
HAL Id: hal-02644395
https://hal.inrae.fr/hal-02644395

Submitted on 28 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contrasting Population Structures of Two Vectors of
African Trypanosomoses in Burkina Faso: Consequences

for Control
Naferima Kone, Jérémy Bouyer, Sophie Ravel, Marc J. B. Vreysen, Kouadjo

T. Domagni, Sandrine Causse, Philippe Solano, Thierry de Meeus

To cite this version:
Naferima Kone, Jérémy Bouyer, Sophie Ravel, Marc J. B. Vreysen, Kouadjo T. Domagni, et al..
Contrasting Population Structures of Two Vectors of African Trypanosomoses in Burkina Faso: Con-
sequences for Control. PLoS Neglected Tropical Diseases, 2011, 5 (6), �10.1371/journal.pntd.0001217�.
�hal-02644395�

https://hal.inrae.fr/hal-02644395
https://hal.archives-ouvertes.fr


Contrasting Population Structures of Two Vectors of
African Trypanosomoses in Burkina Faso: Consequences
for Control
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Abstract

Background: African animal trypanosomosis is a major obstacle to the development of more efficient and sustainable
livestock production systems in West Africa. Riverine tsetse species such as Glossina palpalis gambiensis Vanderplank and
Glossina tachinoides Westwood are the major vectors. A wide variety of control tactics is available to manage these vectors,
but their removal will in most cases only be sustainable if the control effort is targeting an entire tsetse population within a
circumscribed area.

Methodology/Principal Findings: In the present study, genetic variation at microsatellite DNA loci was used to examine the
population structure of G. p. gambiensis and G. tachinoides inhabiting four adjacent river basins in Burkina Faso, i.e. the
Mouhoun, the Comoé, the Niger and the Sissili River Basins. Isolation by distance was significant for both species across river
basins, and dispersal of G. tachinoides was ,3 times higher than that of G. p. gambiensis. Thus, the data presented indicate
that no strong barriers to gene flow exists between riverine tsetse populations in adjacent river basins, especially so for G.
tachinoides.

Conclusions/Significance: Therefore, potential re-invasion of flies from adjacent river basins will have to be prevented by
establishing buffer zones between the Mouhoun and the other river basin(s), in the framework of the PATTEC (Pan African
Tsetse and Trypanosomosis Eradication Campaign) eradication project that is presently targeting the northern part of the
Mouhoun River Basin. We argue that these genetic analyses should always be part of the baseline data collection before any
tsetse control project is initiated.
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Introduction

Tsetse flies (Diptera: Glossinidae) are the sole cyclical vectors of

human and animal trypanosomoses, two major plagues that are

seriously impeding African development. African animal trypano-

somosis (AAT) is a major obstacle to the development of more

efficient and sustainable livestock production systems in West

Africa. Since 2008, the Government of Burkina Faso has

embarked on an ambitious tsetse eradication campaign that

targets the northern Mouhoun River Basin for its first phase

(http://www.pattec.bf/). The Mouhoun River Basin eradication

campaign is implemented under the auspices of the Pan African

Tsetse and Trypanosomosis Eradication Campaign (PATTEC),

an African Union initiative that was launched in 2001 following an

historic decision by the African Heads of State and Government in

Lome, Togo, July 2000 (http://www.africa-union.org/Structure

_of_the_Commission/depPattec.htm).

In the Mouhoun River Basin, Glossina palpalis gambiensis Vander-

plank and Glossina tachinoides Westwood are the two remaining tsetse

species, after the regression of Glossina morsitans submorsitans Newstead

[1–3]. The two tsetse species remain very effective vectors of AAT

[4], but local transmission of sleeping sickness (Human African

Trypanosomosis (HAT)) seems to have disappeared from the

Mouhoun River Basin [3]. These species inhabit the riparian forests

that form habitat galleries along the rivers and the flies’ relative

abundance is determined by forest ecotype and its level of
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fragmentation and destruction [2,5]. Their particular resilience to

habitat fragmentation has been attributed to (1) their ability to easily

adapt to peridomestic situations, (2) their opportunistic host feeding

behaviour [6], and (3) their linear habitat that allows them to easily

disperse between favourable patches, i.e. riverine forests acting as

‘‘genetic corridors’’ [7,8].

Control of tsetse can be achieved through a variety of techniques

[9], including traps, insecticide-impregnated targets [10], live-baits

[11–13], sequential aerosol technique [14], and the sterile insect

technique (SIT) [15]. In the past, most control efforts were not

sustainable due to either flies surviving the initial interventions, or

flies immigrating from untreated regions, or both [16]. The strategic

choice between eradication and suppression of a tsetse population is

of prime importance as it will have significant economic implications

(see [17] for a review). In that respect, knowledge of the genetic

structure of the target population can facilitate this critical decision

making [18–20]. For isolated tsetse populations, eradication is

undoubtedly the most cost-effective strategy, as was demonstrated

with the sustainable removal of Glossina austeni Newstead from the

Island of Unguja, Zanzibar in 1994–1997 [15]. On mainland Africa,

the geographical distribution limits of the target tsetse populations

are less clearly defined, although complete isolation was recently

demonstrated for a G. p. gambiensis population in the Niayes area of

Senegal that prompted the Government of Senegal to select an

eradication strategy [20,21].

In Burkina Faso, G. p. gambiensis populations inhabiting

fragmented habitats are genetically structured along the rivers

[22], also in the area that is the target of the national eradication

campaign mentioned above. However, a certain level of gene

exchange is still sustained among the various populations that

inhabit the habitat fragments along the Mouhoun River.

Furthermore, G. tachinoides occurs as a panmictic population along

its riverine habitat in the same area, due to its more xerophylous

nature allowing it to disperse more easily between suitable habitat

patches [23–25]. As riverine tsetse populations are mainly

confined to the riverbeds of the various river systems which are

organised in river basins it was proposed to use the ‘‘river basin’’ as

a unit of operation in area-wide integrated pest management (AW-

IPM) programmes [28] against tsetse in West Africa. This assumed

that each primary river basin (and possibly also secondary and

tertiary) contained riverine tsetse populations that were geograph-

ically isolated from those belonging to adjacent river basins. If this

hypothesis proves to be correct, it would be very beneficial for the

present eradication campaign since it would allow limiting the

control effort to the Mouhoun River Basin. However, earlier

studies have indicated that riverine tsetse flies were able to disperse

up to 2km into the savannah areas bordering the riparian forests

[7] and a recent genetic study in Burkina Faso suggested that G. p.

gambiensis was able to cross the watershed divide between the

Mouhoun and the Comoe river basins that contained natural

woody savannah [26]. In view of the importance of the Mouhoun

eradication project, and the limited number of samples (three) used

in previous study [26], it was deemed necessary to expand these

studies and to obtain more data on the dispersal potential of the

two tsetse species present, as evidenced through genetic structures

of the various populations. A more complete picture of the

exchange of genes between the various tsetse populations in the

area would enable the programme managers to make informed

decisions on the establishment of buffer zones between the

Mouhoun River Basin and its neighbouring basins, or, alterna-

tively, to expand the eradication campaign to these basins.

The present study includes G. tachinoides and two other river

basins not considered earlier and also includes areas where the

interfluve is very much fragmented, which might impact dispersal

of riverine species. Genetic variation at microsatellite DNA loci

was thus used to examine the structure of G. p. gambiensis and G.

tachinoides populations of the Mouhoun River Basin in relation to

those of all its adjacent river basins, i.e. the Niger (Bani), Comoé

and Sissili River Basins (Figure 1). The objective was to assess

tsetse population structuring in and between the different river

basins, its relation to tsetse fly dispersal amongst adjacent river

basins, and its consequences for potential AW-IPM eradication

campaigns [27,28].

Materials and Methods

Study Site
The study area is located in South-Western Burkina Faso (latitude

10.2 to 12.2 N; longitude 25.5 to 22.0uW) and encompassed the

Mouhoun River Basin (8 sampling sites) and three neighbouring

river basins, i.e. the Comoe (3 sampling sites), the Sissili and the

Niger (1 sampling site each) River Basins (fig. 1). From November

2007 to March 2008 each site was sampled using 5–10 unbaited

biconical traps [29]. In each location, the maximal river length

sampled was 980 m (in Darsalamy) for G. p. gambiensis and 5660 m

for G. tachinoides (Fandiora), but was usually lower than 500 m

(Tables 1&2).

Sampling and genotyping
A total of 296 G. tachinoides and 242 G. p. gambiensis flies were

genotyped (see number of flies genotyped by trapping site in

Tables 1&2). G. p. gambiensis was genotyped at 8 microsatellite loci:

Gpg 55.3 [30], A10, B104, B110, C102 (kindly supplied by A.

Robinson, Insect Pest Control Laboratory (formerly Entomology

Unit), Food and Agricultural Organization of the United Nations/

International Atomic Energy Agency [FAO/IAEA], Agriculture

and Biotechnology Laboratories, Seibersdorf, Austria), pGp13,

pGp24 [31], and GpCAG [32]. G. tachinoides was genotyped at 9

microsatellite loci: pGp13, pGp17, pGp20, pGp24, pGp28,

pGp29 [31], B104, C102 and GpCAG. Of these, B104, B110,

pGp13, pGp20, and 55.3 are known to be located on the X

chromosome. GpCAG and C102 have trinucleotide repeats

whereas the others are dinucleotides.

Three legs of each individual tsetse fly were removed,

transferred to a tube to which 200 ml of 5% Chelex chelating

resin was added [33,34]. After incubation at 56uC for one hour,

DNA was denatured at 95uC for 30 min. The tubes were then

Author Summary

Tsetse flies are insects that transmit trypanosomes to
humans (sleeping sickness) and animals (nagana). Control-
ling these vectors is a very efficient way to control these
diseases. In Burkina Faso, a tsetse eradication campaign is
presently targeting the northern part of the Mouhoun
River Basin. To attain this objective, the approach has to be
area-wide, i.e. the control effort targets an entire pest
population within a circumscribed area. To assess the level
of this isolation, we studied the genetic structure of
Glossina palpalis gambiensis and Glossina tachinoides
populations in the target area and in the adjacent river
basins of the Comoé, the Niger and the Sissili River Basins.
Our results suggest an absence of strong genetic isolation
of the target populations. We therefore recommend
establishing permanent buffer zones between the Mou-
houn and the other river basin(s) to prevent reinvasion.
This kind of study may be extended to other areas on
other tsetse species.
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centrifuged at 12,000 g for two min and frozen for later analysis.

The PCR reactions were carried out in a thermocycler (MJ

Research, Cambridge, UK) 20 ml final volume, using 10 ml of the

diluted supernatant from the extraction step as template. After

PCR amplification, allele bands were routinely resolved on a 4300

DNA Analysis System from LI-COR (Lincoln, NE) after migration

in 96-lane reloadable (3x) 6.5% denaturing polyacrylamide gels.

This method allows multiplexing by the use of two infrared dyes

(IRDye), separated by 100 nm (700 and 800 nm), and read by a

two channel detection system that uses two separate lasers and

detectors to eliminate errors due to fluorescence overlap. To

determine the different allele sizes, a large panel of about 70 size

markers was used. These size markers had been previously

generated for G. p. gambiensis by cloning alleles from individual

tsetse flies into pGEM-T Easy Vector (Promega Corporation,

Madison, WI, USA), but were generated for G. tachinoides for this

study. Three clones of each allele were sequenced using the T7

primer and the Big Dye Terminator Cycle Sequencing Ready

Reaction Kit (PE Applied Biosystems, Foster City, CA, USA).

Sequences were analyzed on a PE Applied Biosystems 310

automatic DNA sequencer (PE Applied Biosystems) and the exact

size of each cloned allele was determined. PCR products from

these cloned alleles were run in the same acrylamide gel as the

samples, allowing the allele size of the samples to be determined

Table 1. Number of G. tachinoides genotyped in each site and description of the sampling system.

River basin Site Females Males Total
Number of trap
sites

Mean distance
between trap sites

Total river
length sampled

Comoe Degue Degue 18 17 35 3 212 424

Fandiora 16 19 35 3 2830 5660

Toussiana 25 10 35 2 210 210

Mouhoun Darsalamy 24 10 34 4 327 980

Dialé 36 20 56 9 264 2115

Dingasso 19 20 39 5 70 280

Niafongo 17 25 42 4 130 391

Sissili Yalé 15 5 20 9 540 4316

All 170 126 296 39 464 14376

doi:10.1371/journal.pntd.0001217.t001

Figure 1. Location of the sampling sites, rivers basins and buffer areas between these river basins.
doi:10.1371/journal.pntd.0001217.g001
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accurately [35]. The gels were read twice by two independent

readers using the LIC-OR Saga genotyping software.

Data Analyses
All datasets were processed with Create V 1.1 [36] and

converted into the appropriate format as needed.

Wright’s F-statistics [37] were estimated with Weir and

Cockerham’s unbiased estimators [38] under Fstat V 2.9.4

(Goudet 2003, updated from [39]). FIS is a measure of local

inbreeding of individuals relative to inbreeding of subsamples. It is

therefore also a measure of reproductive strategy and varies from -

1 (all individuals are heterozygous for the same two alleles within

each subsample) to +1 (all individuals are homozygous with at least

two alleles in subsamples) and equals 0 when all subsamples

conform to genotypic proportions expected under panmixia. It is

thus also a measure of deviation from the random mating model

within populations. FST measures inbreeding of subsamples

relative to the total inbreeding resulting from subdivision. It is

therefore also a measure of differentiation among subsamples. It

varies between 0 (no differentiation) and 1 (all subsamples fixed for

one or the other allele).

The significant departure from 0 of these parameter estimates

was tested by randomisation procedures under Fstat. For this,

alleles are randomly exchanged between individuals in each

subsample and the proportion of times when a FIS estimate was

equal to or higher than the observed one provided the exact P-

value of the test. For differentiation between populations,

individual were randomised across subsamples and the statistic

used here was the log-likelihood ratio G as recommended [40].

Linkage disequilibrium (LD) between loci was also tested

through randomising association between each locus pair. For

each pair of loci the tests were combined across subsamples with

the G-based procedure as recommended [41]. All these randomi-

sations (10000 in each case) were undertaken with Fstat 2.9.4.

For LD, there were as many tests as there were loci pairs (here

possibly 36), we therefore tested the probability of obtaining a

proportion higher than the expected one (5%) with a binomial

test with k tests, mean 0.05 and ks success (the number of

significant pair in linkage disequilibrium at level a= 0.05) with

MultiTest V 1.2 [41].

More than three levels (i.e. individuals, sub-populations and

total) exist within the samples of each tsetse species. Individuals

were caught in different traps, in different sites (i.e. locations)

within three different river basins (Comoé, Mouhoun and Sissili

for G. tachinoides and Comoé, Mouhoun and Niger for G. p.

gambiensis). HIERFSTAT version 0.03–2 [42] is a package for the

statistical software R. This package computes hierarchical F-

statistics from any number of hierarchical levels [42]. FTrap/Site

represents the homozygosity due to the subdivision into different

traps in each site and was tested by randomising individuals

between traps within each site. FSite/Basin represents the homozy-

gosity due to subdivision into different sites within each river basin

and was tested by randomizing traps (with all individuals

contained) between sites within the same river basin. FBasin/Total

measures the relative homozygosity due to the geographical

separation between river basins and was tested by randomizing

sites (with all traps included) between the three river basins. In all

cases we undertook 1000 permutations and the log likelihood ratio

as for the FST analysis was the statistic used. These tests were

performed with HIERFSTAT. A user friendly step by step tutorial of

how to use HierFstat is available [43].

Some microsatellite loci, noted with an X as last letter, are X

linked. These loci were coded as missing data for FIS and null allele

analyses and coded as homozygous for the allele present on the X

for differentiation and LD tests.

Significant FIS can be due to null alleles, stuttering or short allele

dominance. We used MicroChecker V 2.2.3 [44] for stuttering

and null alleles. We tested how null alleles can explain the

observed FIS using estimates of null allele frequency following

either Brookfield’s second method [45] or to the method of van

Oosterhout et al. [44] as given by MicroCheker. We used these

estimates to compute expected blank (non amplified null

homozygotes) frequency assuming panmixia. For each locus, the

sum of all expected blanks across subsamples was compared to the

sum of all observed ones with an exact unilateral binomial test with

the alternative hypothesis: there were not enough observed blank

genotypes as compared to what would be expected under the

hypothesis of null alleles in a panmictic population. For X linked

loci we also used null allele frequencies (estimated from females)

directly as the expected proportion of blank (unamplified) males

expected at these loci and this quantity was also compared with

observed blanks with the same method as described above for

females at other loci.

Confidence intervals (CI) were obtained using the standard

error of estimates obtained by jackknife over subsamples or by

bootstrap over loci, using Fstat, as described in [46].

Sex-biased dispersal was assessed using three tests implemented

in Fstat. First, Weir and Cockerham’s estimate of FST, was

calculated separately in each sex. Next, tests based on the mean

(mAIc) and the variance (vAIc) of Favre et al.’s corrected assignment

Table 2. Number of G. p. gambiensis genotyped in each site and description of the sampling system.

River basin Site Females Males Total
Number of
trap sites

Mean distance
between trap sites (m)

Total river length
sampled (m)

Comoe Toussiana 12 12 24 2 210 210

Mouhoun Darsalamy 18 15 33 4 320 960

Minsin(pindia) 15 11 26 4 110 330

Niafongon 13 15 28 4 135 404

Rz banzon 20 10 30 6 88.2 441

Samandeni 24 12 36 2 73 73

Zamakologo 23 12 35 3 145 290

Niger Bleni 20 10 30 6 79 395

All 145 97 242 31 135 3103

doi:10.1371/journal.pntd.0001217.t002
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index AIc [47] were performed (see Prugnolle and De Meeûs [48]

for more details on these tests). All three tests are based on a

permutation procedure; the sex of each individual is randomly re-

assigned in each population (10,000 permutations). The observed

difference between male and female FST, the ratio of the largest to

the smallest vAIc and the AIc-based t-statistics defined by Goudet

[49] were then compared to the resulting chance distributions. For

the sex that has a higher dispersal rate, FST and mAIc are expected

to be smaller and vAIc is expected to be higher than for the sex that

has a lower dispersal rate. This choice of statistics is motivated by

the work of Goudet et al. [49] where vAIc was shown to be the

most powerful statistic when migration is low (less than 10%),

while FST performs better in other circumstances. We also chose to

keep mAIc because it may be more powerful in case of complex

patterns of sex specific genetic structures [50,51]. Tests were all

bilateral.

Isolation by distance was inferred with Rousset’s procedure [52]

through the regression FST/(1-FST),a+bLn(DG). FST/(1-FST) is a

modified measure of differentiation between two subpopulations, a

is a constant, Ln(DG) is the natural logarithm of the geographical

distance between subpopulation pairs for two dimensional data

and b the slope of the regression that is related to the product Des
2

of reproducing (effective) adults local density (De) by the dispersal

surface s2 (s is the mean distance between reproducing adults and

their parents) by the equation Des
2 = 1/4pb because the

neighbourhood size Nb = 1/b = 4pDes
2 [52]. In that case, the

effective number of immigrants per neighbourhood can be

computed as Nem = 1/2pb [52]. For one dimensional data, the

model becomes FST/(1-FST),a+bDG and Des
2 = 1/4b [52]. The

significance of the signal was tested with a Mantel test [53] and

bootstrap over loci gave 95% confidence intervals for the slope. All

isolation by distance procedures were implemented using Gene-

pop 4 [54] with 1,000,000 iterations. For the sake of power, traps

were used as sub-population units for isolation by distance

procedures.

Effective population sizes were estimated following Waples and

Do’s method based on linkage disequilibrium and implemented in

LDNe [55], linkage disequilibrium and heterozygosity as imple-

mented by Estim 1.2 [56] and following Balloux’s method based

on heterozygote excess in dioecious populations [57] assuming

even sex ratio.

For G. tachinoides, since no sub-structuring was observed at the

site level, areas of sites were assimilated to the rectangle defined by

the approximate gallery forest width (,100 m) and the mean

maximal distance between the two most distant traps in a site

(,1000 m), being aware that it is a conservative value. This

surface S = 100,000 m2 was thus used to divide effective

population sizes to compute densities. For G. p. gambiensis densities

were computed by dividing the population size by the mean

minimum distance between two traps (,100 m) in one dimension

along rivers, or by the surface of the rectangle defined by this

distance and the approximate gallery forest width (,100 m),

hence S = 10,000 m2, for two dimensions. This distance of 100 m

also corresponds to the range of attraction of a biconical trap, and

thus the smallest river section that can be sampled irrespective of

the sampling protocol used [58].

Results

Defining the subpopulation units
HierFstat analysis only found one significant hierarchical level

of population structure in the G. tachinoides samples, i.e. subdivision

by sites FSite/Basin = 0.026 (P-value = 0.001). Traps (P-value

= 0.179) and river basin (P-value = 0.707) did not significantly

contribute to the genetic structure of G. tachinoides. To check for

possible disturbing effect of substructuring within sites that may

not be detected by HierFstat, we also tested isolation by distance

between traps in each of the four sites with the model FST/

(1-FST),a+bDG, appropriate for one dimensional data (along the

river). This analysis was feasible in view of the large amount of

data available for the Mouhoun River. Absence of population sub-

structuring was confirmed by the total absence of any isolation by

distance between traps within the Mouhoun River (all slopes #0,

all P-values.0.49). In further analyses we only considered sites as

subpopulation units for G. tachinoides, except for isolation by

distance as explained above.

For G. p. gambiensis, two hierarchical levels appeared to

contribute significantly to genetic structure, the trap in each site

(FTrap/Site = 0.0117, P-value = 0.033) and the site in each river

basin (FSite/Basin = 0.0379, P-value = 0.001). The analysis therefore

revealed that river basins were not important for the genetic

structuring of the G. p. gambiensis populations (P-value.0.6). For all

further analyses with G. p. gambiensis, the trap was considered as the

subpopulation unit and, for population structure analyses (sex

biased dispersal, isolation by distance), each site was considered

separately, except when specified otherwise.

Within subsamples genetic structure
For G. tachinoides, LD tests were carried out with all the 9 loci (36

pairs tested) and with the six most polymorphic loci, i.e. loci with

no allele at frequency above or equal to 0.9 (pGp28 and pGp29

excluded, hence 21 pairs remaining). In the first case three pairs

appeared in significant linkage and two pairs in the second case,

which is not significantly above the 5% level in each case (binomial

P-values are respectively 0.27 and 0.28). For G. p. gambiensis only

one test was significant at the 5% level, which is not significantly

above the proportion expected under the null hypothesis (P-

value = 0.7628).

There was a strong and highly significant heterozygote deficit

(FIS = 0.227, 95% CI = [0.067, 0.429] in G. tachinoides due to loci

pGp17, pGp20X, pGp24, pGp28 and B104X (Figure 2). The four

remaining loci, pGp13X, pGp29, C102 and GPCAG, together

provided a pattern conforming with genotypic proportions

expected under random mating: FIS = 20.005, P-value = 0.5661.

For the other loci, stuttering was observed for pGp17 in all the

eight subsamples, and in one subsample for pGp20X. Moreover,

null alleles can reasonably explain all FIS as can be seen from

Table 3. Consequently, it was assumed with confidence that

stuttering and null alleles totally explained the heterozygote deficits

observed at these five loci and we can confidently conclude that

the G. tachinoides subsamples conformed to the random mating

hypothesis.

For G. p. gambiensis the FIS is slightly lower (FIS = 0.137, 95%

CI = [0.071, 0.219]) but still highly significant (P-value = 0.0001)

(Figure 3). According to MicroChecker analyses, null alleles

provided a reasonable explanation (Table 4). Nevertheless,

individually non significant loci alone still provided a significant

positive FIS = 0.042 (P-value = 0.0356). Thus neither null alleles

nor Wahlund effects alone can explain the pattern observed in this

species, as it is often the case for G. p. gambiensis [18,22,26].

Sex biased dispersal
As can be seen from Table 5, there is a significant genetic

signature of sex biased dispersal in G. tachinoides, with the female

flies having a lower dispersal rate (male biased dispersal).

For G. p. gambiensis several sex biased dispersal tests were carried

out:between sites over all river basins and between sites within the

Mouhoun river basins, between traps within the Mouhoun river

Population Structure of Tsetse in Burkina Faso
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basin and between traps within sites. For the first and second tests,

only one male and one female per trap were used, or only a single

individual if only one sex was available, per trap and individuals of

the same site considered as belonging to the same subpopulation.

This data reduction was done to limit as much as possible the

confounding effect of the significant differentiation that exists

between traps in this species (see [51] for comments on that

matter). A single test resulted in a significant P-value (Table 6),

with the mAIc indicating a female biased dispersal. However, it can

be seen from Table 6 that biased dispersal genetic signatures are

inconsistent across parameters in the same analysis or across

analyses for the same parameter. As previously observed [26], the

most obvious conclusion, is that no genetic signature of sex biased

dispersal could be detected in G. p. gambiensis at any level.

Population structure
There was a highly significant isolation by distance across traps

over the total G. tachinoides sampling zone (P-value = 0.0001) with a

Figure 2. Heterozygote deficits (FIS) by locus in G. tachinoides. Heterozygote deficits (FIS) displayed in the different subsamples of G.
tachinoides for each locus and over all (All). The 95% confidence intervals of each locus were obtained by jacknife over subsamples and by bootstrap
over loci for the overall estimate. P-values, corresponding to the proportion of randomised FIS that were above or equal to the observed FIS, are given
between brackets.
doi:10.1371/journal.pntd.0001217.g002

Table 3. Null allele analyses in G. tachinoides.

Locus Sex N Blanks Brookfield 2 van Oosterhout Stuttering

pGp17 296 51 76 (0.0003) 38 (0.9896) 8

pGp20X F 170 45 39 (0.8713) 2 (1 ) 1

pGp20X M 126 33 44 (0.0233) 11 (1 ) NA

pGp24 296 137 134 (0.6378) 5 (1 ) 0

pGp28 296 24 24 (0.5340) 2 (1 ) 0

B104X F 170 25 22 (0.7656) 4 (1 ) 0

B104X M 126 17 38 (0.0001) 16 (0.6758) NA

Results are given for the loci displaying a significant departure from proportions expected under panmixia (see Figure 2). For X linked loci, results are given for females
(F) and males (M). Number of genotyped individuals over all subsamples (N) and total number of blanks (Blanks) are also provided. Under random mating hypothesis,
and if null alleles explain the observed heterozygote deficits, the table gives the total expected number of blank genotypes for each locus following Brookfield’s second
method (Brookfield 2) or van Oosterhout method. The number of subsamples where stuttering can explain in part the heterozygote deficits observed appears in the last
column. Adequacy of observed blanks to expected ones is provided as an exact binomial P-value appearing between brackets (see text for more details).
doi:10.1371/journal.pntd.0001217.t003
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slope b = 0.015. This results in a neighbourhood size Nb<67

individuals. Estim did not provide a usable effective population

size. Effective population sizes were relatively convergent across

Waples and Do’s and Balloux’s methods. With Waples and Do’s

method, three sites (two in Comoe and one in the Mouhoun Basin)

provided outputs different from infinity, with mean Ne = 99.4.

Balloux’s method gave Ne = 100. We then assumed an effective

subpopulation size of ,100. A mean sampling surface as defined

above as S,0.1 km2, resulted in an effective population density of

De = Ne/S<1000 flies per km2. Rousset’s model [52] indicated a

mean dispersal per generation of around 73 m for this species, or a

migration rate between neighbouring sites of m = 1/2pb = 0.11.

For G. p. gambiensis, there was no evidence for isolation by

distance in any site along rivers. But this may be due to the very

short length of river portions covered in each site. As some sites

were however very distant, we further used isolation by distance in

a two dimensional framework. Over the entire sampling zone, a

significant isolation by distance was detected (P-value = 0.022) with

slope b = 0.015 and a resulting neighbourhood size Des
2<67

individuals identical to G. tachinoides. Estim provided an estimate of

Ne = 81 and m = 0.286 in one trap of the Mouhoun Basin. LDNe

provided only usable values for Ne in four traps of the Mouhoun

Basin, with mean Ne = 149. The surface defined above

S,0.01 km2 leads to an effective density of G. p. gambiensis

De = Ne/S<8000 (for Ne = 80) or De = 15000 (for Ne = 150) G. p.

gambiensis per km2 in the study area. Mean dispersal per generation

is thus s= 26 m or s= 19 m for Ne = 80 and Ne = 150 respectively,

corresponding to migration rates of 0.13 and 0.07 respectively

(with Rousset’s 1997 model in two dimensions) between

neighbouring subpopulations (traps).

Using the island model of migration with even sex ratio, published

by Vitalis [59], and in particular using equation 10 from his paper, we

checked which parameters could lead to the sex biased dispersal

observed in G. tachinoides and the observed difference in FST between

female and male flies. As can be seen in Table S1, the best fit of the

model parameters would indicate a very low female migration rate

(less than 0.01 and most probably around 0.0001), a moderate male

migration rate around 0.12 (between 0.1 and 0.15) and subpopulation

Figure 3. Heterozygote deficits (FIS) by locus in G. palpalis gambiensis. See legend of Figure 2 for details.
doi:10.1371/journal.pntd.0001217.g003

Table 4. Null allele analyses in G. palpalis gambiensis. See legend of Table 3 for details.

Locus Sex N Blanks Brookfield 2 van Oosterhout Stuttering

L55-3X F 108 4 4 (0.5326) 3 (0.8336) 0

L55-3X M 58 5 6 (0.5020) 7 (0.3475) 0

pGp24 166 18 17 (0.6536) 3 (1 ) 0

A10 166 30 28 (0.6749) 3 (1 ) 1

B110X F 108 12 11 (0.7048) 1 (1 ) 0

B110X M 58 9 14 (0.0967) 4 (0.9946) 0

doi:10.1371/journal.pntd.0001217.t004
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sizes around 100 individuals (between 80 and 120 individuals). The

number of subpopulations and the mutation rate had a small

influence on the results. Thus, even if some care must be taken with

these values coming from an island model of migration, parameters

seem quite convergent with what was inferred from G. tachinoides

isolation by distance population structure.

Discussion

The population genetics data presented here suggest that the

savannah area of the watershed divide between two adjacent river

basins does not seem to represent a significant barrier to gene flow

for the two riverine tsetse species studied. The results corroborate

data from an earlier preliminary study that assessed gene flow (but

without clear quantification) between three populations of G. p.

gambiensis inhabiting two tributaries of the Mouhoun and Comoé

river basins in Burkina Faso [26]. For both species, isolation by

distance between sites of different river basins (or even at a micro-

scale for G. p.gambiensis) was evidenced, without a particular role of

river basins. Nevertheless, for G. palpalis gambiensis, dispersal along

rivers (in one dimension) is still more efficient than across them (i.e.

in two dimensions). During the rainy season, riverine tsetse fly

species disperse in the savannah areas neighbouring the river [7],

probably in search of suitable hosts, like cattle, that during that

time of the year do not have to enter the riparian forests to find

drinking water. It is conceivable that after some days without rain,

remaining flies in the savannah areas are quickly forced to find

resting sites before facing desiccation and are therefore stimulated

to disperse at a higher rate. Following environmental cues such as

humidity or temperature gradients, these flies will need to venture

back to the closest gallery forest, that might well belong to another

river basin system. Tsetse dispersal processes are complex and

simple random diffusion models have often been used to capture

this complexity [60]. This approach seems to be inadequate as was

recently confirmed by an analysis of dispersal data of sterile male

Glossina austeni Newstead that were released homogeneously from

the air. The recapture data indicated that the sterile flies

congregated in the same sites that were also preferred by their

wild counterparts [61]. In addition, when riverine tsetse find

themselves in unsuitable sites, they are capable of dispersing up to

2km per day to reach suitable habitats (Bouyer J., unpublished

data).

The analysis presented here showed that dispersal of G. tachinoides

across river basins was ,3 times higher than G. p. gambiensis, which

suggests that G. tachinoides flies have the ability to disperse with ease

despite the severe fragmentation of the riparian gallery forests in the

study area [2]. G. p. gambiensis dispersed less along fragmented

riparian forest habitat and seemed to encounter more difficulties to

disperse between the remaining fragments of this suitable habitat.

The fact that genetic structuring is not correlated to geographic

Table 6. Sex biased dispersal in G. palpalis gambiensis.

Analysis N Sex mAIc vAIc FST

Over all sites (1F,1M/trap, 8 sites) 27 F 20.507 (0.223) 9.932 (0.716) 0.040

23 M 0.595 7.337 20.005 (0.322)

Over all Mouhoun (1F,1M/trap, 6 sites) 22 F 20.598 (0.229) 10.783 (0.825) 0.031

18 M 0.731 8.537 20.022 (0.310)

Darsalamy (4 traps) 18 F 21.260 (0.028) 13.862 (0.338) 0.035 (0.298)

15 M 1.513 6.435 0.104

Minsin (2 traps) 15 F 0.123 14.511 (0.064) 20.019 (0.485)

8 M 20.231 (0.775) 3.009 0.202

Mouhoun (18 traps) 106 F 20.224 (0.250) 11.843 (0.151) 0.039 (0.887)

72 M 0.329 7.769 0.043

RzBanson (3 traps) 13 F 20.343 (0.551) 9.320 (0.739) 0.014

10 M 0.447 7.642 20.064 (0.285)

Samandeni (2 traps) 24 F 0.029 10.846 0.007 (0.737)

12 M 20.059 (0.933) 14.989 (0.640) 0.025

Zamakologo (3 traps) 23 F 0.254 7.279 (0.584) 20.012 (0.549)

12 M 20.487 (0.433) 5.353 0.029

Results were assessed between traps in the Mouhoun River Basin or between sites from different river basins (mAIc represents the mean and vAIc the variance of Favre
et al.’s corrected assignment index AIc). The parameter estimate of the sex with a sex biased signature is bold and followed by the P-value between brackets. This P-
value is in bold when significant. As indicated in the Material and Methods section, analyses are either between sites with one female and males kept per trap or
between traps in each site.
doi:10.1371/journal.pntd.0001217.t006

Table 5. Sex biased dispersal in G. tachinoides.

FST mAIc vAIc

Females 0.0417 0.24373 5.83009

Males 0.0241 20.32884 9.53443

P-value 0.1494 0.0869 0.003

FST mAIc vAIc

Females 0.0417 0.24373 5.83009

Males 0.0241 20.32884 9.53443

P-value 0.1494 0.0869 0.003

Results were assessed between samples from different river basins (mAIc

represents the mean and vAIc the variance of Favre et al.’s corrected assignment
index AIc).
doi:10.1371/journal.pntd.0001217.t005
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distance at a local scale in G. tachinoides [25], and the higher level of

genetic structuring observed for G. p. gambiensis populations at the

micro-scale [22] corroborate these observations. G. tachinoides is

more xerotolerant (i.e. tolerant for dry conditions) than G. p.

gambiensis, which could lead to a different perception of habitat

borders in this species [24]. Mark-release-recapture studies carried

out more than 20 years ago [7] showed that, in homogeneous,

unfragmented gallery forests, the two species had a similar rate of

dispersal. However, capture-mark-release-recapture data do not

necessarily correlate with genetic data, as was observed in morsitans

group flies [62], since the former is a direct measure of all kinds of

dispersal including hunting dispersal, whereas the latter is an

indirect measure of only reproductive dispersal. Our data imply that

habitat fragmentation seems to reduce the dispersal capacity of G. p.

gambiensis much more as compared to that of G. tachinoides. Similar

conclusions were drawn from recent mark-release-recapture

experiments in Burkina Faso, where mean dispersal coefficients of

0.3 km2.d21 and 0.05 km2.d21 were observed corresponding to

mean square displacements of 775 m/day and 316 m/day for male

G. tachinoides (Bouyer, J., unpublished data) and G. p. gambiensis [22]

respectively. The much lower effective density observed for G.

tachinoides as compared to G. p. gambiensis is partially related to the

location of the sampling sites, which were mostly along small

tributaries of the Mouhoun. These are known to be preferred sites

for G. p. gambiensis – hence the name ‘‘spring’’ tsetse fly [5] – but are

not favoured by G. tachinoides. During the entire sampling process,

the mean number of flies caught per trap per day were 1.04 (s.d.

1.06) and 0.13 (s.d. 1.31) for G. p. gambiensis and G. tachinoides,

respectively.

Tsetse flies are polygynous where the reproductive investment of

female flies far outreaches that of the male flies. As such and

according to the three main asymmetries of dispersal/philopatry

costs between genders favouring biased dispersal (i.e. the resource-

competition hypothesis, the local mate competition hypothesis and

the inbreeding hypothesis) a sex biased dispersal in tsetse flies

(should it exist) would be biased towards greater mobility of the

male sex (see [47] and references therein). Our analysis of the sex

biased dispersal in G. tachinoides suggests that female flies indeed

disperse very little in fragmented riparian vegetation. This seems

to suggest that female G. tachinoides are very conservative in their

dispersal behaviour and not only remain close to ‘‘known’’ suitable

larviposition sites in these fragmented landscapes, but are also

highly philopatric i.e. they deposit their larvae close to their own

place of birth. This behaviour would reduce the risk of reinvasion,

as only founding females would produce offspring for a new

population. This result is at variance with classical mark-release

recapture experiments where females were dispersing more than

males [7]. One possibility to explain our result would be a sex

specific local adaptation rendering immigrant females very

unlikely to survive locally. Sex based differences in dispersal were

not observed for G. p. gambiensis in the 1980’s in Burkina Faso and

more recently in Guinea and Burkina Faso [18,26]. In this case,

both sexes dispersed very little, which was also reflected in a high

level of structuring at a more local scale [22].

In conclusion, the data presented here, combined with those from

earlier studies [26], suggest that in Burkina Faso, riverine tsetse

populations from adjacent river basins are exchanging genetic

material, and can therefore not be considered as biologically

isolated. Therefore, potential re-invasion of flies from adjacent river

basins will have to be prevented by establishing buffer zones

between the Mouhoun and the other river basin(s), in the

framework of the PATTEC (Pan African Tsetse and Trypanoso-

mosis Eradication Campaign) eradication project that is presently

targeting the northern part of the Mouhoun River Basin.

Alternatively, the campaign should be extended to adjacent infested

basins to sustain the eradication.

Supporting Information

Table S1 Sex biased dispersal in G. tachinoides. Use of

Vitalis’ (2002) model to estimate possible parameters that would

explain observed differences in FST between females and males.

(XLS)
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