze, 2001). These observations suggest
a tight link between calcium spiking and fungal penetration into
the roots. Our results are fully consistent with this hypothesis since
the few hyphopodia that formed under high P conditions led to
apparently normal root colonization events.

Although the root calcium spiking response to hyphopodium
formation appears unaffected by P supply, it can be hypothesized
that high P decreases the root ability to perceive the fungus prior
to contact. This would explain why much fewer hyphopodia are
formed under high P conditions. Previous studies have shown that
plant roots perceive the presence of AM fungi through diffusible
fungal compounds prior to any physical contact (e.g., Kosuta
et al., 2003; Mukherjee and Ané, 2011). Notably, calcium spik-
ing in root epidermal cells can be observed in response to fungal
exudates or pure compounds such as COs (Chabaud et al., 2011;
Genre et al., 2013). Potentially earlier steps in symbiotic commu-
nication were therefore examined by analyzing nuclear calcium
spiking responses to both crude fungal exudates and potential AM
signals. Roots from organ cultures or from whole plants grown
under low P and high P responded similarly to both purified
chito-tetraose (CO4) and crude GSEs, indicating that these roots
can perceive the presence of the fungus at a distance (Table 2;
Figure 6). Roots taken from whole plants grown under low P or
high P also displayed a similar calcium spiking response to CO4
(Table 2), suggesting that the presence of the aerial part (which is
the main site of P accumulation under high P) did not influence
the capacity of the roots to respond to these molecules present
in fungal exudates. Thus, the inhibition of hyphopodia forma-
tion must be explained by some alternative mechanisms, yet to be
discovered.

ALTERNATIVE HYPOTHESES
Various mechanisms could account for the reduced attachment of
AM fungal hyphae to high P-grown roots. Observations reported
in the literature draw attention to two particular possibilities: the
modification by P of recognition patterns present at the root epi-
dermal surface, and a putative hormonal effect of strigolactones
on the roots themselves. Several lines of evidence indicate that
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AM fungi are able to recognize physical patterns on the root epi-
dermal surfaces on which they develop hyphopodia. Firstly, AM
fungi can form hyphopodia on cell wall fragments from epider-
mal cells but not on fragments from other cell types (Nagahashi
and Douds, 1997). Secondly, hyphopodia are preferentially formed
on grooves between adjacent epidermal cells. Cell walls in these
regions are thinner, looser, and richer in unesterified pectin (Bon-
fante et al., 2000). Thirdly, a glycerol-3-phosphate acyl transferase,
involved in cutin and suberin synthesis, was recently shown to
be necessary for the formation of hyphopodia on M. truncatula
roots (Wang et al., 2012). Taken together, these observations point
toward an important role of the cell wall composition, and pos-
sibly also surface topography, as a hyphopodium differentiation
signal for AM fungi. This hypothesis is consistent with studies of
appressorium formation in fungal pathogens, which showed the
requirement for specific epidermal surface patterns (e.g., Liu et al.,
2011b). Although the effects of P supply on epidermal root cell
wall composition have not been studied in detail, Pi starvation
is known to enhance root cellulose content (Zhang et al., 2012),
and to affect the expression of many genes involved in cell wall
loosening and biosynthesis (Miura et al., 2011). Therefore, high
P could act through modifications of the physical or biochemical
properties of the root epidermal surface.

Finally, high P may affect root physiology by altering the
hormonal balance. Strigolactones are now recognized as plant hor-
mones involved in several aspects of shoot and root development
(Ruyter-Spira et al., 2013), and one of the most striking effects of
P supply on hormones is a dramatic reduction of root strigolac-
tone synthesis (Yoneyama et al., 2007; Balzergue et al., 2011; Liu
et al., 2011a). On the basis of gene expression data (Figure 3),
this is most likely the case in the M. truncatula plants used in
the present study. This raises the question of whether modifica-
tions of strigolactone content may affect hyphopodia formation
through hormonal effects in planta, in addition to the effects
of root-exuded strigolactones on the fungus. Strigolactones are
known to influence auxin synthesis and transport, thereby modi-
fying root system architecture and root apical meristem function
(Ruyter-Spira et al., 2011; Koltai and Kapulnik, 2013). It is likely
that other effects of strigolactones on root physiology remain to
be discovered. Their role as hormones in mycorrhizal interactions
has been investigated by using strigolactone-insensitive mutants,
which make it possible to specifically address the role of strigolac-
tones in the plant itself rather than on the fungus. Foo et al. (2013)
showed that a strigolactone-insensitive pea mutant is poorly col-
onized by AM fungi, pointing toward a role for strigolactones in
planta in the AM association. However, the mycorrhizal symbiosis

is further downregulated in high P in this mutant. This observa-
tion suggests that reduced strigolactone content is not the only
cause of restricted root colonization by AM fungi in high P-grown
plants, but does not exclude a contribution of strigolactones. Sur-
prisingly, the analysis of two strigolactone-insensitive mutants of
rice affected in different genes gave conflicting results: mycorrhizal
root colonization was enhanced in one of the mutants and reduced
in the other (Yoshida et al., 2012). Therefore, the hormonal con-
tribution of strigolactone signaling to the symbiosis is not fully
understood. Also, strigolactone-insensitive mutants accumulate
high concentrations of strigolactones (Umehara et al., 2008; Arite
et al., 2009) that are likely to affect the metabolism and transport
of other phytohormones (Vanstraelen and Benková, 2012). This
makes it difficult to determine whether a particular phenotype is
primarily due to strigolactone insensitivity or to perturbations on
other hormonal pathways. A detailed analysis of the hormonal
implications of P status should help to understand not only how
it controls the AM symbiosis, but also how this particular effect is
integrated with the other responses to P supply.

CONCLUSION
Using an experimental system that allowed the application of dif-
ferent P concentrations to the plant and fungal partners, we have
shown that high P conditions that inhibit mycorrhizal colonization
primarily affect the host roots. In contrast with mutants affected
in known elements of the symbiotic pathway, roots grown in high
P remain able to respond to fungal signals both at a distance and
following contact. This indicates that these roots are not blind to
their symbionts, but are unable to interact with them for another,
unknown reason. The experimental conditions described in this
article should be valuable tools to further investigate these novel
regulatory mechanisms in AM symbiosis.
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