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Abstract

Inferring the structure of populations has many applications for genetic research. In addition to providing information for
evolutionary studies, it can be used to account for the bias induced by population stratification in association studies. To
this end, many algorithms have been proposed to cluster individuals into genetically homogeneous sub-populations. The
parametric algorithms, such as Structure, are very popular but their underlying complexity and their high computational
cost led to the development of faster parametric alternatives such as Admixture. Alternatives to these methods are the non-
parametric approaches. Among this category, AWclust has proven efficient but fails to properly identify population
structure for complex datasets. We present in this article a new clustering algorithm called Spectral Hierarchical clustering
for the Inference of Population Structure (SHIPS), based on a divisive hierarchical clustering strategy, allowing a progressive
investigation of population structure. This method takes genetic data as input to cluster individuals into homogeneous sub-
populations and with the use of the gap statistic estimates the optimal number of such sub-populations. SHIPS was applied
to a set of simulated discrete and admixed datasets and to real SNP datasets, that are data from the HapMap and Pan-Asian
SNP consortium. The programs Structure, Admixture, AWclust and PCAclust were also investigated in a comparison study.
SHIPS and the parametric approach Structure were the most accurate when applied to simulated datasets both in terms of
individual assignments and estimation of the correct number of clusters. The analysis of the results on the real datasets
highlighted that the clusterings of SHIPS were the more consistent with the population labels or those produced by the
Admixture program. The performances of SHIPS when applied to SNP data, along with its relatively low computational cost
and its ease of use make this method a promising solution to infer fine-scale genetic patterns.
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Introduction

Population structure relates the genetic heterogeneity that exists

between individuals of a population. This heterogeneity is a

natural phenomenon resulting from biological and evolutionary

processes such as for instance natural selection, genetic drift,

populations migrations or mating processes [1]. These phenomena

lead in time to sub-populations genetically differing with regard to

the frequency of certain alleles. For the same reasons, disease

prevalences or allele penetrances may vary between such groups.

These systematic differences between sub-populations can be more

or less important. The most identifiable are found between ethnic

and/or geographically distant groups.

Identifying the underlying structure of populations is often of

use for genetic research. It allows the study of evolutionary

relationships between populations as well as learning about their

demographic histories [2–6].

Such analyses are also of a great interest for population-based

genetic studies such as Genome-Wide Association Studies

(GWASs). Notwithstanding the widespread usage of GWASs,

their findings have been criticized partly because they are

vulnerable to population stratification. This corresponds to the

bias induced in situations where the studied populations are

genetically heterogeneous and the sampling of cases and controls is

imbalanced between the various ancestries. Population stratifica-

tion is known to lead to finding spurious associations or to missing

genuine ones [7–11]. Inferring the structure of the populations can

therefore be helpful to identify whether there is indeed a structure

or to define homogeneous clusters of individuals that can later be

used to correct the association test and account for stratification.

Two major strategies have been developed to infer the structure

of the populations that are parametric model-based clustering and

non-parametric clustering. Model-based clustering approaches

make numerous assumptions on the genetic data and use statistical

inference methods to assign individuals to sub-populations. Many

of these parametric approaches exist such as for instance Structure

[5], Admixture [12,13], BAPS [14] or FRAPPE [15]. These

parametric methods are more commonly used to infer population

structure. It has however been pointed out that they have some

drawbacks such as the complexity of the underlying statistical

models and of the assumptions that have to been made on the

data. Also, the program Structure is known to have a very high

computational cost. Non-parametric approaches have the advan-

tage over parametric ones of making fewer assumptions on the

data. For example most of these methods do not assume the

Hardy-Weinberg equilibrium between genetic markers. In addi-

tion, such approaches involve few parameters to be estimated [16].

The main non-parametric methods are Awclust [17] using a
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distance-based hierarchical clustering or ipPCA [1] using iterative

principal component analysis (PCA). It is also possible to apply

clustering algorithms, such as a Gaussian mixture model-based

clustering, to the principal components resulting from a PCA

applied to genetic data [6]. We refer to this particular method as

PCAclust in the following.

We propose in this paper a novel non-parametric distance-

based clustering approach based on a divisive hierarchical

clustering method. Our method is based on the idea that it might

not be possible to uncover all of the structure in the data when

applying a clustering algorithm just once. Fine population

structures may not be detected as the corresponding sub-

populations are hidden within the major sub-populations detected

by the first run of the algorithm.

We therefore implemented a robust statistical framework to

iteratively apply a clustering algorithm to the data and so analyze

in depth the genetic patterns of the studied populations. This

corresponds to a divisive hierarchical clustering strategy. Based on

a pairwise distance matrix, the algorithm progressively divides the

original population in two sub-populations by the use of a spectral

clustering algorithm. The process is then iterated in each of the

two sub-populations and so on. This leads to the construction of a

binary tree, where each node represents a group of individuals. To

determine the final clusters, a tree pruning procedure and an

estimation of the optimal number of clusters are applied. In such

an approach, both the final clustering of the individuals and the

number of clusters are estimated by the method. We call our

method ‘Spectral Hierarchical clustering for the Inference of

Population Structure’ (SHIPS).

We present in this article the SHIPS algorithm along with

several applications to SNP datasets. We consider five scenarios of

simulated population structures. The software Genome [18] was

used to simulate these data of increasing complexity. We also

apply the method to a simulated admixed dataset that was

produced using real data and an evolutionary model previously

used in [19–21]. In addition, we evaluate the performances of the

algorithm on two real datasets, namely data from the HapMap

project [22] and the Pan-Asian dataset [23]. A comparison of our

method SHIPS and some of the main approaches that are

Structure, Admixture, AWclust, and PCAclust is also conducted

on these datasets.

Methods

We present in this part the strategy of the SHIPS algorithm

along with details of each step of the program. We also provide

details about the methodologies of the other algorithms compared

to SHIPS and the process used to assess all the methods. The

simulated and real datasets analyzed are then described.

The SHIPS algorithm
SHIPS can be described in several steps that are graphically

represented in Figure 1.

1. Computation of a distance matrix that is a similarity matrix S

between each pair of individuals. This matrix is used for the

next steps of the algorithm.

2. Creation of a binary tree. Each population is divided in two

sub-populations and so on (Figure 1-A).

3. Pruning of the tree to keep only the relevant branches

corresponding to the relevant divisions (Figure 1-B).

4. Estimation of the optimal number of clusters K to determine

which clusters of the tree are the final ones (Figure 1-C).

Similarity matrix. SHIPS is based on a spectral clustering

algorithm. A similarity matrix is therefore necessary to apply this

clustering method. We decided to consider a similarity matrix

based on the allele sharing distance (ASD) that has been previously

used to identify genetic patterns among populations [4,17]. This

matrix represents how close the genomes of each pair of

individuals are. The similarity at SNP l between samples i and j

is calculated as follows

si,j(l)~

2

1

0

8><>:
if same genotype

if one common allele

if no common allele

:

The total similarity between samples i and j is

si,j~
Xp

l~1

si,j(l)~
Xp

l~1

(2{Dxil{xjl D),

where xil , xjl are the sample genotypes coded 0, 1 or 2 according

to the number of reference alleles present at the locus l. The final

matrix S = (si,j)1ƒiƒn
1ƒjƒn

is a squared matrix of dimension n|n, n

being the number of individuals.

One has to note that any pairwise similarity matrix could be

used in the algorithm instead of the one presented here. Examples

of such matrices, based for instance on haplotypes instead of

genotypes, are presented in [24–27]. We decided the choice of this

similarity measure as it is fast to compute and led to high empirical

performances of the algorithm.

Creation of a binary tree with successive spectral

clustering algorithms. The binary tree produced by SHIPS

is obtained by successively dividing each population in two sub-

populations using a spectral clustering algorithm. Spectral

clustering methods cluster points using eigenvectors of matrices

derived from the initial data. We decided to use the version of this

method proposed by Ng et al. [28,29] that is the normalized

spectral clustering described in the three following steps.

First, the similarity matrix S computed in the previous section is

transformed into its normalized laplacian L with

L~I{D{1=2WD{1=2,

where W~S{diag(S), I is the identity matrix and D is a

diagonal degree matrix such as each diagonal term di~
Xn

j~1

wij :

In a second step, a singular vector decomposition of the laplacian

L = ULU ’ is computed and the m first eigenvectors (U1, . . ., Um)

are normalized to get new vectors (T1, . . ., Tm), with norms of 1,

defined by

Ti~
UiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i~1

U2
i

s :

These vectors are used to cluster the points, i.e. divide a

population in two sub-populations. Note that m represents here

the number of desired clusters so m~2 in the case of the SHIPS

algorithm.

SHIPS: A New Method to Infer Population Structure
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In a third step, a clustering algorithm is applied to the new

vectors (T1,T2) to create the two sub-populations. We decided to

use a Gaussian mixture model (GMM) clustering after determining

empirically that the usual k-means clustering algorithm is less robust

than the GMM clustering when applied to our genetic data. The

GMM clustering is used in the way the k-means would be, that is by

strictly fixing the number of estimated clusters to m~2.

If the population that we wish to split in two sub-populations is

deemed homogeneous by the algorithm, the GMM clustering

creates two clusters, one with all the samples and an empty one.

This is a termination criterion that defines the end of a branch of

the tree, called a terminal node. In extreme cases, the terminal

nodes are all composed of a unique sample of the original

population which ensures the convergence of the tree building step

of the algorithm.

Pruning of the tree. The divisive strategy of SHIPS consists

in dividing the original population in two sub-populations with the

spectral clustering algorithm previously described and to iterate

this procedure within each sub-population. This process leads to

the computation of a binary tree (Figure 1-A). It is however

noticeable that certain divisions are not relevant enough in terms

of separating really distinct genetic populations. As a result, a

pruning procedure is applied to the tree to progressively suppress

the nodes, and the corresponding branches, that are the less

relevant. This procedure creates several nested trees, each

corresponding to a possible clustering of the individuals with a

decreasing number of clusters (Figure 1-B). At the last step of the

pruning, all the samples are in the same cluster.

The strategy of tree pruning that we use is the reduced error

pruning. A quality indicator is defined and calculated for each

node of the tree. This indicator is based on the sum of the squared

similarities of a node and of its leaves. We define the function

calculating the sum of squared similarities within a node A by

SW (A)~
X
i,j[A

s2
i,j ,

where si,j is the similarity previously introduced between samples i

and j.

Considering a tree T , the quality of a node G which has the

leaves L(G)~(L1, . . . ,Ld ) is defined by

qual(GDT)~SW (G){
Xd

k~1

SW (Lk):

In terms of inter-cluster sums the quality can be expressed by

qual(GDT)~
X

1ƒkvk’ƒd

X
i[Lk ,j[Lk’

s2
i,j ,

which corresponds to the sum of squared similarities between the

leaves of G.

Figure 1. Graphical example of the SHIPS algorithm. After that the initial binary tree is built, the pruning procedure leads at the end of each
step to a possible clustering of the individuals. In this example the data is clustered in four, then three then two clusters (gray nodes) at step i, iz1
and iz2 respectively. The final clusters decided by the gap statistic correspond to the ones of the four classes clustering (red nodes).
doi:10.1371/journal.pone.0045685.g001

SHIPS: A New Method to Infer Population Structure
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At each step, the node with the lowest quality value,

Gpruned~argminG[T qual(GDT), is pruned along with the subtree

which it is the root. The indicators are recalculated after each step

to account for the new topology of the tree.

Estimation of the optimal number of

clusters. Principle. The optimal number of clusters K is

regarded as a variable that is estimated using Tibshirani et al.’s gap

statistic [30]. This method compares a quality indicator calculated

on the result of a clustering in k classes of a dataset of interest and

the value that this indicator would take under its null distribution,

that is when the same clustering algorithm is applied to cluster a

null reference dataset in k classes also.

A range of possible numbers of clusters, k~1 . . . kmax, is thus

investigated and for each an indicator Wk is calculated. The gap

statistic is defined for a clustering with k clusters by

Gap(k)~E½Wk�{Wk,

and estimated by

bGap(k)~E
� ½Wk�{Wk~

1

B

XB

b~1

W �
kb{Wk,

where E�½Wk� represents the expectation from the null distribu-

tion and therefore the W �
kb are the quality indicators calculated on

B simulated null reference datasets. The simulation process for

these datasets is described hereafter.

Several possible estimations of the optimal number of clusters K

exist. We use the one proposed by Dutoit et al. [31] that is K̂K , the

smallest k such as

Gap(k)§Gap(~kk){s~kk,

where ~kk~argmaxkGap(k) and sk = sd((W �
kb)1ƒbƒB):

ffiffi
(

p
1z

1=B). Note that the factor
ffiffi
(

p
1z1=B) accounts for the simulation

error of the W �
kb.

Quality indicator. Let (Ck)k~1,...,kmax
be possible clusterings

of the samples in the data with k clusters in a clustering Ck. These

clusterings are in our algorithm the ones determined at each step

of the pruning (Figure 1-B). We call Wk the quality indicator

calculated on the clustering Ck. If we denote Ck~(D1, . . . ,Dk),
where Dr is the r{th cluster of Ck, then the indicator that we

consider is

Wk~
Xk

r~1

1

2:DDrD
:S(Dr),

where S(Dr) is the sum of the squared dissimilarities between the

samples of the r{th cluster of Ck and DDrD its cardinal (i.e. the

number of samples in Dr). The dissimilarities are calculated like

the similarities by inverting the values (0 if the samples have the

same genotypes and 2 if they have no common alleles.)

In the classical version of the gap statistic, the logarithm of Wk is

used however several alternatives have recently been investigated

[32]. We decided to use the aforementioned criterion as we

observed that it led to a better estimation of the number of clusters

for both our simulated and real genetic data.

Simulation under the null distribution. To simulate null

reference datasets we simulate datasets with a number of variables

and individuals identical to the one of the original datasets. Each

variable was taken uniformly within f0,1,2g to match the SNPs

values of the original datasets. Simulated that way, the null

datasets correspond to data where there is no structure of the

population. This simulation choice is also the one made in the

algorithm AWclust that uses a gap statistic method. Note that

theoretically it is not necessary to match all of the features of the

data, such as for example the minor allele frequency of each SNP,

when simulating under the null. This choice of simulation model

was motivated by the empirical performances of the corresponding

gap statistic to estimate accurate numbers of clusters in our

applications.

Adequacy of SHIPS and the gap statistic. SHIPS has the

advantage of producing in one run of the algorithm nested

clusterings of the samples for k~1 . . . kmax which renders faster

the computation of the gap statistic. Note also that the quality

indicator used in the gap statistic is based on a dissimilarity matrix

while SHIPS uses a similarity matrix. This actually does not imply

the computation of a new matrix, as the dissimilarity and the

similarity matrix are linearly related. The gap statistic is therefore

well suited to determine the optimal number of clusters with this

new method.

Implementation. The SHIPS algorithm was implemented in

R (http://cran.r-project.org) and the Mclust package was used

within the spectral clustering steps to apply Gaussian mixture

model clustering. A R package is freely available at http://stat.

genopole.cnrs.fr/logiciels/SHIPS.

This algorithm takes as input parameters a SNP matrix of

dimension n|p where n is the number of individuals and p the

number of SNPs. Each entry of the matrix is coded 0, 1 or 2 given

the number of reference alleles present at each locus for each

sample. It is also necessary to indicate the maximum number of

clusters to be investigated (denoted here kmax) and the number of

null datasets simulated (B here) to apply the gap statistic. A default

value of B~20 is set in the program.

Evaluation of the method
A comparison study was conducted to assess the potential of

SHIPS. Both simulated and real genotype datasets were consid-

ered and a panel of other methods was also applied to these data to

conduct a comparison of their performances.

Methods included in the comparison. We compared

SHIPS to some of the most commonly used clustering algorithms

in the genetic field. We first considered the parametric approaches

Structure and Admixture. Also we included a non-parametric

approach, namely AWclust, and finally we added the alternative

clustering strategy PCAclust to the comparison. We briefly

describe the methods and the parameters used in this part and a

detailed methodology of each of these algorithms is provided in

Methods S1.

SHIPS was used with the default parameters, i.e. 20 null

datasets simulated for the gap statistic. A reasonable maximum

number of clusters was considered for all the methods, for

instance, when analyzing a dataset with 10 (known) sub-

populations we investigated up to 20 possible sub-populations.

Structure is a parametric algorithm that uses Bayesian statistical

inference to cluster individuals. The version 2.3.2.1 was down-

loaded from http://pritch.bsd.uchicago.edu/structure.html and

used with 5,000 burn-ins, 5,000 runs, the admixture model and no

LD model. Structure provides a way of estimating the optimal

number of clusters K through the model likelihood however it has

been demonstrated that this method had shortcomings compared

to more recent algorithms such as for instance Structurama [33]

that allows a better estimation of K. To consider the best use of

Structure, we therefore decided to opt for a way of estimating the

number of clusters that advantages this method. In our

SHIPS: A New Method to Infer Population Structure
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comparison strategy a criterion is used to compare the different

programs and we considered an estimated K for Structure that

optimizes this criterion. Also, as Structure provides admixture

proportions under the admixture model, we decided as it is usually

done that an individual was assigned to the estimated population it

has the highest probability to belong. Note that with this

assignment method, certain clusters computed by the admixture

model might not have any individuals assigned to them. In such a

situation we considered the estimated number of clusters to be the

effective number of sub-populations after the assignment proce-

dure.

Admixture is also a parametric method that similarly to

Structure model the ancestry proportions. It is based on the same

statistical model but the optimization of the likelihood is enhanced.

The program was downloaded from http://www.genetics.ucla.

edu/software/admixture/download.html. The estimation of the

number of clusters was conducted using the minimum of cross-

validation error with the default parameter of 5 fold cross-

validation. Like with Structure, we obtained discrete clusterings

with this program by assigning an individual to the population it

has the highest probability to belong.

AWclust uses a hierarchical clustering. The version 2.0 was

downloaded from http://AWclust.sourceforge.net/ and used with

the default parameters and 20 simulations for the computation of

the gap statistic. The estimated number of clusters was determined

using the maximum of the gap statistic.

Figure 2. Population history trees used to generate the simulated datasets. A) one population B) three sub-populations C) five sub-
populations D) ten sub-populations E) twenty sub-populations.
doi:10.1371/journal.pone.0045685.g002

SHIPS: A New Method to Infer Population Structure
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PCAclust consists in computing a principal component analysis

of the genotype data and then to apply a clustering algorithm,

namely a Gaussian mixture model clustering, to the principal

components such as described in [6]. The PCA was conducted

using the software Eigensoft 3.0 developed by Patterson et al.

[34,35] and downloaded from http://genepath.med.harvard.edu/

reich/Software.htm. The R package Mclust was used to apply

GMM clustering to the set of relevant principal components

selected with the use of the Tracy-Widom statistic. The optimal

number of clusters was estimated using the likelihood computed by

Mclust.

Population structure scenarios. We assessed SHIPS and

the other methods on several datasets. We considered simulated

datasets where the structures of the populations were controlled, a

simulated admixed dataset and real datasets to determine the

performances of the different approaches in real situations. For all

of these scenarios small datasets of thousands of markers and large

datasets of hundreds of thousands of markers were considered. We

used several replicates for the small data in order to account for

the simulation process or the markers sampling. Only one was

used for the large scenarios due to the computational cost of

certain algorithms.

Simulated datasets. We simulated datasets using the soft-

ware Genome based on the coalescent approach. We considered a

first model M1 with no structure of the population in order to

determine which methods are capable of uncovering that the data

is not structured. We then considered 4 structured models, M3,

M5, M10 and M20 with respectively 3, 5, 10 and 20 sub-

populations and increasing complexities of population histories.

Figure 2 presents the population histories of these models and

table S1 the detail of the sampling. The models used in Genome

for the simulations are provided in Methods S2. Each small dataset

is composed of 5,000 SNPs and each large dataset of 200 K SNPs

simulated in equal number on each of the non-sexual chromo-

somes. Ten datasets were simulated and analyzed by the

algorithms for each small scenario. The results are then averaged

over these datasets. Note also that for computational purposes,

Structure was only applied to five small datasets and was not

applied to the large ones.

Simulated admixed datasets. In order to assess the

performances of the various algorithms on more realistic situations

we simulated a discrete admixed dataset corresponding to the

model named Madx. Two real populations from the HapMap

phase 3 data, namely the Han Chinese from China (CHB) and the

Utah residents with Northern and Western European ancestry

from the CEPH collection (CEU), were used in an evolutionary

model to produce an admixed population. The evolutionary

model consists in randomly mating samples from each of the two

original populations and to iterate this process over time. The final

dataset is composed of the two original populations (CEU and

CHB) and the admixed simulated one (named XY). The detail of

the sampling is provided in Table S2. Like for the other simulated

datasets we considered small data of 5,000 SNPs with ten

replicates and one large data of 200 K SNPs.

Figure 3. Representation of the 9 populations of the HapMap dataset. This scatter-plot uses the first five principal components of a dataset
with 20 K SNPs. This graph is only intended to present the general genetic pattern of the dataset and does not exhaustively represent the capability
of the PCA to separate the populations.
doi:10.1371/journal.pone.0045685.g003

SHIPS: A New Method to Infer Population Structure
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HapMap dataset. We also focused on the potential of the

methods when applied to real datasets. We first considered the

HapMap phase 3 dataset with 9 populations and 1,087 individuals

(Table S3). Figure 3 is a graphical representation of the populations

on the principal components space. We considered small data with

20,000 SNPs and large data with 220 K SNPs randomly chosen

among the whole set of SNPs available and in equal number on

each of the non-sexual chromosomes. To account for the SNPs

sampling, twenty replicates of the small HapMap data were

considered to assess the methods, except for Structure that was

only applied to five datasets. The HapMap dataset is available at

http://hapmap.ncbi.nlm.nih.gov/downloads.

Pan-Asian dataset. The PASNPi consortium provides the

genotype data of 75 Pan-Asian and HapMap populations with 1928

individuals and 54,794 SNPs. Among all these populations, certain

main groups, defined by the countries of origin, can be highlighted.

We focused on 10 sub-populations formed by 443 individuals, from

each of these groups (Table S4, Figure 4) and refer to these data as

the Pan-Asian datasets. Like for the HapMap data, we selected

20,000 SNPs randomly chosen in equal number on each of the non-

sexual chromosomes among the initial dataset for the small data

(with twenty replicates) and the whole set of SNPs for the large data.

For the reasons indicated previously, Structure was only applied to

five small replicates. The complete PANSNPi dataset is available at

http://www4a.biotec.or.th/PASNP/

Assessing the clustering quality. To assess the potential of a

clustering method it is important to focus on both the sample

assignments and the estimated number of clusters. The quality

indicator usually considered is the accuracy, that is the proportion of

individuals that were assigned to the correct populations. This indicator

focuses only on the one-to-one relationship between estimated clusters

and true populations. We decided not to retain this criterion as it does

not exhaustively describe the quality of a clustering method’s

assignments and does not account correctly for the estimated number

of clusters. The indicator we selected to account for both the

assignments and the estimation of the number of clusters is the adjusted

Rand index [36]. This index is calculated using the contingency table

of two clusterings U and V (Table 1) with the formula

adjusted Rand index~

P
ij

nij

2

 !
{

P
i

ai

2

 !P
j

bj

2

 !" #,
n

2

 !
1
2

P
i

ai

2

 !
z
P

j

bj

2

 !" #
{

P
i

ai

2

 !P
j

bj

2

 !" #,
n

2

 ! ,

where ai and bi are the numbers of samples in the i-th clusters of

U and V respectively and nij the number of samples in the i-th cluster of

U and the j{th cluster of V.

This index focuses on all pairs of samples and considers whether

they have correctly been assigned to the same population or

Figure 4. Representation of the 10 populations of the Pan-Asian dataset. This scatter-plot uses the first five principal components of a
dataset with 20 K SNPs. This graph is only intended to present the general genetic pattern of the dataset and does not exhaustively represent the
capability of the PCA to separate the populations.
doi:10.1371/journal.pone.0045685.g004
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correctly been assigned to different populations. That way, in

addition to the accuracy criterion, the adjusted Rand index takes

into account the fact that certain samples should not be clustered

together. The adjusted Rand index is comprised between 0 and 1,

a value of 1 meaning a perfect clustering. Note that if there is only

one cluster in the data and that a clustering method properly

uncovers such a structure the Rand index is theoretically not

defined. Given that the structure is perfectly estimated in such a

case we consider a value of 1 for the Rand index.

For simulated datasets we compared, via the adjusted Rand

index, the clusterings proposed by the different methods to the true

population labels that are available through the simulation

process. For the admixed and the real datasets, no true population

labels exist. As a consequence we provide two quality measures

that are the quality index using as comparison partitions the

population labels provided with the datasets (e.g CHB or CHD in

HapMap) and the partitions produced by Admixture. We selected

Admixture as it is one of the most widely used methods for the

estimation of population structure. Also we represent the

admixture proportions of all the methods with barplots. For

discrete clusterings these proportions are either 0 or 1.

Results

Several small datasets and one large dataset were investigated

for each simulated or real scenario. The average Rand indexes and

the average estimated numbers of clusters are the indicators we are

interested in. Figure 5 presents these values for all the methods

applied to small datasets and Figure 6 for the large datasets. In

addition, Figures S1, S2, S3, S4, S5, S6, S7, S8 provide examples

of the graphical representations of the criterion used by SHIPS to

estimate the number of clusters K and Table S5 the average

numbers of principal components retained by the algorithm

PCAclust in each scenario.

Simulated datasets
Figures S9, S10, S11, S12 provide graphical results of SHIPS

applied to the small simulated datasets and Figures S13, S14, S15,

S16 when applied to the large ones.
Model M1 (1 sub-population). For the model M1, with only

one population, SHIPS was always able to correctly determine the

correct number of one cluster for both all the small and large

datasets. This was also the case of Structure and PCAclust. As a

consequence these three methods perfectly assigned all the

individuals to the correct population and had a Rand index of

1. On the other hand, Admixture was only able to determine that

there was no structure in the small datasets, estimating K~1, but

not in a large dataset producing K~2. This is bound to be due to

the number of SNPs that led the algorithm to determine a more

complicated structure. AWclust properly determined that there

was one cluster in 7 small replicates out of 10, but the average

number of estimated clusters is K~2. On the large dataset, this

latter method correctly estimated the number of clusters as the

amount of SNPs allowed the AWclust’s gap statistic to be more

accurate.

Model M3 (3 sub-populations) and M5 (5 sub-

populations). The performances of SHIPS, Structure and

AWclust were comparable for the models M3 and M5. An

average number of 3 and 5 clusters was respectively estimated for

all small and large replicates of the models M3 and M5 (except for

Structure that was not applied to large datasets). These three

methods mis-classified in average less than 3 individuals leading to

Rand indexes higher than 0.99. PCAclust was able to estimate the

correct number of 3 sub-populations in 8 small replicates out of 10

small datasets of the model M3 and in 5 replicates for the model

M5. When the number of SNPs increased to 200 K, PCAclust was

able to correctly estimate K and led to perfect sample assignments.

The clustering proposed by Admixture on these models were not

consistent with the true populations. Indeed, this method identified

the maximum number of clusters to be the optimal one, that is 10

in our case. Larger sample size did not improve these results.

Model M10 (10 sub-populations). The model M10, with 10

populations, pertains to a more complex structure of the data. In

this scenario SHIPS, Structure and AWclust succeeded in perfectly

estimating K and assigning all individuals to the correct

populations for both small and large datasets. PCAclust estimated

a mean number of 6 clusters for the small data, 4 for the large data

as it was not able to separate certain populations. Admixture again

over-estimated the number of clusters (K~18 for small data and

K~17 for large data). We investigated up to 20 clusters but the

algorithm did not converged for values of K greater than those

estimated.

Model M20 (20 sub-populations). In this last simulated

model, with the more complex structure and 20 populations, both

SHIPS and Structure evaluated the correct number of clusters for

all replicates and completed an individual assignment very

consistent with the true populations. AWclust and PCAclust

underestimated the number of clusters. AWclust only allows to

estimate a maximum of 16 clusters that was reached for this

complex dataset. One could wonder if the clustering assignments

would have been better if the maximum number of clusters was

more flexible. On the other hand, PCAclust was not able to detect

the structure of this dataset. Only 4 clusters in average were

identified in the small and large datasets as many populations were

not separated thus leading to a low Rand index close to 0.2. For

both small and large datasets Admixture estimated 21 clusters and

almost perfectly assigned all the individuals to the correct

populations. Even though these clusterings are quite accurate, it

is noticeable that 21 was the maximum number of clusters for

Table 1. Contingency table between two clustering U and V.

V1 V2 … Vc Sums

U1 n11 n12 … n1c a1

U2 n21 n22 … n2c a2

..

. ..
. ..

.
P

..

. ..
.

UR nR1 nR2 … nRC aR

Sums b1 b2 … bc N

ai and bi are the numbers of samples in the i-th clusters Ui of U and Vi of V respectively and nij the number of samples in the i-th cluster Ui of U and the j-th cluster Vj of V.
doi:10.1371/journal.pone.0045685.t001
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which the algorithm converged. In other words, it is possible that if

the convergence could have been reached for greater values of K,

the number of clusters could have been over-estimated again.

SHIPS and Structure were the most accurate methods when

applied to simulated datasets both in terms of estimating the

correct number of clusters K and assigning individuals consistently

with the true population labels. The performances of the other

methods were a little less, especially for Admixture that always

over-estimated K and PCAclust that usually under-estimated it. It

is also noticeable that for all of the methods the results are

generally comparable between the large and the small datasets.

Admixed and real datasets
In order to assess the quality of the clustering methods we were

also interested in looking at admixed and real datasets, more

representative of the ones encountered in genetic studies. We

present the average results over the different small and large

replicates, along with details on the assignments performed. In

order to account for the fact that there is no ‘‘true’’ structure in

real datasets, we considered both the population labels and the

labels produced by the program Admixture as structures (also

called partitions) of reference. Figures 7, 8, 9 are the barplots of the

admixture proportions of the different methods for the small

datasets and Figures S19, S20, S21 are the same representations

for the large datasets. In addition Figures 10 and 11 display the

graphical results of SHIPS for the small HapMap and Pan-Asian

data and Figures S17 and S18 the counterpart for the large

datasets.

An admixed population. SHIPS identified 3 distinct popu-

lations for the admixed datasets that are the two populations of

origin (CEU and CHB) and the one simulated as an admixture.

Structure, Admixture and AWclust detected two populations. The

admixture proportions displayed in Figure 7 show that Admixture

and Structure estimated almost the same ancestries for the

individuals, with the admixed population (XY) having a genome

coming approximately in equal part from the CHB and CEU

populations. These proportions correctly match those used in our

simulation model. AWclust resulted in a split of the admixed

population in function of these admixture proportions. On the

other hand, PCAclust estimated 5 clusters that correspond to the 3

distinct populations identified by SHIPS and two small clusters

being sub-populations of the CHB and CEU populations.

In terms of quality indexes, when comparing to the population

labels, SHIPS and PCAclust performed the best as they identified

the 3 main discrete populations. When comparing the results to

Admixture, Structure is the closest in such a setting and SHIPS

and AWclust are in agreement at about 50% as they assigned the

Figure 5. Comparison of the clustering methods on the small datasets. Average Rand indexes over all small replicates are indicated for each
method and each model along with the estimated number of clusters in parenthesis. The darker a cell color is, the better the corresponding
clustering is.
doi:10.1371/journal.pone.0045685.g005
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samples from the admixed population to another population being

a cluster of admixed, CEU or CHB individuals.

The results are quite similar on the large admixed dataset

except PCAclust that did not find small sub-clusters within the

CHB populations (Figure S19).

It is interesting to notice that there are two kinds of behaviors to

cluster the admixed individuals. Certain methods assigned them to

the populations of origin they are the closest genetically speaking

and others created a specific admixed cluster. These two behaviors

of the methods are understandable given the nature of the

admixture that we considered in this simulation. Indeed, we

simulated a discrete admixture, meaning that the admixed

samples, even though originating from the CHB and CEU

populations, form a discrete cluster. The nature of this structure is

therefore more challenging for discrete clustering algorithms such

as SHIPS and AWclust but also quite favorable to discrete

assignments compared to ‘real life’ admixtures that are usually

continuous. The results produced by Structure and Admixture

have to be interpreted in the sense that with a continuous

admixture only the admixture proportions can properly relate the

structure as there would be no discrete cluster to be identified.

Further analyses of these algorithms on continuous admixture

would reveal more precisely the behaviors of the algorithms with

such population structure and complete the partial results

presented here.

HapMap 9 populations. Considering all 20 small replicates,

SHIPS was able to identify 8 clusters in average (Figure S7).

Certain populations such as the two Chinese populations (CHD

and CHB) were not entirely differentiated in some datasets. Also,

two of the African populations YRI and LWK were sometimes

assigned to the same cluster. Results were similar on the large

dataset. In both cases, an average Rand index of about 0.8 was

reached when using the population labels as reference (Figures 5

and 6). PCAclust estimated 9 clusters by assigning CHB and CHD

to the same cluster and splitting certain populations such as GIH

or the African ones into several clusters. Structure and AWclust

produced clusterings less consistent with the population labels.

Structure identified the three main ethnicities, that are African,

Caucasian and Asian plus the GIH population. Note that this

population derives from the Asian and Caucasian one. AWclust

was only able to detect the three main ethnicities. These two latter

methods have therefore relatively low Rand index (0.4) compared

to the population labels.

Admixture estimated 7 ancestral populations in the small

datasets. As we can observe on Figure 8, according to Admixture,

the CHB and CHD populations share a very close ancestry, which

can explain why SHIPS and the other methods did not split these

populations. The JPT population has a common ancestry with the

Chinese populations but with different admixture proportions.

SHIPS and PCAclust were able to differentiate this population

from CHB and CHD but not Structure and AWclust. Among the

7 ancestral populations detected by Admixture, one is specific to

the GIH population. In addition, Structure uncovered the same

admixture pattern which validates the clusterings of SHIPS and

Figure 6. Comparison of the clustering methods on the large datasets. Rand indexes are indicated for each method and each model along
with the estimated number of clusters in parenthesis. The darker a cell color is, the better the corresponding clustering is. the software Structure was
not applied to large datasets due to a too large computational cost.
doi:10.1371/journal.pone.0045685.g006
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PCAclust that differentiated the GIH population. It is noticeable

that even though the admixture proportions of the Caucasian

population CEU and TSI are very close, SHIPS and PCAclust

were able to separate them into two distinct clusters. The behavior

of the methods is however different on the African populations.

The 3 corresponding populations share the same 3 ancestries in

different proportions. SHIPS differentiated these 3 populations

correctly whereas PCAclust created a fourth cluster composed of

samples from each of these populations. When observing the

admixture proportions of the samples clustered into this additional

group, there seems to be no common pattern and therefore this

split appears to be inconsistent with the structure of the

population. As a result SHIPS is the method that agrees the most

with Admixture (Rand index = 0.76) followed by PCAclust (Rand

index = 0.69), Structure (Rand index = 0.61) and AWclust (Rand

index = 0.61).

On the large dataset, results are quite similar except that

Admixture estimated 6 ancestral populations. The corresponding

assignments were however more consistent with the population

labels. The same observation can be made for SHIPS and as a

consequence the quality indicator of our new method improved

whether we compared it to the population labels or to Admixture.

Pan-Asian 10 populations. We first describe the results for

the small datasets. In average, over all the small Pan-Asian datasets

SHIPS estimated 8 clusters. In the majority of the replicates the

population from India (IN.TB) was clustered with the Philippines

(PI.AT) or Singapore (SG.ID) and the populations from China

(CN.WA) and Indonesia (ID.JA) or Japan (JP.ML) were assigned

to the same cluster. These clusterings of the data are quite

consistent with the labels of the populations and as a consequence

SHIPS has the highest Rand index of 0.81 with this reference

partition. PCAclust estimated 9 clusters. The CN.WA population

was split in several clusters and often assigned to the same clusters

as samples from SG.ID and IN.TB or PI.AT and MY.JH. Several

other populations were separated according to the population

labels and therefore the quality index with this reference is of 0.71.

Structure identified 5 ancestral populations. The corresponding

discrete clustering is however quite distant from the population

labels. Indeed, only the MY.JH, TH.MA and part of the SG.ID

populations are separated. As a consequence the Rand index

compared to the population labels is quite low. Likewise, AWclust

has a null Rand index as this method did not determine any

structure in the data. Admixture found 6 ancestral populations.

The populations IN.TB, JP.ML, KR.KR and TW.HA were

assigned to the same cluster like CN.WA and ID.JA. This results in

a Rand index of 0.45. When analyzing the admixture proportions

(Figure 9) we observe that SHIPS assigned the populations IN.TB

and CI.AT to the same cluster whereas these populations share

Figure 7. Barplots of the admixture proportions for the small admixed data. The first small dataset was used to produce this plot.
Populations are separated by black lines and assigned with a unique color that is approximatively reported on the barplot of each method. For the
discrete methods the admixture proportions are either 0 or 1.
doi:10.1371/journal.pone.0045685.g007
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quite different ancestries. On the other hand, this novel algorithm

differentiated the TW.HA, KR.KR and JP.ML populations that

have closely related ancestries. PCAclust also assigned these

populations to different clusters but had a lower Rand index than

SHIPS compared to the Admixture partitions as the additional

cluster detected by this method does not match the admixture

proportions.

On the large datasets, SHIPS and PCAclust estimated fewer

clusters than on the small datasets. SHIPS estimated 5 clusters and

PCAclust 7 clusters. These differences resulted in SHIPS

identifying a structure very close to that estimated by Admixture

(Rand index of 0.89) while PCAclust’s clustering was less in

agreement with Admixture (Rand index of 0.25). On the other

hand, PCAclust was closer to the population labels partition than

SHIPS. One has to note that when setting the number of clusters

manually, SHIPS and PCAclust estimated the same structure than

on the small datasets. These different behaviors of the methods are

therefore due to the size of the dataset that influenced the

estimations of the number of clusters.

The analysis of the real datasets pointed out that compared to

the population labels as reference partitions, SHIPS was the most

efficient method to uncover the population structures followed by

PCAclust. Even though SHIPS produces discrete clusterings, this

novel algorithm reached the most important agreement with the

clusterings estimated by widely used methods such as Admixture.

Discussion

We have proposed in this paper a novel clustering approach to

infer the genetic structure of populations from SNPs data. SHIPS

is based on a divisive hierarchical clustering procedure and a

pruning strategy followed by the use of the gap statistic to estimate

the final number of clusters K.

SHIPS has proven to be an accurate and precise method to

estimate both relevant optimal numbers of clusters as well as for

producing assignments consistent with the reference partitions of

the data considered. In the simulated datasets, K was always

correctly estimated and only few individuals were mis-assigned.

The structures identified for the admixed dataset (K = 3), the

HapMap (K = 9) and the Pan-Asian (K = 10) datasets were

remarkably close to the population labels or the partitions

estimated by the program Admixture.

The other algorithms considered had less regular performances,

either missing the structure of the complex simulated data or of the

real datasets. A possible explanation of these results depends on

the algorithms’ methods to estimate the number of clusters or on

the parameters utilized for each algorithm. It is interesting to

Figure 8. Barplots of the admixture proportions for the small HapMap data. The first small dataset was used to produce this plot.
Populations are separated by black lines and assigned with a unique color that is approximatively reported on the barplot of each method. For the
discrete methods the admixture proportions are either 0 or 1.
doi:10.1371/journal.pone.0045685.g008
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observe that even though Structure and Admixture are based on

the same model their performances are notably different. On the

simulated datasets, Structure was able to estimate the correct K for

each dataset. On the other hand, Admixture always over-

estimated the number of clusters by selecting the higher K

investigated. This led to poor performances of Admixture on the

first simulated scenarios (M1 and M3) and relatively satisfying ones

on the final scenarios (M5, M10 and M20) as the correct number

of clusters corresponded to the maximum K for which the method

converged and therefore the estimated K. Given that when

manually setting K to the true values, Admixture identified the true

structures of the data, the estimation of the number of clusters

through cross-validation can be identified as the cause of the poor

clustering quality of the algorithm on the simulated datasets. We

considered different cross-validation methods that are 5, 10 and 15

fold cross-validation, and obtained the same estimations of K (data

not shown). It therefore appears that the cross-validation method is

not fit in such settings to estimate the number of clusters. These

results confirm certain limitations of the cross-validation criterion

that had already been pointed out [13,26]. We used in our

comparison an improved version of Structure by considering an

estimated K maximizing the quality criterion thus leading to more

correct estimation of K. However, one has to note that the

estimation method originally used in Structure, that is the

maximum likelihood, led to correctly identifying the structure of

the simulated data (data not shown). The opposite conclusions can

be drawn for real datasets (HapMap and Pan-Asian). Admixture

estimated values of K close to the ones defined by the population

labels while Structure under-estimated the values of K compared to

both the population labels and Admixture. The cross-validation

method used in Admixture is more appropriate for real complex

datasets however there are no efficient way to estimate a correct K

for Structure. This is due to the fact that even when setting

manually K, Structure produced clusterings with empty clusters

and therefore could not identified more populations than we

presented in the Results section. For example, only the three main

ethnicities plus the GIH population were identified in the

HapMap data while other methods such as SHIPS or Admixture

were able to differentiate the Asian, Caucasian or African

populations. A possible explanation for Structure’s results is that,

even though the algorithm converged properly, a too short burn-in

period and too few runs of the algorithm were used for such

complex data. These choices were however made due to the very

high computational time of the program.

AWclust generally uncovered the structure of the small and

large simulated datasets but failed to properly analyze the real

datasets. Whether we considered the population labels or the

partitions produced by Admixture as reference for the real

Figure 9. Barplots of the admixture proportions for the small Pan-Asian data. The first small dataset was used to produce this plot.
Populations are separated by black lines and assigned with a unique color that is approximatively reported on the barplot of each method. For the
discrete methods the admixture proportions are either 0 or 1.
doi:10.1371/journal.pone.0045685.g009
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datasets, AWclust’s clusterings were not in agreement with these

references. Only the three main ethnicities were detected in the

HapMap data and no structure in the Pan-Asian data due to the

fact that the optimal estimated number of clusters were under-

estimated. It is however interesting to notice that when manually

setting the number of clusters, the sample assignments were more

consistent with both the population labels or the results of

Admixture. This can be explained by the gap statistic used by the

algorithm that was not able to select the correct values of K while

the hierarchical clustering could separate certain populations. 20

simulations for the gap statistics may not have been enough

though the same number was used with SHIPS that more

correctly estimated K. These results highlight the quality of the

version of the gap statistic that we used in the SHIPS algorithm.

In addition to the individuals clustering, both SHIPS and

AWclust provide tree structures that allow the analysis of the

relationship between populations. The corresponding graphical

representations, presented in Figures 10, 11 and S9, S10, S11,

S12, S13, S14, S15, S16, S17, S18 for SHIPS, are quite similar to

dendrograms produced by AWclust. The differences are that in

SHIPS the lengths of the branches have no meaning and the

individuals of the final clusters are plotted to represent their

dispersion. The analysis of these two kinds of graphical represen-

tations were quite similar in our comparisons. For example, we

observed in the simulated datasets, that for basic population

structures (model M3 and M5), the trees provided by SHIPS and

AWclust properly related the genetic histories of the populations.

For more complex datasets, mainly the major population

differentiations and some of the finer separations led to tree

branches consistent with the population histories represented in

Figure 2. Also, these representations can provide indications on

the genetic distance of the real populations. For instance, we

observed on Figure 10 that the Caucasian and Asian populations

are first separated from the African ones and then separated from

each other.

The method PCAclust selected the number of principal

components to be used for the clustering using the Tracy-Widom

statistic (Table S5). Many components (more than 25) were

determined significant for the complex simulated datasets M10

and M20. This led to clusterings rather inaccurate as the estimated

numbers of clusters were greatly under-estimated for both the

small and large datasets. If fewer PCs were kept, e.g only five, the

estimated K would have been more exact (data not shown). This

indicates that too many PCs add a non-negligible noise to the data

provided to the GMM clustering and therefore that the PCs

selection method of PCAclust could be improved.

The performances of this method are however better when

applied to real datasets, especially when compared to the

population labels. When comparing the clusterings produced by

PCAclust to Admixture, the results are more mitigated. PCAclust

estimated more clusters than Admixture and split populations that

this latter algorithm considered coming from the same ancestral

populations. A reason might be that even though the two

algorithms are somehow linked [27], the methods to estimate

the numbers of clusters are quite different.

Figure 10. SHIPS tree of the 9 HapMap populations. This representation is an output produced by SHIPS. The tree structure corresponds to the
successive divisions conducted by the algorithm. Each final cluster is represented by a scatter-plot of its members. We colored here the individuals
according to the population labels.
doi:10.1371/journal.pone.0045685.g010
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The methods discussed here are composed of two parts to analyze

the structure of the populations. The first corresponds to the quality

to assign individuals to relevant clusters and the other is the ability to

estimate a proper optimal number of clusters K. If a potential value

of K is unknown, it is important that the clustering method estimates

a proper K otherwise even with accurate sample assignment

capabilities the resulting clustering may not be relevant. Among all

the algorithms that we investigated in this paper, SHIPS was the

only one that had satisfying performances for both these features of

clustering methods in all the scenarios investigated. SHIPS did not

fail to uncover the structure in simulated datasets like Admixture

and PCAclust and did not miss the fine complex separation of the

populations in real datasets like Structure or AWclust.

In terms of ease of use of the algorithms, the non-parametric

ones generally have the advantage of demanding fewer input

parameters than parametric approaches. In addition to the data,

SHIPS needs the maximal number of clusters investigated and the

number of null simulations for the gap statistics. Usually

parametric algorithms need a lot of input parameters, often

pertaining to the underlying statistical models and therefore more

complicated to set. This is the case of Structure, however

Admixture needs only the maximal number of clusters and the

parameter to conduct the cross-validation.

Considering the computation time of the algorithms, PCAclust

is the faster, e.g taking less than an hour when applied to the Pan-

Asian data. SHIPS and Admixture take a couple of hours while

AWclust is close to a day and Structure several days. Even though

PCAclust is the fastest algorithm that we considered in our

comparison, one has to note that the program does not come as a

package and has to be recoded. The other methods that we

considered have the advantage of being freely available in the form

of packages.

Several particularities of the SHIPS algorithm can be

highlighted. The divisive strategy is based on the rationale that a

clustering method has to be applied iteratively to the sub-

populations in order to detect the cryptic structures that are

hidden behind the main structure of the data. SHIPS finely

investigates each estimated cluster to determine if it can be divided

into several relevant sub-clusters. This division procedure, that is

equivalent to the construction of a binary tree, is conducted by the

use of a spectral clustering that takes as input a similarity matrix.

This similarity matrix has to be computed only once for all the

data and sub-matrices corresponding to the sub-clusters investi-

gated can be extracted at each step. This renders the construction

of the tree a fast and efficient part of the algorithm. One has to

note that the individual assignment part of the SHIPS algorithm is

intimately linked to the choice of a proper similarity matrix. We

decided to consider a matrix based on the allele sharing distance as

it is computationally fast to compute and led to accurate clustering

results. It is however possible to use different matrices that could

lead to even better clustering performances [27]. It has been

demonstrated that matrices based solely on the allele sharing

distance can have low power for the identification of population

structure compared to more elaborate distances taking into

account other features of the data such as for instance the

dependencies between the markers or the relatedness between the

samples. Example of such distances can be found in [25,26] and

could easily be used with SHIPS. Indeed, a flexibility of the SHIPS

Figure 11. SHIPS tree of the 10 Pan-Asian populations. This representation is an output produced by SHIPS. The tree structure corresponds to
the successive divisions conducted by the algorithm. Each final cluster is represented by a scatter-plot of its members. We colored here the
individuals according to the population labels.
doi:10.1371/journal.pone.0045685.g011
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algorithm is that a large variety of similarity matrices can be used

to conduct the sample assignment.

The pruning procedure leads to several possible clusterings of the

samples. These configurations are all nested within each other. This

allows in one run of the algorithm to get for all possible K the

corresponding clusterings. This information is useful if the user does not

desire to use the estimation procedure of K and wants to manually look

at the clustering possibilities. The hierarchical clustering of AWclust

proposes the same option, while software such as Admixture, Structure

or PCAclust have to be applied each time for each possible number of

clusters. In addition, this allows a fast application of the gap statistic that

needs all clustering options for varying numbers of clusters.

SHIPS does not use the same version of the gap statistic than

the one used in AWclust. As explained in the Methods section, we

decided not to consider the logarithm of the within-cluster sum of

squares but directly the sum of squares. This indicator showed

better empirical performances to estimate the optimal K. Given

that AWclust was sometimes able to infer the structure of certain

data when manually setting a value for K but that the version of

the gap statistic used in the program failed to do so, we are

confident in our choice of statistic. This gap statistic is rather

precise but, like all gap statistics, a time consuming method to

estimate the number of clusters. Certain methods, such as

AWclust, therefore limit the maximum number of clusters

investigated in order to accelerate the whole clustering process.

We decided not to make this limitation in the SHIPS package in

order to let the user of the program the choice of a reasonable

maximum number of clusters.

Also, we determined through several experiments that repetitive

applications of the SHIPS algorithm to the same dataset leads to the

same clustering results. This robustness of the algorithm confirms

that SHIPS is a powerful tool to detect population structure.

The novel clustering approach presented in this paper was

applied to SNP data. It produces accurate clustering results and is

therefore a promising method to uncover the genetic structure of

many populations. Also, one has to note that the methodology of

SHIPS, that is the divisive strategy, the following pruning and the

gap statistic can easily be extended to cluster other sorts of data

such as gene expression for example. Given that a proper distance

matrix is used and that an adequate simulation process for null

reference datasets of the gap statistic is applied, various usages of

the SHIPS algorithm can be expected.
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